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Abstract: Recently, the area devoted to mathematical epidemiology has attracted much attention.
Mathematical formulations have served as models for various infectious diseases. In this regard,
mathematical models have also been used to study COVID-19, a threatening disease in present
time. This research work is devoted to consider a SEIR (susceptible-exposed-infectious-removed)
type mathematical model for investigating COVID-19 alongside a new scenario of fractional calculus.
We consider piece-wise fractional order derivatives to investigate the proposed model for qualitative
and computational analysis. The results related to the qualitative analysis are studied via using
the tools of fixed point approach. In addition, the computational analysis is performed due to a
significance of simulation to understand the transmission dynamics of COVID-19 infection in the
community. In addition, a numerical scheme based on Newton’s polynomials is established to simulate
the approximate solutions of the proposed model by using various fractional orders. Additionally, some
real data results are also shown in comparison to the numerical results.

Keywords: dynamical system; piecewise derivative; Newton polynomials; fractional order iterative
method
Mathematics Subject Classification: 34A08, 47H08, 93A30

1. Introduction

It is now recognized that a recent outbreak of acute atypical respiratory infections with an origin in
Wuhan, China, was caused by the novel coronavirus known as the severe acute respiratory syndrome
(SARS) coronavirus-2. The coronavirus disease 19 (COVID-19), which is the illness brought on by
this virus, has spread alarmingly quickly over the world and was classified as a pandemic by the World
Health Organization (WHO) on March 11, 2020 (see [1–3]). More than six million deaths attributed
to COVID-19 have been documented globally. Approximately 600 to 700 people in the same line
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have an infection. The state of the economy, people’s health, and their way of life have all been
severely disrupted. Researchers and scientists are working around the clock to find the best treatment
for COVID-19 (see [4]). Every state in the globe has already seized it. Here, we remark that people
can spread the virus to one another by exchanging respiratory droplets and aerosols. After entering
the body, the virus connects to the host receptors and enters the host cells via either membrane fusion
or endocytosis. The four structural proteins of the coronaviruses’ are the spike, membrane, envelope,
and nucleocapsid proteins are the coronaviruses’ four structural proteins (see details [5]). Currently,
COVID-19 causes 300 to 500 fatalities every day in the United States, which is an annual mortality load
greater than that brought on by an unfavorable influenza season. In the same way, in other localities
of the word, the virus appears in different shapes and is the cause for disease in society. To date, the
suggested or required preventative measures have been moulded by a number of epidemiologic and
clinical assessments that have been used to monitor the effects of COVID-19. The estimated rates of
COVID-19 cases, hospitalizations, and fatalities have typically been included in these measurements.
Monitoring of circulating SARS-CoV-2 variations and their susceptibility to existing vaccines and
therapies has also been performed (see details [6]).

Because of advances in technology, epidemiology has advanced to the point where different
infectious diseases are examined for treatment, control, curing, and so on [7]. Here, it should be
noted that mathematical biology also plays a significant part in the investigation of many diseases. As
a result, significant progress has been made in the mathematical modelling of infectious diseases over
the previous many decades [8,9]. In terms of research, mathematical modelling has grown in popularity
during the previous three decades. Mathematical models aid in the development of secure public health
methods for the successful control of various diseases [10]. These mathematical models are useful for
studying spatiotemporal patterns and the dynamic behaviour of infections. With the importance of
mathematical models, academics have researched COVID-19 from many perspectives over the last
three years [5]. Researchers in this field are employing a variety of approaches to develop successful
techniques for controlling this condition (some recent studies are included in [11, 12]). Recently, a
mathematical model was employed to investigate the impacts of immunization in nursing homes, for
example, see [13]. Researchers investigated mathematical modeling and effective intervention options
for the COVID-19 outbreak [14]. Recently, some writers investigated COVID-19 mathematical models
using stochastic differential equations and environmental white noise [15–18].

As we know, the field of epidemiology has been thoroughly researched using the idea of classical
derivatives. Because classical differential operators are local, they cannot adequately explain a variety
of inherited, short and long memory processes. As a result, fractional calculus has received increased
attention in recent decades in order to more thoroughly understand the aforementioned process. Its
dynamic characteristics have demonstrated a wide range of applications in real-world situations such
as biological and physical phenomena thereby increasing its popularity [19]. Just like regular calculus,
fractional calculus has a long history [20]. Several authors have explored the said topic from various
perspectives; we refer to a few as [21–23]. The aforementioned calculus has numerous applications in
science and technology (see [24, 25]).

Although it has a history that is as old as classical calculus, fractional derivatives are significantly
less well-known than they ought to be. What does the term “fractional derivative” mean physically?
This issue is still unresolved. We find that a memory process typically has two stages after modelling
various memory events. One has permanent retention and is short, whereas the other is controlled
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by a straightforward fractional derivative model (see [26–29]). Using the numerical least squares
method, we demonstrate how the fractional model fully fits the test data of memory phenomena in other
disciplines, including biology, psychology and mechanics. This approach leads us to the conclusion
that the fractional order has an index of memory as its physical meaning (see [30–33]).

The majority of real-world problems have some degree of unpredictability that traditional
mathematical models cannot capture. In recent decades, the concept of stochastic mathematical
differential equations has been proposed and widely employed, with notable results. However,
rather than following randomness, other problems follow non-locality trends, such as long-range
dependence, fractal processes, power law processes, and crossover behaviors, implying that physical
events exhibit a wide range of behaviors. To address these issues, a class of fractional derivatives was
suggested, which includes fractional differential operators with singular type kernels, fractal fractional
operators, and differential operators with regard to other functions. However, these operators are still
poor at characterizing crossover behavior. The idea of a short memory fractional order derivative
was developed for the first time to characterize the aforementioned behavior. Although fractional
derivatives have an extended memory capability, the piecewise notion has been shown to be more
powerful than described (see details in [34]). To examine the crossover properties, we introduce
several notions such as the fractal-fractional derivative, the fractional order derivative with singular
and non-singular kernels, and some other forms of derivative operators. For example, [35] refers to
some valuable work on nonlocal operators and their applications; [36] refers to a mathematical model
under the Caputo-Fabrizio operator; [37] refers to the fractional dynamics of cellulose degradation; [38]
refers to local and nonlocal operators with applications; and [39] refers to the existence and uniqueness
with applications to epidemiology. Although randomness considerations in the framework of the
stochastic equation produce more realistic results, the crossover dynamical behavior has not been
studied [40]. Many real-world process models, such as heat flow, fluid flow, and many complex
advection problems, exhibit this behavior (see [41]). The exponential and Mittag-Leffler mappings
cannot find the timing of crossovers in fractional calculus because many real-world issues exhibit
crossover behavior that is not adequately characterized by the standard fractional order derivative. Due
to phenomena such as earthquakes, pendulum motion, the volatility of the economy in less developed
countries at the present moment are experiencing rapid changes in their state of rest or uniform motion.
Using piecewise equations with fractional order derivatives, this crossover behavior can be clearly
demonstrated. Recently, in this regard, some essential aspects have been identified by analyzing various
models in [42]. The authors developed classical and global piecewise derivatives, as well as various
applications. Recently, various infectious disease models have been examined employing non-singular
and power-law type operators, as shown in [43–48].

Keeping the above importance, we intend to focus on these fundamental problems in this study,
utilizing a model specifically adapted to reflect the hallmark of the COVID 19 dynamics, as well as the
constraints in our reaction to it. First, we replicate the epidemic dynamics inside one community with
a specific social pattern, using a conventional SEIR design that allows for long incubation. Here, we
formulate our model under piecewise derivative as follows:

PCC
0 Dr

t(S )(t) = a − ρ1S I
1+γI − (δ + p)S

PCC
0 Dr

t(E)(t) = pS − δE − ρ2αEI
PCC
0 Dr

t(I)(t) =
ρ1S I
1+γI + ρ2αEI − (δ + µ0 + w − b)I

PCC
0 Dr

t(R)(t) = wI − δR,

(1.1)
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where PCC
0 Dr

t stands for piecewise Caputo derivative which can be described for any function say y as

PCC
0 Dr

t(y(t)) =


C
0Dt(y(t)) =

dy
dt
, 0 < t ≤ t1,

C
0D

r
t(y(t)) =

1
Γ(1 − r)

∫ t2

t1
(t − η)−ry′(η)dη, t1 < t ≤ t2,

(1.2)

where 0D
r
t represents the usual Caputo fractional order derivative. The flow chart of our model is given

in Figure 1, while the parameters and nomenclatures are described in Table 1. The Flow chart of our
model is given in Figure 1, and the nomenclatures in Table 1.

Figure 1. Flow chart of our established Model (1.1).

Table 1. Parameters and their discerption of the model (1.1).

Nomenclature Representation
S Susceptible class
E Exposed class
I Infected class
R Recovered class
N0 Total initial papulation
N Total population at time t
b Immigrant to I from E
µ0 infection death rate
δ death rate due to natural way
a Recruitment rate
p Migration rate from S to E
γ Saturation value of virus
α rate at which infection is reducing
ρ1 contact rate
w rate at which individual gets ride from infection
ρ2 infection rate

From Figure 1, we state that a is the recruitment rate, and ρ1S I
1+γI denoted contact rate. If natural death

is involved, then the rate δ and p stands for migration to the exposed class of infection. Thus, the
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amount δE is due to natural death and ρ2EI denoted the rate of infection which is reduced by rate α.
Furthermore, µ0 is the death rate due to COVID and w denoted recovery rate.

Some essential results, such as disease-free and endemic equilibrium points and basic reproduction
numbers, are computed. Additionally, boundness is confirmed. Then, we investigate aforementioned
mentioned model for the existence and uniqueness of approximation solutions using Banach and
Schauder fixed point theorems. It is noteworthy that the existence theory with piecewise derivatives
of fractional orders introduces some novel aspects to such dynamical issues. According to the theory,
there is a solution to such physical difficulties. In addition, we provide some results for the numerical
interpretation of the system using a numerical scheme. For classic fractional order systems, various
numerical tools have proved particularly effective in recent times. For example, in [49], the Range-
Kutta approach was employed to solve several fractional order problems. Researchers [50] additionally
made use of a revolutionary parameter estimation technique. In [51, 52], a nonstandard numerical
approach was utilized to solve fractional order problems. Additionally, improved finite-difference
strategies were employed in [53–55] for a distinct set of non-integer order issues. We use genuine data
from the sources cited in [56–60] to simulate our results. In this paper, we apply the numerical method
to study the numerical analysis of the considered model at different fractional orders.
The manuscript is structured as: Section 1 of our work is devoted to a lengthy introduction. Section 2
contains some essential results that we require in this paper. In addition, some basic results for the
proposed model are provided below. In Section 3, we use fixed point theory to develop an existence
theory for an approximate solution to the suggested model. The numerical strategy for an approximate
solution to the proposed model is covered in Section 4. The Section 5 is dedicated to graphical
representations of our findings. Finally, Section 6 provides a quick conclusion and discussion of the
numerical results.

2. Elementary results

In the section, we give some fundamental results from fractional calculus which we need throughout
this work. Additionally, some basic results for our proposed model are given here.

Definition 2.1. [42] If Ω be differentiable function with r > 0, then the classical and fractional order
piecewise integration is defined as follows:

PC
0 IrtΩ(t) =


∫ t1

0
Ω(η)dη, 0 < t ≤ t1,

1
Γ(r)

∫ t

t1
(t − η)r−1Ω(η)d(η), t1 < t ≤ T,

where PC
0 It stands for classical integration in 0 < t ≤ t1 and represents the Riemann-Liouville

integration in t1 < t ≤ T.

Definition 2.2. [42] Let 0 < r ≤ 1 and if Ω ∈ C[0,T ] be differentiable, then the classical and
fractional order piecewise derivative is defined as follows:

PCC
0 Dr

tΩ(t) =

Ω′(t), 0 < t ≤ t1,
C
0D

r
tΩ(t), t1 < t ≤ T.
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Lemma 2.3. [42] Let Ω ∈ L[0,T ] ∩C[0,T ] and g ∈ L[0,T ], then the solution of the given problem

PCC
0 Dr

tΩ(t) = g(t), 0 < r ≤ 1

is derived as

Ω(t) =


Ω0 +

∫ t

0
g(η)dη, 0 < t ≤ t1,

Ω(t1) +
1

Γ(r)

∫ t

t1
(t − η)r−1g(η)d(η), t1 < t ≤ t2.

2.1. Some fundamental results about the model (1.1)

Here, we provide some basic results about the model (1.1). The feasible region and boundedness of
the proposed model is given in Remark 2.4, as performed in [60].

Remark 2.4. Let N be the total papulation at any time t, we have

N = S + E + I + R. (2.1)

Taking derivative of (2.1) w.r.t ’t’, and using model (1.1), we get

PCC
0 Dr

tN(t) ≤ a − δN. (2.2)

On solving (2.2) and taking t → ∞, we get

N ≤
a
δ
.

Hence, the feasible region is described as

Φ = {(S , E, I,R) ∈ R4
+ : N ≤

a
δ
}.

Hence, the solution is bounded and inside the region is given by Φ.

Putting the left hand sides of model (1.1) equal to zero and solving the equations, the disease free
equilibrium is obtained as follows:

E0 = (S 0, E0, 0, 0) =

(
a

(δ + p)
,

ap
δ(δ + p)

, 0, 0
)
.

In the same line, we also compute the endemic equilibria as follows:

S ∗(t) =
a(1 + γI∗)

ρ1I∗ + (δ + p)(1 + γI∗)

E∗(t) =
pa(1 + γI∗)

(ρ1I∗ + (δ + p)(1 + γI∗))(δ + ρ2αI∗)

R∗(t) =
wI∗

δ
.

Furthermore, the threshold number R0 is computed by taking the second and third equation of (1.1),
from which we have the following:
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F =

[ ρ1S I
1+γI

+ ρ2αEI
0

]
and V =

[
(δ + µ0 + w − b)I

pS − δE

]
.

Jacobian of F and V at disease free equilibrium are given by

J(F) =

(
ρ1S 0 + ρ2αE0 0

0 0

)
and J(V) =

(
δ + µ0 + w − b 0

0 δ

)
.

Additionally, one has

V−1 =

[ 1
δ+µ0+w−b 0

0 1
δ

]

FV−1 =

ρ1S 0+ρ2αE0

δ+µ0+w−b 0
0 0

.
Hence, R0 is obtained as follows:

R0 =
ρ1aδ + ρ2αa

δ(δ + p)(δ + µ0 + w − b)
. (2.3)

In Figure 2, we present a 3D profile of R0 for some specific values, as given in Table 2.

Figure 2. 3D profile of R0 computed in (2.3).
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Table 2. Numerical values of the nomenclatures of the model.

Nomenclature Numerical value
S 217.342565 in millions [56]
E 100 in million (assumed)
I 1.386348 in million [56]
R 1.271087 in million [56]
b 0.135 (assumed) day−1

µ0 0.19 [56] day−1

δ 0.000065 [56] day−1

a 1.43 [60] day−1

p 0.45 day−1 [60]
γ 0.00019 [60] day−1

α 0.0008601 [60] day−1

ρ1 0.10 [60] day−1

w 0.98 [60] day−1

ρ2 0.020 [60] day−1

3. Existence theory

In this section, we will develop the existence and uniqueness results for the solution of the proposed
model (1.1). To proceed, let G : [0,T ] × R → R be a nonlinear continuous function, then the solution
according to Lemma 2.3 of

PCC
0 Dr

tΩ(t) = G(t,Ω), 0 < r ≤ 1, (3.1)
Ω(0) = Ω0

is given as

Ω(t) =


 Ω0 +

∫ t

0
G(η,Ω(η))dη, 0 < t ≤ t1,

Ω(t1) + 1
Γ(r)

∫ t2
t1

(t − η)r−1G(η,Ω(η))d(η), t1 < t ≤ t2,
(3.2)

where

Ω(t) =


S (t)
E(t)
I(t)
R(t)

, Ω0 =


S 0

E0

I0

R0

, Ω(t1) =


S (t1)
E(t1)
I(t1)
R(t1)

, G(t,Ω(t)) =



G1(t,Ω(t)) =

G1(Ω, t), 0 < t < t1,

G1(Ω, t), t1 < t ≤ t2,

G2(t,Ω(t)) =

G2(Ω, t), 0 < t < t1,

G2(Ω, t), t1 < t ≤ t2,

G3(t,Ω(t)) =

G3(Ω, t), 0 < t < t1,

G3(Ω, t), t1 < t ≤ t2,

G4(t,Ω(t)) =

G4(Ω, t), 0 < t < t1,

G4(Ω, t), t1 < t ≤ t2.
(3.3)
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Let∞ > t2 ≥ t > t1 > 0, with space described by E = C[0,T ]×C[0,T ]×C[0,T ]×C[0,T ] endowed
with norm

‖Ω‖ = max
t∈[0,T ]

|Ω(t)|.

The given hypothesis will hold.

(C1) Let LG > 0, such that Ω, Ω̄ ∈ E, then

|G(t,Ω) −G(t, Ω̄)| ≤ LG|Ω − Ω̄|.

(C2) If CG > 0, and MG > 0, then
|G(t,Ω(t))| ≤ CG|Ω| + MG.

Theorem 3.1. Under the hypothesis (C1), (C2), and if there exists a closed bounded subset

B = {Ω ∈ E : ‖Ω‖ ≤ R1,2, R1,2 > 0},

where

R1,2 ≥ max


|Ω0| + t1MG

1 − t1CG
, 0 < t ≤ t1,

|Ω(t1)|Γ(r + 1) + T rMG

(Γ(r + 1) − T rCG
, t1 < t ≤ t2,

then the problem (3.1) has at least on solution. Consequently the proposed model (1.1) has at least one
solution.

Proof. Let B of E as follows:

B = {Ω ∈ E : ‖Ω‖ ≤ R1,2, R1,2 > 0}.

Here, we describe the operator by T : B→ B as follows:

T(Ω) =


Ω0 +

∫ t

0
G(η,Ω(η))dη, 0 < t ≤ t1,

Ω(t1) +
1
Γr

∫ t2

t1
(t − η)σ−1G(η,Ω(η))d(η), t1 < t ≤ t2.

(3.4)

For Ω ∈ B, we have the following:

|T(Ω)(t)| ≤


|Ω0| +

∫ t1

0
|G(η,Ω(η))|dη,

|Ω(t1)| +
1

Γ(r)

∫ t2

t1
(t − η)r−1|G(ηΩ(η))|d(η),

≤


|Ω0| +

∫ t1

0
[CG|Ω| + MG]dη,

|Ω(t1)| +
1

Γ(r)

∫ t2

t1
(t − η)r−1[CG|Ω| + MG]d(η),
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≤


|Ω0| + t1[CGR1,2 + MG] ≤ R1,2, 0 < t ≤ t1,

|Ω(t1)| +
T r

Γ(r + 1)
[CGR1,2 + MG] ≤ R1,2, t1 < t ≤ t2,

where for t1 < t <≤ t2, we put |(t1 − η)r − (t2 − η)r| ≤ T r. Hence, we have that ‖T(Ω)‖ ≤ R1,2 which
yields that T(B) ⊂ B. Thus, T maps bounded set to bounded. Thus, T is a bounded operator since G
is continuous function. Therefore, T is also a continuous operator. Additionally, take tn > tm ∈ [0, t1],
then

|T(Ω)(tn) − T(Ω)(tm)| =

∣∣∣∣∣ ∫ tn

0
G(η,Ω(η))dη −

∫ tm

0
G(η,Ω(η))dη

∣∣∣∣∣
≤

∫ tn

tm
|G(η,Ω(η))|dη

≤

∫ tn

tm
[CG|Ω| + MG]dη

≤ (CGR1,2 + MG)[tn − tm]. (3.5)

From (3.5), we see that tn → tm, then

|T(Ω)(tn) − T(Ω)(tm)| → 0, as tn → tm.

Additionally, T is a bounded operator. Therefore,

‖T(Ω)(tn) − T(Ω)(tm)‖ → 0, as tn → tm.

Hence, in this case, T is equi-continuous in this case. Furthermore, for tn > tm ∈ (t1,T ], consider the
following:

|T(Ω)(tn) − T(Ω)(tm)| =

∣∣∣∣∣ 1
Γ(r)

∫ tn

0
(tn − η)r−1G(η,Ω(η))dη −

1
Γ(r)

∫ tm

0
(tm − η)r−1G(η,Ω(η))dη

∣∣∣∣∣
≤

1
Γ(r)

∫ tm

0
[(tm − η)r−1 − (tn − η)r−1]|G(η,Ω(η))|dη

+
1

Γ(r)

∫ tn

tm
(tn − η)r−1|G(η,Ω(η))|dη

≤
1

Γ(r)

[ ∫ tm

0
[(tm − η)r−1 − (tn − η)r−1]dη

+

∫ tn

tm
(tn − η)r−1dη

]
(CG|Ω| + MG)

≤
(CGR1,2 + MG)

Γ(r + 1)
[tr

n − tr
m + 2(tn − tm)r]. (3.6)

Furthermore, from (3.6), we see that

|T(Ω)(tn) − T(Ω)(tm)| → 0, as tm → tn.
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Additionally, T is bounded over (t1,T ] so is uniformly continuous. Hence,

‖T(Ω)(tn) − T(Ω)(tm)‖ → 0, as tn → tm.

Therefore, T is equi-continuous in the (t1, t2] interval. Hence T is an equi-continuous mapping over
[0, t1] ∪ (t1, t2]. Thus, T is a relatively compact operator. By using the Arzelá-Ascoli theorem, the
operatorT is completely continuous. Hence, the concerned problem (3.1) and the proposed model (1.1)
have at least one solution.

�

Theorem 3.2. Inview of Hypothesis (C1), the problem (3.1) has a unique solution if

max
{
TLG,

T r

Γ(r+1)LG

}
< 1. Consequently, the proposed model (1.1) has a unique solution.

Proof. If T : E→ E can be described as follows:

T(Ω) =


Ω0 +

∫ t

0
G(η,Ω(η))dη, 0 < t ≤ t1,

Ω(t1) +
1
Γr

∫ t2

t1
(t − η)σ−1G(η,Ω(η))d(η), t1 < t ≤ t2.

Then Ω, Ω̄ ∈ E, over [0, t1], one has

‖T(Ω) − T(Ω̄)‖ = max
t∈[0,t1]

∣∣∣∣∣ ∫ t1

0
G(η,Ω(η))dη −

∫ t1

0
G(η, Ω̄(η))dη

∣∣∣∣∣
≤ TLG‖Ω − Ω̄‖. (3.7)

From (3.7), we have

‖T(Ω) − T(Ω̄)‖ ≤ TLG‖Ω − Ω̄‖. (3.8)

By the same fashion for t ∈ (t1, t2], we have

‖T(Ω) − T(Ω̄)‖ = max
t∈(t1,t2]

∣∣∣∣∣ 1
Γ(r)

∫ t2

t1
(t − η)r−1G(η,Ω(η))dη −

1
Γ(r)

∫ t2

t1
(t − η)r−1G(η, Ω̄(η))dη

∣∣∣∣∣
≤

T r

Γ(r + 1)
LG‖Ω − Ω̄‖. (3.9)

From (3.9), we have

‖T(Ω) − T(Ω̄)‖ ≤
T r

Γ(r + 1)
LG‖Ω − Ω̄‖. (3.10)

Hence, from (3.8) and (3.10), we see that T is a contraction operator. Hence, (3.1) has a unique
solution. Consequently, our proposed model (1.1) has a unique solution. �
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4. Numerical scheme

Here, for the conduction of numerical results and for the proposed model (1.1), we construct a
numerical method for the two sub-intervals of [0, t2]. The numerical scheme for the piecewise problem
is like an integer order numerical scheme, as established in [42]. Using the piece-wise integral form
of 1.1, the classical and Caputo format is as follows:

S (t)) =


S 0 +

∫ t1

0
G1(η, )dη, 0 < t ≤ t1,

S (t1) +
1

Γ(r)

∫ t2

t1
(t − η)r−1G1(η)dη, t1 < t ≤ t2,

,

E(t)) =


E0 +

∫ t1

0
G2(η, )dη, 0 < t ≤ t1,

E(t1) +
1

Γ(r)

∫ t2

t1
(t − η)r−1G2(η)dη, t1 < t ≤ t2,

,

I(t)) =


I0 +

∫ t1

0
G3(η, )dη, 0 < t ≤ t1,

I(t1) +
1

Γ(r)

∫ t2

t1
(t − η)r−1G3(η)dη, t1 < t ≤ t2,

,

U(t)) =


R0 +

∫ t1

0
G4(η, )dη, 0 < t ≤ t1,

R(t1) +
1

Γ(r)

∫ t2

t1
(t − η)r−1G4(η)dη, t1 < t ≤ t2.

(4.1)

First, we construct the technique for the first equation of system (4.1), and the same procedure will
be repeated for the remaining equations. At t = tn+1, we have

S (tn+1)) =


S 0 +

∫ t1

0
G1(Ω, η)dη, 0 < t ≤ t1,

S (t1) +
1

Γ(r)

∫ tn+1

t1
(t − η)r−1G1(S , E, I,R, η)dη, t1 < t ≤ t2,

(4.2)
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We express Eq (4.2) in the Newton interpolation formula given in [42] as

S (tn+1) =



S 0 +


i∑

k=2

[ 5
12

G1(S k−2, Ek−2, Ik−2,Rk−2, tk−2)rt

−
4
3

G1(S k−1, Ek−1, Ik−1,Rk−1, tk−1)rt + G1(S k, Ek, Ik,Rk, tk)
]
,

S (t1) +



(rt)r−1

Γ(r + 1)

n∑
k=i+3

[
G1(S k−2, Ek−2, Ik−2,Rk−2, tk−2)

]
Π

+
(rt)r−1

Γ(r + 2)

n∑
k=i+3

[
G1(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

−G1(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Λ

+
r(rt)r−1

2Γ(r + 3)

n∑
k=i+3

[
G1(S k, Ek, Ik,Rk, tk) − 2G1(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

+ G1(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Ξ.



(4.3)

For the rest of the three equations, we can write the Newton interpolation scheme as follows:

E(tn+1) =



E0 +


i∑

k=2

[ 5
12

G2(S k−2, Ek−2, Ik−2,Rk−2, tk−2)rt

−
4
3

G2(S k−1, Ek−1, Ik−1,Rk−1, tk−1)rt + G2(S k, Ek, Ik,Rk, tk)
]
,

E(t1) +



(rt)r−1

Γ(r + 1)

n∑
k=i+3

[
G2(S k−2, Ek−2, Ik−2,Rk−2, tk−2)

]
Π

+
(rt)r−1

Γ(r + 2)

n∑
k=i+3

[
G2(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

−G2(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Λ

+
r(rt)r−1

2Γ(r + 3)

n∑
k=i+3

[
G2(S k, Ek, Ik,Rk, tk) − 2G2(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

+ G2(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Ξ



,

(4.4)
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I(tn+1) =



I0 +


i∑

k=2

[ 5
12

G3(S k−2, Ek−2, Ik−2,Rk−2, tk−2)rt

−
4
3

G3(S k−1, Ek−1, Ik−1,Rk−1, tk−1)rt + G3(S k, Ek, Ik,Rk, tk)
]
,

I(t1) +



(rt)r−1

Γ(r + 1)

n∑
k=i+3

[
G3(S k−2, Ek−2, Ik−2,Rk−2, tk−2)

]
Π

+
(rt)r−1

Γ(r + 2)

n∑
k=i+3

[
G3(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

−G3(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Λ

+
r(rt)r−1

2Γ(r + 3)

n∑
k=i+3

[
G3(S k, Ek, Ik,Rk, tk) − 2G3(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

+ G3(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Ξ



(4.5)

R(tn+1) =



R0 +


i∑

k=2

[ 5
12

G4(S k−2, Ek−2, Ik−2,Rk−2, tk−2)rt

−
4
3

G4(S k−1, Ek−1, Ik−1,Rk−1, tk−1)rt + G4(S k, Ek, Ik,Rk, tk)
]
,

R(t1) +



(rt)r−1

Γ(r + 1)

n∑
k=i+3

[
G4(S k−2, Ek−2, Ik−2,Rk−2, tk−2)

]
Π

+
(rt)r−1

Γ(r + 2)

n∑
k=i+3

[
G4(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

−G4(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Λ

+
r(rt)r−1

2Γ(r + 3)

n∑
k=i+3

[
G4(S k, Ek, Ik,Rk, tk) − 2G4(S k−1, Ek−1, Ik−1,Rk−1, tk−1)

+ G4(S k−2, Ek−2, Ik−2,Rk−2, tk−2)
]
Ξ



,

(4.6)

where Π = (n − k + 1)r − (n − j)r, Λ = (n − k + 1)r(n − k + 3 + 2r) − (n − k)(n − k + 3 + 3r),

Ξ = [(n−k+1)α(2(n−k)2+(3α+10)(n−k)+2α2+9α+12)−(n−k)α(2(n−k)2+((5α+10)(n−k)+6α2+18α+12).

5. Numerical simulation

In this section, we present the numerical simulation in Figures 3–10 using the obtained scheme
of Newton polynomials of classical and piecewise derivative concepts. We divide the whole interval
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into two sub-intervals and check the first interval for the integer order derivative, while the second a
interval is tested on different fractional orders in the sense of Caputo derivative by using the data given
in Table 2.

Figures 3 and 4 represent, the susceptible population, which declines and then becomes stable as
the remaining classes increase on both intervals. The single curve is for the first interval and it shows
integer order classical behavior from [0, t1] = [0, 20], while the four different curves show the global
order derivative behavior on [t1, t2] = [20, 80]. In Figure 4, the intervals are slightly increased and
shows a similar behavior.
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Figure 3. Piecewise representation of approximate solution for S for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.
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Figure 4. Piecewise representation of approximate solution for S for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.

Next, Figures 5 and 6 represent the exposed population, which grows up and then becomes stable
as the remaining two classes decline on both intervals. The single curve is for the first interval and it
shows classical order dynamics on [0, t1], while the four different curves show the fractional Caputo
order derivative behavior on [t1, t2]. In Figure 6, the time interval is [0, 100], showing similar dynamics.

AIMS Mathematics Volume 8, Issue 11, 27009–27032.



27024

0 20 40 60 80

T

100

102

104

106

108

E

0.94

0.96

0.98

1.00

Figure 5. Piecewise representation of approximate solution for E for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.
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Figure 6. Piecewise representation of approximate solution for E for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.

Furthermore, Figures 7 and 8 show the infected population, which grows up and reaches its peak
value, and then declines towards the convergent point. The first shows the integer order derivative,
while the other show, the fractional Caputo derivative behavior on different fractional orders. In Figure
8, the time interval is changed, showing similar dynamics.
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Figure 7. Piecewise representation of approximate solution for I for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.
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Figure 8. Piecewise representation of approximate solution for I for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.

The dynamics of the recovered population are shown in Figures 9 and 10, which indicate a sluggish
increase at the first interval of the integer order, followed by a fast increase that leads to the population’s
stable value at the convergent point. The fractional Caputo order derivative dynamics are represented
by the second interval, whilst the integer order derivative is represented by the first interval. The time
interval is extended and the same dynamical behavior is displayed in Figure 10.
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Figure 9. Piecewise representation of approximate solution for R for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.

0 20 40 60 80 100

T

0

20

40

60

80

100

120

140

R

0.94

0.96

0.98

1.00

Figure 10. Piecewise representation of approximate solution for R for classical derivative on
[0, t1] and fractional order derivative on [t1, t2] of order r.

Here, we compare our results in ordinary form with some actual data for infected patients reported
for 200 days in Pakistan, using the source [59] at the specified fractional order. We can see that the
simulated findings closely match those of actual data. This phenomenon shows that our plan and
numerical analysis are valid. Additionally, we evaluated our numerical results with those of genuine
data for Pakistan from the 1st March 2021 to the 15th September 2021, as provided by [60] in Figure 11.{

4, 4, 5, 5, 5, 5, 5, 6, 15, 17, 18, 19, 19, 31, 51, 182, 245, 331, 439, 485, 629, 758, 856, 962, 1034, 1171, 1139,

1454.1554, 1836, 1997, 2262, 2520, 2646, 2899, 3058, 3549, 3735, 3852, 3902, 4162, 4150, 4307, 4362, 4824,

5143, 5122, 6043, 6742, 7286, 7703, 8479, 8925, 9438, 10103, 10586, 11058, 11747, 11996, 12380, 12900,

13818, 14498, 14814, 15716, 16370, 17574, 18003, 20267, 21587, 22037, 23268, 25609, 26003, 26230, 27054,

27904, 29266, 30503, 31775, 32578, 34386, 34642, 36228, 37657, 38150, 38900, 39690, 40358, 40880,

42687, 47607, 50234, 53300, 56144, 59394, 63400, 57170, 60470, 75053, 78699, 83182, 79700, 84762,
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85321, 89583, 93233, 97690, 100324, 104648, 105087, 106142, 107733, 107270, 107607, 107460, 107784,

106023, 106775, 106361, 108100, 108466, 103543, 95388, 95241, 95219, 73536, 60234, 57668,

53431, 53333, 52203, 51057, 50080, 94522, 91408, 87345, 86770, 84234, 77418, 77360, 40242,

29274, 29626, 27189, 26191, 25279, 24983, 24941, 24912, 24908, 24935, 24827, 20597, 19230, 18253,

17573, 17548, 17555, 17588, 17103, 16229, 16685, 16001, 13706, 13385, 12464, 11697, 11542, 10378, 10446,

9940, 9356, 8739, 8555, 8585, 8500, 8553, 8623, 16014, 8633, 8564, 8512, 8660, 8883, 6020, 6234,

6477, 6545, 5291, 5546, 5979, 5786, 5582, 5525
}
.
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Figure 11. Comparison of per day infected cases with that of simulated data of our proposed
model.

Here, we have compared the results of the simulation with real data from the case of the infected
class. We see simulated results are closely related. Furthermore, fractional order derivatives maintain
a higher degree of freedom and flexibility. Figures 3–10 show the crossover behavior at the indicated
positions. Two sets of various fractional orders and time intervals have been used in the numerical
simulation of all four compartments. Additionally, the bending effects are also displayed when t1

is used to describe the dynamics of piecewise derivatives. The physical piecewise concept is more
realistic when compared to either classical or traditional fractional order derivatives because abrupt
changes cannot be modeled accurately using traditional fractional calculus. Hence, the multi-behaviors
of transmission dynamics cannot be properly described via the traditional concept. Hence, the said
tools of fractional calculus can be used as a powerful tool to physically interpret various dynamical
systems of real world process/problems more comprehensively.

6. Discussion and conclusions

In this study, a model based on piecewise equations with fractional order Caputo derivatives was
established. We used the fixed point theory of Schauder and Banach to build the existence theory of
the solution of the suggested model. Additionally, we developed a numerical approach based on the
Newton interpolation formula. Then, the outcomes were represented graphically using real data for
different fractional orders. Additionally, for the aforementioned afflicted individuals, relevant results
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have been shown and contrasted with actual data. This is known as crossover behavior because many
real-world problems have sudden changes to their state of uniform motion or rest. Traditional fractional
or classical derivatives of any kind are ineffective for illustrating this phenomenon. The aforementioned
phenomenon is adequately explained by piecewise equations with fractional order derivatives.

Additionally, there was a comparison between the solutions and the integer order solution. The
initial interval of the numerical simulation was given in the integer order, whereas the second interval is
checked in multiple fractional orders. Both intervals are analyzed on fractional orders in addition to the
comparison with the integer order. When abrupt changes in the dynamics of various parameters occur,
such an analysis can be utilized to investigate a variety of worldwide occurrences. The crossover issues
of both integer and fractional orders can be addressed by this investigation. Finally, we conducted a
careful comparison of our results with a few verified facts. Future uses of this form of analysis will
involve more complex dynamical problems, such as Mittag-Leffler derivatives and fractal-fractional
types. Then, the above model will be investigated in the framework of stochastic fractional order
differential equations using singular and non-singular differential operators.
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32. H. Khan, J. F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection
model with nonsingular Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 3786–3806.
https://doi.org/10.1002/mma.6155

33. C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional
model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466.
https://doi.org/10.1016/j.conbuildmat.2012.04.028

AIMS Mathematics Volume 8, Issue 11, 27009–27032.

http://dx.doi.org/https://doi.org/10.1016/j.health.2023.100210
http://dx.doi.org/https://doi.org/10.1016/S0140-6736(20)30260-9
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2010.05.027
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2009.05.004
http://dx.doi.org/https://doi.org/10.1615/critrevbiomedeng.v32.i1.10
http://dx.doi.org/https://doi.org/10.1115/1.3101682
http://dx.doi.org/https://doi.org/10.1007/978-3-7091-2664-6
http://dx.doi.org/https://doi.org/10.3390/fractalfract7050370
http://dx.doi.org/https://doi.org/10.1299/jsmec.42.825
http://dx.doi.org/https://doi.org/10.2478/s13540-012-0048-6
http://dx.doi.org/https://doi.org/10.1016/j.medengphy.2015.05.003
http://dx.doi.org/https://doi.org/10.1615/CritRevBiomedEng.2018028368
http://dx.doi.org/https://doi.org/10.1002/mma.6155
http://dx.doi.org/https://doi.org/10.1016/j.conbuildmat.2012.04.028


27031

34. G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations
for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623.
https://doi.org/10.1007/s11071-020-05572-z

35. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel, 2016.
arXiv:1602.03408.

36. E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular
kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198.
https://doi.org/10.3846/13926292.2016.1145607

37. E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract.
Calc. Appl. Anal., 18 (2015), 554–564. https://doi.org/10.1515/fca-2015-0034

38. M. B. Jeelani, Stability and computational analysis of COVID-19 using a higher
order galerkin time discretization scheme, Adv. Appl. Stat., 86 (2023), 167–206.
https://doi.org/10.17654/0972361723022

39. A. Al Elaiw, F. Hafeez, M. B. Jeelani, M. Awadalla, K. Abuasbeh, Existence and uniqueness
results for mixed derivative involving fractional operators, AIMS Mathematics, 8 (2023), 7377–
7393. https://doi.org/10.3934/math.2023371

40. S. K. Kabunga, E. F. D. Goufo, V. H. Tuong. Analysis and simulation of a mathematical model
of tuberculosis transmission in democratic Republic of the Congo, Adv. Differ. Equ., 2020 (2020),
642. https://doi.org/10.1186/s13662-020-03091-0

41. A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and
South Africa: Theory, methods and applications, Adv. Differ. Equ., 2020 (2020), 659.
https://doi.org/10.1186/s13662-020-03095-w

42. A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators,
Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638

43. M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus
(2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389.
https://doi.org/10.1016/j.aej.2020.02.033

44. M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined
and isolation, Adv. Differ. Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9

45. O. Dyer, Covid-19: China stops counting cases as models predict a million or more deaths, BMJ,
380 (2023), 2. https://doi.org/10.1136/bmj.p2

46. A. Moumen, R. Shafqat, A. Alsinai, H. Boulares, M. Cancan, M. B. Jeelani, Analysis of fractional
stochastic evolution equations by using Hilfer derivative of finite approximate controllability, AIMS
Mathematics, 8 (2023), 16094–16114. https://doi.org/10.3934/math.2023821

47. A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise
fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665.
https://doi.org/10.1016/j.aej.2021.11.039

48. C. Y. Li, J. Yin, A pedestrian-based model for simulating COVID-19
transmission on college campus, Transportmetrica A, 19 (2023), 2005182.
https://doi.org/10.1080/23249935.2021.2005182

AIMS Mathematics Volume 8, Issue 11, 27009–27032.

http://dx.doi.org/https://doi.org/10.1007/s11071-020-05572-z
http://dx.doi.org/https://doi.org/10.3846/13926292.2016.1145607
http://dx.doi.org/https://doi.org/10.1515/fca-2015-0034
http://dx.doi.org/https://doi.org/10.17654/0972361723022
http://dx.doi.org/https://doi.org/10.3934/math.2023371
http://dx.doi.org/https://doi.org/10.1186/s13662-020-03091-0
http://dx.doi.org/https://doi.org/10.1186/s13662-020-03095-w
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110638
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.02.033
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02882-9
http://dx.doi.org/https://doi.org/10.1136/bmj.p2
http://dx.doi.org/https://doi.org/10.3934/math.2023821
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.11.039
http://dx.doi.org/https://doi.org/10.1080/23249935.2021.2005182


27032

49. M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method
for a time fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020), 1020472.
https://doi.org/10.1155/2020/1020472

50. F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical
models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833.
https://doi.org/10.1016/j.camwa.2011.03.002

51. M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis B epidemic model and
its solutions by nonstandard numerical schemes, In: Mathematical Modelling and Analysis of
Infectious Diseases, Springer, Cham, 302 (2020), 127–153. https://doi.org/10.1007/978-3-030-
49896-2 5

52. Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady
nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys.
J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7

53. B. Wang, L. Li, Y. Wang, An efficient nonstandard finite difference scheme
for chaotic fractional-order Chen system, IEEE Access, 8 (2020), 98410–98421.
https://doi.org/10.1109/ACCESS.2020.2996271
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