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Abstract: In this paper, combining B-spline function and Tikhonov regularization, we propose an
online identification approach for reconstructing a smooth function and its derivative from scattered
data with heteroscedasticity. Our methodology offers the unique advantage of enabling real-time
updates based on new input data, eliminating the reliance on historical information. First, to address
the challenge of heteroscedasticity and computation cost, we employ weight coefficients along with a
judiciously chosen set of knots for interpolation. Second, a reasonable approach is provided to select
weight coefficients and the regularization parameter in objective functional. Finally, We substantiate
the efficacy of our approach through a numerical example and demonstrate its applicability in solving
inverse problems. It is worth mentioning that the algorithm not only ensures the calculation efficiency,
but also trades the data accuracy through the data volume.
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1. Introduction

The underlying model of this article can be formulated quite easily: given some real valued variables
x and y fulfill the heteroscedastic model:

y = f (x) + σ(x)ε, (1.1)

where f (x) belongs to Sobolev space W2,2(0, 1), variance function σ(x) is a positive function defined
on (0,+∞) and the random error term ε is independent of x and satisfies E(ε) = 0 and Var(ε) = 1.

Such a problem is widely applied in various fields such as Computerized Tomography (CT)
and the inverse problem of option pricing (IPOP) in [1–3]. Moreover, this is a classical ill-posed
problem. There are plenty of regularization methods for this ill-posed problem in one dimension or
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higher dimensions [4, 5]. Researchers [6–9] have proposed some statistical methods to solve this ill-
posed problem. Zhang [10] employs a relatively small number of knots for interpolation to reduce
computation cost. These classical approaches are based on the equal variance of the error term and,
when N is large enough, needs large amount of calculating. However, the variance σ(x) in (1.1) is
typically unequal, a phenomenon known as heteroscedasticity [11, 12].

Heteroscedasticity, which is an econometric term, is the variances of perturbationsσ(x) in the model
which are not exactly equal [13]. Heteroscedasticity will lead to large errors in the model. In order
to reduce the error caused by heteroscedasticity, the principal methods are mainly divided into three
parts. The most common method is to take the logarithm of the data [14]. However, not all data must be
logarithmic. The second method is Robust Standard Error Regression, which is the most popular and
effective treatment method at present [15,16]. The main idea is to modify the objective function in the
classical least squares regression, which is very sensitive to outliers. Robust method is only applicable
to heteroscedasticity and independent observation. Another method is FGLS regression [17]. For
points with larger residual value, the smaller weight is given to solve the heteroscedasticity problem.
It is still the least square method in essence. However, the convergence speed of this method is slow,
that is, the deviation of limited samples will be large.

B-spline functions are crucial elements in various fields, especially in computer graphics, computer-
aided design (CAD), and numerical analysis [18–20]. They play a significant role in curve and
surface representation, interpolation, approximation, and modeling [21–23]. B-spline functions offer
a versatile mathematical framework for representing complex shapes and data, enabling efficient and
accurate solutions in various industries and scientific disciplines. Their ability to balance smoothness,
flexibility, and local control makes them a cornerstone of computational modeling and design
processes. Among them, cubic splines are the most representative. Cubic B-spline functions strike
a balance between simplicity and expressiveness. They are more flexible than linear or quadratic
B-splines, allowing for smoother curves and surfaces, while still being relatively straightforward to
manipulate.

In this paper, based on B-splines function and FGLS regression, we propose a weighted online
regularization method which apply weight coefficients and a relatively small number of knots for
interpolation to reduce the effect of heteroscedasticity and computation cost, and exchange the amount
of data for the accuracy of reconstruction. Moreover, this algorithm has the characteristics of smaller
memory occupation and can process online data, which means that when new data is added, there is
no need to re-process the processed data.

The paper is organized as follows. In Section 2, we introduce the issue which is to be studied and
propose an online reconstruction algorithm. Error estimation is carried out in Section 3. Section 4
provides a principle of optimal selection for weight coefficients and the regularization parameter in
objective function. The performance of the proposed algorithm is illustrated in Section 5. In Section 6,
we present two applications of our reconstruction algorithm in inverse problems. Section 7 concludes
main results.

2. Problem statement and algorithm design

In this section, we consider the following problem: for a lager positive integer N, we try to
reconstruct function f (x) and its derivative f ′(x) in the model (1.1) from observation data {(xi, yi)}Ni=1
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and function σ(x).

2.1. Regularized solution

First, we define the Tikhonov objective functional as follows:

J(g) =
1
N

N∑
i=1

wi(g(xi) − yi)2 + α||g′′(x)||2L2(0,1), (2.1)

where g(x) ∈ W2,2(0, 1), {wi}
N
i=1 are weight coefficients and α is a regularization parameter. The

minimization problem is reformulated as follows:

fN = arg min
g

J(g) = arg min
g

 1
N

N∑
i=1

wi(g(xi) − yi)2 + α||g′′(x)||2L2(0,1)

 . (2.2)

fN is defined as the approximated solution of f (x) in (1.1).
In this paper, we reconstruct not only function f (x) but also its derivative f ′(x). This is a classical

ill-posed problem. It is computationally costly to solve the problem with local regression methods such
as kernel regression and local polynomial regression. This problem is usually solved by regularization
method and spline functions. Moreover, B-spline basis functions have compact support which makes
it possible to speed up calculations. Thus, we choose B-spline function.

Then we solve suitable g(x) in the finite dimensional function space of cubic B-spline function
instead of the infinite dimensional space. Inspired by the method in [25], we just select some
equidistant points not sample points as interpolation node.

Let M be a positive integer and mesh size d = M−1. Equidistant knots {p j}
M
j=0 are defined as

p j = jd, j = 1, 2, · · · ,M.

The vector space of all cubic B-spline functions with knots {p j}
M
j=0 is called space Vm. Assume function

g(x) belongs to space Vm, g(x) can be written as

g(x) =
M+1∑
j=−1

λ jϕ j(x), (2.3)

where {λ j}
M+1
j=−1 are constants and ϕ j(x) = ϕ( x−p j

d ). ϕ(x) is standard cubic B-spline function defined
in [24].

Denote the weight coefficient W = diag(
√

w1,
√

w2, · · · ,
√

wN), the noisy sample y =

(y1, y2, · · · , yN)T , the function parameter λ = (λ−1, λ0, · · · , λM+1)T and the row vector Hx =

(ϕ−1(x), ϕ0(x), · · · , ϕM+1(x)). Through the Eq (2.3) and the definition above, the Eq (2.2) can be
rewritten as

λN = arg min
λ

J1(λ) := arg min
λ

(
1
N

(WHλ −Wy)T (WHλ −Wy) + αλT Pλ
)
, (2.4)

where H := (Hx1 ,Hx2 , · · · ,HxN )T and P ∈ R(M+3)×(M+3) is given by

P = (pi j)M+1
i, j=−1, pi j =

∫ 1

0
ϕ′′i (x)ϕ′′j (x)dx.

When λN is known, the approximated solution fN(x) = HxλN .
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Theorem 1. Suppose N > 2, and the observation points {xi}
N
i=1 are not identical. Then, the minimization

problem (2.4) has a unique minimizer λN which satisfies:(
1
N

HT WT WH + αP
)
λN =

1
N

HT WT Wy. (2.5)

Proof. Since J1(λ) in (2.4) is a quadratic form with respect to λ, the derivative of J1(λ) takes zero only
at λ = λN , that is (

1
N

HT WT WH + αP
)
λN =

1
N

HT WT Wy.

Moreover, P is positive definite and HT WT WH is positive semidefinite. Thus, λN is unique. □

2.2. Algorithm

Through the theorem above, we propose a online Tikhonov regularization algorithm in Algorithm 1.
In “Require” sentence, we input the observation data {(xi, yi)}Ni=1 and the necessary parameters–the
number of knots M, weight coefficients W in (4.6) and regularization parameter α in Table 1. The
algorithm proceeds from Line 1 to Line 8. In Line 1–2, we initialize matrix A0 = 0 ∈ R(M+3)×(M+3) and
b0 = 0 ∈ R and generate the matrix P ∈ R(M+3)×(M+3). Line 3–6 provides a method to update A and b
in (2.5) according to the newly entered data. Through solving linear system in Line 7, we have λN and
the approximated solution fN satisfies fN(x) = HxλN .

Algorithm 1 The Online Tikhonov regularization.
Require: The number of knots M, mesh size d = 1/M, the number of sample N, the observation data
{(xi, yi)}Ni=1, weight coefficients W and regularization parameter α.

Ensure: The approximated solution fN ∈ Vm.
1: Initialize A0 = 0 ∈ R(M+3)×(M+3) and b0 = 0 ∈ R;
2: Generate the matrix P ∈ R(M+3)×(M+3)

P = (pi j)M+1
i, j=−1, pi j =

∫ 1

0
ϕ′′i (x)ϕ′′j (x)dx;

3: for i← 1, 2, · · · ,N do
4: Generate row vector Hxi = (ϕ−1(xi), ϕ0(xi), · · · , ϕM+1(xi));
5: Upgrade Ai by Ai ←

i−1
i Ai−1 +

w2
i

i HT
xi

Hxi;

6: Upgrade bi by bi ←
i−1

i bi−1 +
w2

i
i HT

xi
yi;

7: Solve linear system (αP + AN)λN = bN for λN;
8: return fN(x) = HxλN .

Table 1. Parameter selection.

Parameter M α wi

Value N
1
5 σ2

∗N
− 4

5 1/(k + σ(xi))2
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Remark 1. When a new data is inputed, one just run the algorithm from Line 4 to Line 6. The
computational complexity at Line 4, 5 and 6 are O(1) and the computational complexity at Line 7 is
O(M). Moreover, the total data storage of Algorithm 1 is O(M).

Weight coefficients W are introduced to reduce the effect of heteroscedasticity. The selection of
weight coefficients W will be thoroughly discussed in Section 3.

Note that, N continues to increase with the influx of new data, when N becomes so large that
M ≪ N

1
5 , we need to increase M to M ≈ N

1
5 and restart the algorithm.

3. Error estimation

In this chapter, we analyze the reconstruction error of function f (x). Some assumptions are
necessary before proving. Suppose that the matrix P is positive definited. Without losing generality,
it is advisable to set the domain of variable x to [0, 1]. The weighting coefficient matrix W can be
redefined as

W = diag(
√

w1,
√

w2, · · · ,
√

wM)T .

Make wmin and wmax are the minimum and maximum values of parameters {w j}
N
j=1 respectively. Then

for the observation data {(xi, yi)}Ni=1, yi can be expressed as

y j = f (x j) + σ(x j)ε j, j = 1, 2, · · · ,N,

where ε j are independent with expectation 0 and variance 1.
Recording error function as

eN(x) = fN(x) − f (x).

Next, consider the influence of regularization function on function itself and random noise.
When the data is divided into deterministic part and random part, the reconstruction result can also

be divided into two parts
fN = fabs + fnoise,

where the deterministic part fabs satisfies

fabs = arg min
g∈Vm

J(g;α,y − ε),

here ε is a column vector of the observed noise

ε = (σ1ε1, σ2ε2, · · · , σNεN)T ∈ RN ,

let σ2
∗ = maxx j σ

2(x j). And the random part fnoise satisfies

fnoise = arg min
g∈Vm

J(g;α, ε).

Then, the error function can be rewritten as

eN(x) = ( fabs(x) − f (x)) + fnoise(x) := eabs(x) + fnoise(x).

Two important lemmas are introduced before error estimation.
Firstly, the indicator function is defined to describe the distribution of observation points.
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Definition 1. Divide the interval [0, 1] into M disjoint subspaces Ii, 1 ≤ i ≤ M,

I1 = [0, d], Ii = (id − d, id],

where d = 1/M is the grid spacing. There are Ni observation data on each subspace Ii, 1 ≤ i ≤ M.
Define the indicator function ρM(x) as

ρN(x) =

ρN,i = Ni(Md)−1, z ∈ Ii,

0, x < [0, 1].
(3.1)

Lemma 1. ( [10], Lemma 3.3) Assume that the indicator function ρM(x) has an upper bound ρu in the
interval [0, 1],

sup
x∈[0,1]

ρN(x) ≤ ρu.

Then, for the first order continuous differentiable function f (x), x ∈ [0, 1], the mean square sum of
values at all observation points satisfies:

1
N

N∑
j=1

f 2(x j) ≤ 2ρu

(
|| f ||2L(0,1) + d2|| f ′||2L2(0,1)

)
.

Next, the error estimation of cubic spline interpolation is introduced.

Lemma 2. ( [24], Theorem 1.56) Assume the objective function f (x) ∈ H2(a, b), x0 = a, xM = b, the
grid spacing is d. Let s f be a cubic spline interpolation function of f with natural or fixed boundary
conditions, then the interpolation error can be estimated as

||s f − f ||L2(a,b) ≤
d2

4
||s′′f − f ′′||L2(a,b) ≤

d2

4
|| f ′′||L2(a,b),

||s′f − f ′||L2(a,b) ≤
d
√

2
||s′′f − f ′′||L2(a,b) ≤

d
√

2
|| f ′′||L2(a,b).

In addition, if s f has natural boundary conditions, then the relation between the second derivatives
of f and s f is

||s′′f ||
2
L2(a,b) + ||s

′′
f − f ′′||2L2(a,b) = || f

′′||2L2(a,b).

Now, the error estimate of the deterministic part is analyzed.

Theorem 2. Assume that ρM is an indicator function on the interval [0, 1] and has an upper bound ρu.
f (x) ∈ H2(0, 1). Then, the mean square sum of eabs(x) at the observation points is estimated as follows:

||eabs||
2
L2(0,1) =

1
N

N∑
j=1

( fabs(x j) − f (x j))2 ≤
9
8

wmax

wmin
ρud4|| f ′′||2L2(0,1) +

α

wmin
|| f ′′||2L2(0,1).
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Proof. The deterministic part. Note

EN =
1
N

N∑
j=1

(s f (x j) − f (x j))2,

where s f (x) is a cubic spline interpolation function satisfies natural or fixed boundary conditions on
the interval [0, 1]. By Lemmas 1 and 2, we have

EN ≤ 2ρu

(
|| f − s f ||

2
L2(0,1) + d2|| f ′ − s′f ||

2
L2(0,1)

)
≤ 2ρu

(
d4

16
|| f ′′||2L2(0,1) +

d4

2
|| f ′′||2L2(0,1)

)
≤

9
8
ρud4|| f ′′||2L2(0,1).

(3.2)

And
1
N

N∑
j=1

( fabs(x j) − f (x j))2 ≤
1

wmin

 1
N

N∑
j=1

w j( fabs(x j) − f (x j))2 + α|| f ′′abs||
2
L2(0,1)

 . (3.3)

For fabs is the smallest element of the weighted regular functional J(·;α,y − ε),

1
N

N∑
j=1

w j( fabs(x j) − f (x j))2 + α|| f ′′abs||
2
L2(0,1) ≤

1
N

N∑
j=1

w j(s f (x j) − f (x j))2 + α||s′′f ||
2
L2(0,1). (3.4)

Then,
1
N

N∑
j=1

w j( fabs − f (x j))2 + α|| f ′′abs||
2
L2(0,1) ≤ wmax

(
EN +

α

wmax
||s′′f ||

2
L2(0,1)

)
. (3.5)

From Eqs (3.3)–(3.5), we have

1
N

N∑
j=1

( fabs(x j) − f (x j))2 ≤
wmax

wmin
EN +

α

wmin
||s′′f ||

2
L2(0,1) (3.6)

On the other hand, by Lemma 2,
||s′′f ||

2
L2(0,1) ≤ || f

′′||2L2(0,1).

Combining (3.2) and (3.6),

1
N

N∑
j=1

( fabs(x j) − f (x j))2 ≤
9
8

wmax

wmin
ρud4|| f ′′||2L2(0,1) +

α

wmin
|| f ′′||2L2(0,1). (3.7)

□

Remark 2. According to formula (3.7), in order to control the error effectively, it is necessary to select
the same order of regularization parameter α as d4 to control the interpolation error.
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Next, consider the error estimation of the random part. The reconstruction result of the random part
is

fnoise = arg min
g∈Vm

J(g;α, ε).

By the conclusion in chapter 4, we have

fnoise = Hλε,

where λε satisfies

λε =
1
N

(
1
N

HT WT WH + αP
)−1

HT WT Wε.

Theorem 3. Under the above assumptions, the mean square sum of the random part fnoise on the
observation points is satisfied with the probability of 1 − β

|| fnoise||
2
L2(0,1) =

1
N

N∑
j=1

f 2
noise(x j) ≤

4σ2
∗M

wminβN
.

Proof. The proof is divided into three steps.
Step 1: Rewrite λε as

λε =
(
HT
∗ H∗ + αNP

)−1
HT
∗ ε∗, H∗ := WH, ε∗ := Wε

= P−1HT
∗ (H∗P−1HT

∗ + αNI)−1ε∗

= P−1HT
∗ (S + αNI)−1ε∗, S := H∗P−1HT

∗ .

(3.8)

where I is an identity matrix of N × N.
Step 2: Feature decomposition S . For S satisfying:

S := H∗P−1HT
∗ .

Obviously, it is semi-positive definite, thus S can be rewritten as

S = UTUT ,

where U is an orthogonal matrix and T is a diagonal matrix composed of the eigenvalues of S . For

rank(S ) ≤ rank(P−1) = M + 3.

T can be rewritten as
T = diag(t1, t2, · · · , tM+3, 0, · · · , 0).

where {t j}
M+3
j=1 is a monotonically decreasing sequence,

t1 ≥ t2 ≥ · · · ≥ tM+3 ≥ 0.

Step 3: Obtaining estimates in the form of confidence intervals.
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For the mean square sum of fnoise on observation points satisfies:

1
N

N∑
j=1

f 2
noise =

1
N
||Hλ||22.

And
E||Hλ||22 = E

[
εT
∗ (S + αNI)−1H∗P−1HT HP−1HT

∗ (S + αNI)−1ε∗
]

= E
[
tr((WT W)−1S 2(S + αNI)−2ε∗ε

T
∗ )

]
= tr((WT W)−1S 2(S + αNI)−2E[ε∗εT

∗ ])
= σ2

∗tr((WT W)−1S 2(S + αNI)−2)

≤
σ2
∗

wmin

N∑
j=1

t2
j

(t j + αN)2

≤
σ2
∗

wmin
(M + 3).

(3.9)

Combined with Markov inequality: for non-negative variable X, for any given a > 0, the following
formula holds

P(X ≥ a) ≤
E[|X|]

a
.

Therefore, the estimation of noise mean square sum error of noise under the probability of 1 − β
satisfies:

1
N

N∑
j=1

f 2
noise(x j) ≤

E||Hλε||22
βN

≤
σ2
∗(M + 3)
wminβN

.

□

Finally, we estimate the error ||eN ||
2
L2(0,1). Through Theorems 2 and 3, the errors of the deterministic

and random parts of the reconstruction function are analyzed. Moreover, we can obtain the mean
square error of f (x) under the probability of 1 − β.

Theorem 4. Assume that ρM is an indicator function on the interval [0, 1] and has an upper bound ρu.
Let f (x) ∈ H2(0, 1), for any β ∈ [0, 1], such that the error eN under the probability of 1 − β satisfies:

||eN ||
2
L2(0,1) ≤

9
8

wmax

wmin
ρud4|| f ′′||2L2(0,1) +

α

wmin
|| f ′′||2L2(0,1) +

σ2
∗(M + 3)
wminβN

. (3.10)

Proof. By Theorems 2 and 3, the conclusion is easy to get. □

4. Parameters selection

From inequality (3.10), the estimation error is determined by the model parameters. Thus, it is
a very important problem to select appropriate model parameters. In this chapter, we are going
to determine the regularization parameter α, the number of knots M, and weight coefficients W in
Algorithm 1.

AIMS Mathematics Volume 8, Issue 11, 26991–27008.
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First, we consider the regularization parameter α and the number of knots M. Through Theorem 4,
the three formulas

9
8

wmax

wmin
ρud4|| f ′′||2L2(0,1),

α

wmin
|| f ′′||2L2(0,1) and

σ2
∗(M + 3)
wminβN

must be in the same order of magnitude. Otherwise, it will result in oversize error ||eN ||
2
L2(0,1) or over-

fitting. Assume the value of ρu and || f ′′||2L2(0,1) do not effect the order of magnitude. Thus, we have

wmaxd4 ≈ α ≈ σ2
∗M/N,

where d = 1/M. Through the equation above, the regularization parameter α and the number of knots
M satisfy:

M ≈ (Nwmax/σ
2
∗)

1
5 , α ≈ w

1
5
max(σ2

∗/N)
4
5 . (4.1)

Next, we consider the optimal choice of weight cofficients W. For weighted linear regression,
researchers provide a method to choose weight cofficients. Thus, based on the method of weighted
linear regression and the linear form of the reconstruction results, we provide Theorem 3.1 to choose
weight coefficients.

Let eN = fN − f be the error function of the proposed regularization algorithm. From error function
eN and Eq (2.5), the error comes from two aspects: the interpolation error caused by pre selected
interpolation nodes and the random error caused by observation noise. The error eN can not be reduced
easily. But we can select suitable weight coefficients W to reduce the variance of the error eN . Denote
f ∗(x) as a best approximated solution of f (x) in space Vm as follows:

f ∗ = arg min
g∈Vm

 1
N

N∑
i=1

(g(xi) − f (xi))2 + α||g′′(x)||2L2(0,1)

 , (4.2)

where the error e∗ = f ∗ − f just comes from the interpolation error. Similar the process of Theorem 1,
f ∗ can also be written as f ∗(x) = Hxλ

∗
N and λ∗N is given by(
αP +

1
N

HT H
)
λ∗N =

1
N

HTf , (4.3)

where f := ( f (x1), f (x2), · · · , f (xN))T .

Theorem 5. Assume regularization parameter α ≪ 1, M is large enough and variance function σ(x)
satisfies σ : [0, 1]→ (0,+∞). If W∗ is given by

W∗ = diag(
1
σ(x1)

,
1
σ(x2)

, · · · ,
1
σ(xN)

),

then, λN(W∗) is the approximated minimum empirical variance unbiased estimation of λ∗N , that is,
λ∗N ≈ E[λN(W∗)] and, for any W ∈ RN×N ,

Var(λN(W∗)) ≈ min
W

Var(λN(W)).
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Proof. f can be written as
f = Hλ∗N + ε1, ε1 ∈ R

N , (4.4)

where ε1 is the interpolation error which tends to zero, when M large enough. From the equation
above, Eqs (2.5) and (1.1), we have

E[λN(W)] =
(
αP +

1
N

HT WT WH
)−1 1

N
HT WT W(Hλ∗N + ε1)

≈

(
αP +

1
N

HT WT WH
)−1 1

N
HT WT WHλ∗N , ε1 → 0

≈
(
αN(HT WT WH)−1P + I(M+3)×(M+3)

)−1
λ∗N , α→ 0

≈ λ∗N .

(4.5)

Denote ε = (σ(x1)ε, σ(x2)ε, · · · , σ(xN)ε), diagonal matrix D := WT W and diagonal matrix V :=
diag(σ2(x1), σ2(x2), · · · , σ2(xN)). Through the definition above and Eqs (2.5), (1.1) and (4.5), for any
W ∈ RN×N

+ , if ε1 → 0 and α→ 0, we have

Var[λN(W)] = E(λN(W) − λ∗)(λN(W) − λ∗)T

≈ E((αP +
1
N

HT DH)−1 1
N

HT Dε)((αP +
1
N

HT DH)−1 1
N

HT Dε)T

≈ (HT DH)−1HT DE[εεT ]DH(HT DH)−1

= (HT DH)−1HT DVDH(HT DH)−1

≥ (HT VH)−1.

Moreover, when W = W∗,

Var[λN(W∗)] ≈ (HT VH)−1 ≈ min
W

Var(λN(W)).

□

From Theorem 2, when α → 0 and M is large enough, we can choose W∗ to reduce the variance
of estimator λN(W). Moreover, the value {1/σ(xi)}Ni=1 in W∗ can not be infinity. When some weight
coefficients 1/σ(xi) are too large, the reconstruction results are only affected by the data corresponding
to these large weight coefficients. Thus, we suggest to choose the suitable weight coefficients W as
follows:

Wsuit = diag(
1

k + σ(x1)
,

1
k + σ(x2)

, · · · ,
1

k + σ(xN)
), (4.6)

where k is a small positive constant such as 0.1 and 0.01 and wi satisfies:

wi = 1/(k + σ(xi))2, i = 1, 2, · · · ,N. (4.7)

Combining Eqs (4.1) and (4.7), we have the parameter selection Table 1.
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5. An illustrative example

In this section, we provide a illustrative example to show the feasibility and advantages of the
weighted regularization method. Assume that the heteroscedastic model satisfies:

y = f (x) + σ(x)ε,

where f (x) := 40(x−0.5)2 and σ(x) := 3 sin(150πx)+3.5. We consider following problem: for a lager
positive integer N = 300, given observation data {(xi, yi)}Ni=1 and function σ(x), we try to reconstruct
function f (x) and its derivative f ′(x). We select the number of knots M = 10, mesh size d = 1/M = 0.1,
regularization parameter α = 10−4 and weight coefficients W satisfying (4.6) with k = 0.1.

Figure 1 compares the reconstruction results-“improve” in this paper with the results-“tradition”
in [10]. When function σ(x) changes sharply, our results are closer to exact function than that those
in [10].

Figure 1. Observation points,noise data and reconstruction results “improve” and “tradition”
in this paper and [10], respectively.

6. Applications in inverse problems

In this section, we will give two applications of our numerical differentiation method in two kinds
of inverse problems.

AIMS Mathematics Volume 8, Issue 11, 26991–27008.
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6.1. The inverse problems of identifying coefficients in the boundary value problem

We consider a nonlinear ill-posed problem–the identification of the coefficient c in the boundary
value problem

f ′(x) + c(x) f (x) = p(x), f (0) = h0,

from the solution f (x). We can get c(x) directly from

c(x) =
p(x) − f (x)

f ′(x)
. (6.1)

The example we take here is that f (x) = 10e− sin(πx), p(x) = 0 and h0 = 10. In our computation,
{(xi, yi)}Ni=1 is denoted as the observation data where y satisfies:

y = f (x) + σ(x)ε,

where σ(x) = 5 sin(150πx) + 5.1. From the observation data above and the improved method in this
paper, we reconstruct f (x) and f ′(x). The results are present in Figure 2.

Figure 2. Observation points,noise data and reconstruction results “improve” and “tradition”
in this paper and [10], respectively.

Through the reconstruction results of f (x) and f ′(x) and Eq (6.1), we have the estimator of c(x) in
Figure 3, where our method is better than the traditional.
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Figure 3. Reconstruction c-“improve” and “tradition” in this paper and [10], respectively.

6.2. Determination of the interface in computerized tomography

In this subsection, we apply the method in this paper to a simple but interesting problem in
Computerized Tomography (CT).

We assume that the attenuation coefficient of an object with respect to an X-ray at x is p(x). We
scan the cross-section by an X-ray beam L of unit intensity. The intensity past the object is e−

∫
L p(x)dx.

We denote function f as follows:

f (L) :=
∫

L
p(x)dx. (6.2)

The main problem in CT is to recover the function p from f . However, in many cases, it will be
enough if one can reconstruct the interface of the different mediums, that is, the discontinuous points
of p which is related directly with the nondifferentiable points of f . Thus we just need to determine
the nondifferentiable points in f (x).

D is denoted as the triangular cross section of a object. The attenuation coefficient is 0 outside the
object and 1 inside the object, that is:

p(x) =

1, x ∈ D;
0, x < D,

(6.3)

see Figure 4.
From Figure 4 and Eq (6.2), the function f (x) can be calculated directly:

f (x) =


10x − 2, 0.2 ≤ x < 0.5,
8 − 10x, 0.5 ≤ x ≤ 0.8,
0, elsewhere.

(6.4)
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Figure 4. picture of D.

In our computation, {(xi, yi)}Ni=1 is denoted as the observation data where y satisfies Eq (1.1) and
σ(x) = 5 sin(150πx) + 5. Let the number of data N = 300, the number of knots M = 50, mesh size
d = 1/M = 0.02, regularization parameter α ≈ 10−4 and the parameter k = 0.01 in (4.6).

Figure 5. Observation points, noise data and reconstruction results-“improve” and
“tradition” in this paper and [10], respectively.

In Figure 5, we present observation data, noise data and the reconstructions of f (x) and f ′′(x).

AIMS Mathematics Volume 8, Issue 11, 26991–27008.
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Compared with the traditional method in [10], through the improved approach in this paper, we can
reconstruct f (x) better and find three nondifferentiable points of f (x): 0.2, 0.5 and 0.8.

7. Conclusions

In this paper, we propose a weighted online regularization method–Algorithm 1, which updates
reconstruction results through new input data without old data again. The error estimation in Section 3
illustrates that the algorithm can reach the best convergence order when the relationship between the
amount of observed data N and the dimension M of linear space is M ≈ N

1
5 . Compared with the

classical B-spline method, weight coefficients and a relatively small number of knots for interpolation
are used to reduce the effect of heteroscedasticity and computation cost. Moreover, a feasible selection
method of the regularization parameter, the number of knots, and weight coefficients are provided in
Table 1.

The biggest advantage of this algorithm is to solve the problem of low data accuracy caused
by heteroscedasticity by processing a large amount of data. It can significantly reduce the error of
observation data while ensuring the calculation efficiency.

In the next work, we will consider the higher dimensional heteroscedasticity problem, which
requires higher regularity of the function and analyze other radial basis functions, such as Sobolev
radial basis functions, to solve high-dimensional problems.
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