
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(11): 26968–26990.
DOI:10.3934/math.20231380
Received: 02 August 2023
Revised: 12 September 2023
Accepted: 18 September 2023
Published: 22 September 2023

Research article

Dynamics of a Gilpin-Ayala predator-prey system with state feedback
weighted harvest strategy

Xiaohuan Yu and Mingzhan Huang∗

College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China

* Correspondence: Email: huangmingzhan@163.com.

Abstract: The current research presents a predator-prey model that incorporates both a Gilpin-Ayala
growth function and a Holling type III functional response. Two Lyapunov functions are established
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equilibrium Pk. Considering ecological protection and commercial incentives, we also incorporated
a weighted harvesting strategy and pulse control into the model. We investigated intricate dynamical
problems instigated by the weighting harvesting and pulse effects, and affirmed the existence and local
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1. Introduction

Biological populations in nature exhibit intricate interactions, including competition, cooperation
and predation. The predator-prey relationship is one of the most prevalent ecological relationships in
the natural world. Both predator and prey play pivotal roles as vital biological resources, impacting
human life and economic growth. To preserve the renewal potential of these biological resources,
rational development and scientific management are imperative [12, 16, 24]. Employing limited
renewable resources for sustainable development and utilization has emerged as a shared interest
among economic management scientists, mathematicians and ecologists [4, 5].

Italian mathematician V. Volterra introduced the Lotka-Volterra model in 1926 to depict variations
in fish population. This model still serves as a foundational reference for predator-prey interaction
models today [18,19,28,34]. However, the classic Lotka-Volterra model overlooks the limited capacity
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for predation in its portrayal of predator-prey relationships, thereby oversimplifying the functional
response of the predator to the prey. Holling addressed this oversight in 1965 by introducing three
distinct functional response functions [11]. Subsequent studies, such as that by M. Zhang and L.
Chen [32], delved into a state feedback impulsive controlled predator-prey system with the Holling-II
functional response. They examined its equilibrium and presented the state feedback model, which
assumes the harvest of predators and supplementation of preys as impulsive disturbances. This model
aims to find the dynamical balance between prey and predator populations. Further research by M.
Huang et al. [13–15] investigated a class of time dependent impulsive switching systems and discussed
a series of population control strategies. Nevertheless, state feedback impulsive control proves to be
more appropriate for studying predator-prey systems [29,33]. In contrast to time dependent harvesting
strategies, state feedback harvesting strategies consider the current status of species [25, 30], and
reduce potential adverse effects on species’ sustainability. The weighted sum of harvesting methods,
which take into account the states of both predator and prey populations [7,24], promote the sustained
development of natural populations.

Biomathematical researchers have previously used logistic growth models to characterize predator-
prey relationships. However, such models tend to depict population growth in a linear manner, which
is not always accurate. To rectify this shortcoming, Gilpin-Ayala introduced the exponential parameter
α to the classical logistic population growth term. In 1973, Ayala and Gilpin improved the logistic
growth model, proposing the following model [1]:

dA
dt

= A(r − KAα).

By introducing a parameter α ∈ (0, 1), they transformed the model into a nonlinear system, thereby
increasing its analytical complexity [22]. Nevertheless, this exponential parameter α overcomes the
limitations of the classical logistic population growth theory, specifically the assumption that each
addition to the population reduces the population growth rate by a constant. This refined model offers
a more nuanced and accurate representation of various population dynamics. Building on this idea,
Jiang et al. [17, 26, 27] further developed this concept by allowing the Gilpin-Ayala parameter to vary
with state under Markov switching and pulse interference.

Gonzšlez-Olivares and Rojas-Palma [9] furthered this area of study by proposing a model
incorporating the Holling III functional response and the Allee effect:

dA
dt = r

(
1 − A

K

)
(A − m)A − τ1A2B

A2+β
,

dB
dt = ( τ1A2

A2+β
− ω)B.

Further research on this model was presented in [30] where the model construction incorporated
nonlinear impulse disturbances. Both the predation mortality and predator release rates depend on
their densities, adding realism to the model.

The Gilpin-Ayala growth model provides a more precise representation of population density
changes. By introducing the exponential parameter, it overcomes the inherent limitations of the
classic logistic population growth theory. This theory traditionally posits that each addition to the
population uniformly reduces the growth rate. In reality, the Gilpin-Ayala model offers a more
insightful description of the dynamic behaviors of population organisms and stands as one of the most
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critical numerical models in biological research [2]. Moreover, compared to the initial two Holling
functional response functions [32], the Holling III type [8,21] more authentically mirrors consumption
rate variations at different resource densities. Based on the above literature analysis and research
from [20], this paper formulates a predator-prey model that incorporates the Gilpin-Ayala growth, the
Holling III type functional response and state feedback impulsive control.

This paper is organized as follows: In Section 2 we develop a Gilpin-Ayala predator-prey system
with a discontinuous weighted harvest strategy and provide the lemmas and definitions to be used
in subsequent sections. Section 3 presents proof of positivity and boundedness for the uncontrolled
system, as well as the global stability of equilibrium points. We also discuss the existence and stability
for the predator extinction periodic solution and positive order-1 periodic solution for the controlled
system. In Section 4 we provide some numerical simulations to validate these theoretical results, and,
finally, a brief conclusion is given in Section 5.

2. Model formulation and preliminaries

In this paper, we consider a sufficiently large prey population and thus neglect the Allee effect, such
as in [3, 9, 20]. Consequently, we introduce a predator-prey model featuring both Gilpin-Ayala growth
and Holling III functional response as follows:


dA
dt = rA

[
1 −

(
A
K

)α]
−

τ1A2B
A2+β

� A f1(A, B),

dB
dt =

(
τ2A2

A2+β
− ω

)
B � B f2(A, B),

(2.1)

where A(t) and B(t) denote the densities of prey and predator at time t, respectively. The variable
r stands for the intrinsic growth rate of the prey population, while K represents the maximum
environmental carrying capacity of the prey population in the absence of predators and harvesting.
The symbol α is a positive parameter to modify the classical logistic model and represents a nonlinear
measure of interspecific interference. The term τ1A2

A2+β
denotes the functional response of the predator,

commonly referred to as the Holling type III response function. The variables τ1, τ2, β and ω

correspond to the predator capture rate, the conversion coefficient specifying the ratio of newborn
predators to captured prey, the half-saturation constant, and the death rate of the predator, respectively.

Considering commercial interests and the sustainability of biological resources, reasonable
harvesting is permitted. The authors in [30] focused only on monitoring the predator population state
to trigger pulse harvesting, examining a nonlinear ecological control model with a complex discrete
map. Similar harvesting mechanisms have been very common in previous studies [1,17,22,26,27,30].
In [24], a different state dependent harvesting method was proposed that permitted the harvesting
only when the combined densities of both prey and predator, weighted by specific factors, reached a
predefined threshold. This approach not only ensures the sustainable development of the two biological
resources but also safeguards commercial interests. Drawing on their approach, we also consider a
weighted state pulse harvest for the above system (2.1). Denote the predefined harvesting threshold
for the weighted sum of the densities of prey and predator as I. The intensity of this harvesting is
measured by h and the prey and predator populations are assigned weights of µ and 1− µ, respectively.
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The model driven by this weighted harvesting strategy can be expressed as follows:



dA
dt

= rA
[
1 −

( A
K

)α]
−
τ1A2B
A2 + β

dB
dt

=

(
τ2A2

A2 + β
− ω

)
B


µA + (1 − µ)B < I,

A(t+) = A(t) − c1hA(t)

B(t+) = B(t) − c2hB(t) + Λ

 µA + (1 − µ)B = I,

(2.2)

where c1 and c2 represent capture rates, while Λ describes the constant number of predator released at
time t.

The practice of harvesting two types of populations simultaneously and releasing a certain number
of predators in model (2.2) is also in line with many practical application scenarios. For example, in
fishing operations, when the combined count of phytoplankton or shrimp (representing the prey) and
fish (acting as the predator) hits a certain limit, there’s an initiative to harvest the fish. However, to
optimize salvage costs and uphold ecological equilibrium, phytoplankton is simultaneously harvested.
This not only boosts the economic returns, but also enhances fish yield per unit area. Subsequently, to
guarantee the yield and maintain a balanced ecosystem, a specific quantity of fish fry is introduced into
the environment. This approach mirrors the prevalent fishery practice known as “rotational catch and
stocking.”

The foundational concepts and theories related to state feedback pulse dynamic systems are
important for our subsequent discussion. Descriptions of such dynamic systems, along with definitions
of pulse set, phase set, successor function, order k-periodic solution and its stability, are commonly
found in various literature. Given this prevalence, we will exclude certain rudimentary explanations
here (interested readers can refer to [6]). Instead, we’ll focus on detailing the definition for a distinct
type of successor function and the criteria to determine the order-k periodic solution.

Definition 1. (Successor function [25, 31]) Assume that the pulse set and the phase set of a state
feedback pulse dynamic system are two lines denoted by M̄ and N̄, respectively (see Figure 1). Let
O0 be the intersection point of N̄ and the A-axis. For any point V1 ∈ N̄, we denote the trajectory
that originates from V1 by Γ1(V1). If the trajectory Γ1(V1) intersects with the phase set N̄ and pulse
set M̄ at points V2 and V3, and point V3 is mapped to a point V4 ∈ N̄ through pulse effect, then
S 1(V2) = d(V4,O0) − d(V2,O0) is called the type-1 successor function of point V1, while S 2(V1) =

d(V4,O0) − d(V1,O0) is called the type-2 successor function of point V1, where the function d(·, ·)
represents the directed distance between two points.
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Figure 1. The schematic diagram of the successor function.

Lemma 1. (Lasalle invariance principle) Consider the following system of differential equations dA
dt = P(A, B),
dB
dt = Q(A, B),

where (A, B) ∈ G ⊂ R2 with G is a bounded set. P(A, B) and Q(A, B) are continuous and satisfy
the Lipschitz condition. Given a scalar function V(A, B) that is continuous over Ḡ and possesses a
continuous first-order partial derivative, V(A, B) is referred to as a Lyapunov function on G if

dV(A, B)
dt

=
∂V
∂A

dA
dt

+
∂V
∂B

dB
dt
≤ 0.

Define

S =

{
(A0, B0) ∈ Ḡ |

dV(A0, B0)
dt

= 0
}
.

Assuming M ⊂ S is the largest invariant subset within S , and given a solution x(t, t0, (A0, B0)) ⊂ G of
the system, it follows that x(t, , t0, (A0, B0))→ M as t → ∞.

Lemma 2. (Analogue of the Poincare criterion [10,23,25]) The T-periodic solution ρ̃L(t) = (Ã(t), B̃(t))
of the system  dA

dt = P(A, B), dB
dt = Q(A, B), i f φ(A, B) , 0,

∆A = a(A, B), ∆B = b(A, B), i f φ(A, B) = 0,

is orbitally asymptotically stable and exhibits asymptotic phase behavior if the Floquet multiplier µ2

satisfies |µ2| < 1. Here,

µ2 =

n∏
k=1

∆k exp
∫ T

0

(
∂P
∂A

+
∂Q
∂B

)
(Ã(t),B̃(t))

dt


and

∆k =
P+

(
∂b
∂B

∂φ

∂A −
∂b
∂A

∂φ

∂B +
∂φ

∂A

)
+ Q+

(
∂a
∂A

∂φ

∂B −
∂a
∂B

∂φ

∂A +
∂φ

∂B

)
P ∂φ

∂A + Q ∂φ

∂B

,

where P+ = P(Ã(τ+
k ), Ñ(τ+

k )) and Q+ = Q(Ã(τ+
k ), Ñ(τ+

k )). The values of P, Q, ∂a
∂A ,

∂a
∂B ,

∂b
∂A ,

∂b
∂B ,

∂φ

∂A ,
∂φ

∂B are
computed at the point (Ã(τk), B̃(τk)).
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3. Main works

3.1. Positive and boundedness of solutions for system (2.1)

Let’s suppose that A(0) = A0 > 0 and B(0) = B0 > 0 are positive initial conditions. Initially,
we assess the system (2.1) with these conditions for the positivity and boundedness of the solutions.
Considering that the right-hand sides of (2.1) are smooth functions with respect to both A and B and
dA
dt |A=0 = dB

dt |B=0 = 0, the state space for the system (2.1) is the positive quadrant {(A, B) : A > 0, B > 0},
which is an invariant set. Consequently, the solutions of the system (2.1) are positive. Next, we verify
the boundedness of the solutions for the system (2.1).

Undoubtedly,
dA
dt

= rA
[
1 −

( A
K

)α]
−
τ1A2B
A2 + β

≤ rA
[
1 −

( A
K

)α]
.

Let

rA
[
1 −

( A
K

)α]
� f̄ (A),

where f̄ (A) ≥ 0 for A ∈ (0,K], and f̄ (A) < 0 for A > K. Thus, we obtain A(t) ≤ max{A(0),K}.
Subsequently, we denote N := τ2

τ1
A + B, then we have

dN
dt

=
τ2

τ1

dA
dt

+
dB
dt

= −ωN +
τ2

τ1

[
ω + r − r

( A
K

)α]
A

:= −ωN + f̃ (A).

Through direct calculation, we can deduce that the maximum point of f̃ (A) is Am = K α
√

ω+r
r(α+1) .

Denote the maximum value by Mm = f̃ (Am), we have

dN
dt
≤ −ωN + Mm

and

N(t) ≤ max
{
τ2

τ1
A(0) + B(0),

Mm

ω

}
.

Define

Ω0 :=
{

(A, B) |0 ≤ A ≤ K, 0 ≤
τ2

τ1
A + B ≤

Mm

ω

}
,

and we can easily know that Ω0 is a positive invariant set for the system (2.1).

3.2. Equilibria and stability analysis of system (2.1)

Model (2.1) always has two equilibria: a saddle point Po(0, 0) and a boundary equilibrium Pk(K, 0).
Moreover, a positive equilibrium P∗(A∗, B∗) exists when τ2K2

K2+β
> ω, where

A∗ =

√
ωβ

τ2 − ω
, B∗ = r

(
1 −

(
A∗

K

)α)
τ2β

(τ2 − ω)τ1A∗
. (3.1)
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To examine the local stability of the equilibrium points Pk(K, 0) and P∗(A∗, B∗), we first determine
the Jacobian matrix for the system (2.1) at any point (A, B). It is given by

J =

 r − r(α + 1)
(

A
K

)α
−

2τ1βAB
(A2+β)2 −

τ1A2

A2+β
2τ2βAB
(A2+β)2

τ2A2

A2+β
− ω

 . (3.2)

The stability of the equilibrium points will be determined by the eigenvalues of the Jacobian matrix
calculated at the respective equilibrium points.

By a simple calculation, the trivial equilibrium point Po(0, 0) is unstable as long as it exists.
Substituting (A, B) = (K, 0) into (3.2), we get the characteristic values λk1 = −rα, λk2 = τ2K2

K2+β
− ω.

Clearly, if τ2K2

K2+β
< ω, then P∗ does not exist and Pk(K, 0) is locally stable; if τ2K2

K2+β
> ω, i.e., P∗ exists,

then Pk is unstable and both Pk and Po are saddle points.
From the above discussion, both Po(0, 0) and Pk(K, 0) are unstable when P∗ exists. To investigate

the local asymptotic stability of the positive equilibrium point P∗(A∗, B∗), we calculate

JP∗ =

 r − r(α + 1)
(

A
K

)α
−

2τ1βAB
(A2+β)2 −

τ1A2

A2+β
2τ2βAB
(A2+β)2

τ2A2

A2+β
− ω

 , (3.3)

from which we obtain

det(P∗) = 2ωr
(
1 −

ω

τ2

) (
1 −

(
A∗

K

)α)
> 0.

The trace of P∗ is given by

tr(P∗) = r
[
1 − (α + 1)

(
A∗

K

)α
−

2
τ2

(τ2 − ω)
(
1 −

(
A∗

K

)α)]
=

r
τ2

[
2ω − τ2 +

(
A∗

K

)α
((1 − α)τ2 − 2ω)

]
=

r
τ2

2ω − τ2 + K−α
(
ωβ

τ2 − ω

) α
2

((1 − α)τ2 − 2ω)

 .
This implies that P∗ is locally asymptotically stable if the following condition holds

2ω − τ2 + K−α
(
ωβ

τ2 − ω

) α
2

((1 − α)τ2 − 2ω) < 0, where ω � τ2.

In order to illustrate the global dynamic behavior of Pk(K, 0) and P∗(A∗, B∗), we construct two
Lyapunov functions in the following two theorems.

Theorem 1. The boundary equilibrium point Pk(K, 0) of system (2.1) is globally asymptotically stable
when τ2K2

K2+β
< ω.

Proof. Consider a function V(A, B) defined by

V(A, B) =
1
α

(Aα − Kα) − Kα ln
A
K

+ B.
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By taking the derivative of system (2.1), it can be obtained that

dV
dt

=

(
Aα−1 −

Kα

A

)
dA
dt

+
dB
dt

= −
r

Kα
(Aα − Kα)2 +

τ1AB(Aα − Kα) + B
[
(τ2 − ω) A2 − βω

]
β + A2 .

Since τ2K2

K2+β
< ω and A ≤ K, we have (τ2 − ω)K2 − βω < 0 and (τ2 − ω)A2 − βω < 0. This leads

to the conclusion that dV
dt ≤ 0. Moreover, dV

dt = 0 if, and only if, (A, B) = (K, 0). By the Lasalle
invariance principle (Lemma 1), the boundary equilibrium point Pk(K, 0) of system (2.1) is globally
asymptotically stable. The proof is completed. �

The preceding discussion establishes that a positive equilibrium P∗ exists if τ2K2

K2+β
> ω. To assess the

global stability of P∗, we let

F(A) :=
r
τ1

(
1 −

(
A
K

)α) (
A2 + β

)
A

,

ξ1(A) := A2 − β + (
A
K

)α
[
β(1 − α) − A2(1 + α)

]
.

Theorem 2. The positive equilibrium point P∗(A∗, B∗) of system (2.1) is globally asymptotically stable
when τ2K2

K2+β
> ω, if one of the following conditions holds:

(I) ξ1(A) = 0 has no or only one positive root.
(II) ξ1(A) = 0 has two positive roots A1 and A2 (where A1 < A2). If A∗ ∈ (0, A′1), then F(A) > B∗ for all
A ∈ (0, A∗) and F(A) < B∗ for all A ∈ (A∗,K) holds; if A∗ ∈ (A′2,K), then F(A) > B∗ for all A ∈ (0, A∗)
and F(A) < B∗ for all A ∈ (A∗,K) holds, where A′1, A

′
2 are two points that must exist in this case such

that F(A′1) = F(A2) and F(A′2) = F(A1) with the ordering 0 < A′1 < A1 < A2 < A′2 < K.

Proof. Let us define a function

V(u, v) =

∫ A

A∗

(τ2 − ω)u2 − βω

τ2u2 du +
τ1

τ2

∫ B

B∗

v − B∗

v
dv,

then we have

dV
dt

=
(τ2 − ω)A2 − βω

τ2A2

dA
dt

+
τ1

τ2

B − B∗

B
dB
dt

=
(τ2 − ω)A2 − βω

τ2A2

{
rA

[
1 −

( A
K

)α]
−
τ1A2B
A2 + β

}
+
τ1

τ2

B − B∗

B

[(
τ2A2

A2 + β
− ω

)
B
]

=
τ1

τ2

(τ2 − ω)A2 − βω

β + A2

[
r
τ1

(
1 −

( A
K

)α) β + A2

A
− B∗

]
=
τ1

τ2

(
τ2A2

β + A2 − ω

)
(F(A) − B∗) .

Clearly, dV
dt = 0 if, and only if, (A, B) = (A∗, B∗) .
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Next, we consider the function

F(A) :=
r
τ1

(
1 −

(
A
K

)α) (
A2 + β

)
A

,

and compute its derivative with respect to A, we have

F′(A) =
r

τ1A2

{
A2 − β +

( A
K

)α [
β(1 − α) − A2(1 + α)

]}
.

Let
ξ1(A) := A2 − β +

( A
K

)α [
β(1 − α) − A2(1 + α)

]
,

then it follows, by differentiate with respect to A, that

ξ′1(A) = 2A + β(1 − α)
αAα−1

kα
− 3α(1 + α)

Aα+1

Kα
.

In the special case of α = 1, we obtain the maximum point ξ1 max(A) = K2

27 − β of ξ1(A) = 0. For
the roots of ξ1(A) = 0 we note that: (i) If K2

27 < β, then there is no root. (ii) If K2

27 = β, then there is a
unique root A = Ac satisfying

√
β < Ac < K. (iii) If K2

27 > β, then there are two roots A1, A2 satisfying
√
β < A1 < A2 < K.

For the case α ∈ (0, 1), when β(1−α)−A2(1+α) = 0, i.e., A =

√
β(1−α)

1+α
, we have ξ1(A) = A2−β < 0.

For A ,
√

β(1−α)
1+α

and ξ1(A) = 0, we have( A
K

)α
=

A2 − β

A2(1 + α) − β(1 − α)
:= ξ2(A).

When 0 < α < 1, we observe that ξ2(0) = 1
1−α > 1, lim

A→{
√

1−α
1+αβ}

−
ξ2(A) = +∞, lim

A→{
√

1−α
1+αβ}

+
ξ2(A) =

−∞, 0 < ξ2(
√
β) = 0, ξ2(K) < 1 and y1(A) = ξ2(A) is strictly monotonically increasing on

intervals [0,
√

1−α
1+α

β) and (
√

1−α
1+α

β,K]. While y2(A) =
(

A
K

)α
is strictly monotonically increasing on

interval [0,K] with y2(0) = 0 and y2(K) = 1 . The graphs of the functions y2(A) = ξ2(A) and
y1(A) =

(
A
K

)α
either have no intersection points, or they intersect at a single point Ac such that

√
β < Ac < K, or they intersect at two points, A1 and A2, where

√
β < A1 < A2 < K.

Using an analogous analysis for α > 1, the distribution of the roots for ξ1(A) = 0 exhibits a similar
behavior. Therefore, for any α > 0, there are three cases for the root of the function F′(A) = 0. Let’s
summarize these aspects in two cases:

(I) For the cases (i) and (ii), we obtain that F(A) − B∗ > 0 when A < A∗ and F(A) − B∗ < 0 when
A > A∗. This implies that dV

dt ≤ 0 for all (A, B) ∈ Ω0, and dV
dt = 0 if, and only if, (A, B) = (A∗, B∗) (see

Figure 2(a) and (b)).
(II) For the case (iii), we identify two positive points, A1 and A2, such that F′(Ai) = 0 for i = 1, 2.

Additionally, two distinct points, A′1 and A′2, must exist satisfying F(A′1) = F(A2) and F(A′2) = F(A1),
with the ordering 0 < A′1 < A1 < A2 < A′2 < K (see Figure 2(c)). Based on this, we deduce the
following:

(a) F(A) > B∗ for A ∈ (0, A∗) and F(A) < B∗ for A ∈ (A∗,K) when A∗ ∈ (0, A′1);
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(b) F(A) > B∗ for A ∈ (0, A∗) and F(A) < B∗ for A ∈ (A∗,K) when A∗ ∈ (A′2,K).

F(A)

O A(t)
(b)

K

P*

Figure 2. The geometric profile of function F(A).

Thus, we can also claim that dV
dt ≤ 0 for all (A, B) ∈ Ω0, and dV

dt = 0 if, and only if, (A, B) = (A∗, B∗)
According to Lasalle invariance principle (Lemma 1), we affirm that the positive equilibrium point

P∗(A∗, B∗) of system (2.1) is globally asymptotically stable if one of the conditions listed in Theorem 2
holds. The proof is completed. �

3.3. Complex dynamic behavior of impulsive system (2.2)

To discuss the dynamic behavior of system (2.2), we first define the impulse set and phase set as
follows:

M̄ = {(A, B)|0 ≤ A ≤ K, µA + (1 − µ)B = I} , (3.4)

N̄ =

{
(A, B)|

µA
1 − c1h

+
(1 − µ)B
1 − c2h

= I +
(1 − µ)Λ
1 − c2h

}
. (3.5)

A trajectory of system (2.2) that is tangent to the phase set at (A, B) ∈ N̄ must satisfy the following
conditions:


B =

[
I +

(1−µ)Λ
1−c2h −

µA
1−c1h

] (
1−c2h
1−µ

)
,

dB
dA =

(
τ2A2

A2+β
−ω

)
B

rA[1−( A
K )α]− τ1A2B

A2+β

=
−µ(1−c2h)

(1−c1h)(1−µ) .
(3.6)

Next, we will concentrate on the dynamic behavior of both predator-extinction periodic solution
and positive periodic solution of the system (2.2).

For Λ = 0 , we obtain that B ≡ 0 if B(0) = 0. At this point system (2.2) can be transformed into the
following form:
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dA
dt

= rA
[
1 −

( A
K

)α]
B = 0

 µA < I,

∆A(t) = −c1hA(t)

∆B(t) = 0

 µA = I.

(3.7)

Assuming that N̄ intersects the A-axis at the point L(A0, 0), we denote A = Ã(t) as a solution of
the equation A′(t) = rA(1 − (A/K)α) with the initial condition A(0) = A0. We denote a solution of the
system (3.7) as ρ̃L(t) = (Ã(t, A0), 0), where

Ã(t, A0) = e−rt

(
A−α0 −

e−αrt

Kα

)− 1
α

. (3.8)

Let T̃ =
∫ I/µ

A0
Kα/rA(Kα−Aα)dA = T̃ (A0), which satisfies Ã(T̃ ) = I/µ and Ã(T̃ +) = A0. This illustrates

that A(t) = Ã(t, A0) is a periodic solution of (3.7) with period T̃ .

Theorem 3. Under the conditions Λ = 0 and I ≤ µK, if c2 > c̃2, then the system (2.2) admits an
orbitally asymptotically stable predator-extinction periodic solution ρ̃L(t) = (Ã(t, A0), 0). Here, c̃2 is
defined as

c̃2 :=
1
h

1 −
(Kαµα − Iα) exp

(
ln(1 − c1h) −

∫ T̃

0
Ã f1A(Ã, 0) + f2(Ã)dt

)
(1 − c1h) (Kαµα − (1 − c1h)αIα)

 .
Proof. Assume I > µK, we notice that the trajectory of system (3.7) will not reach A = I/µ for any
initial value (A(t0), 0). Therefore, there is no periodic solution in the system (3.7) and the predator-
extinction equilibrium (K, 0) is asymptotically stable. Conversely, if I/µ ≤ K and Λ = 0, according to
Definition 1, we find that S 1(L) = d(L, L)−d(L, L) = 0, and ρ̃L(t) = (Ã(t, A0), 0) is a predator-extinction
periodic solution of system (2.2).

According to Lemma 2, we have

P(A, B) = rA
[
1 −

( A
K

)α]
−
τ1A2B
A2 + β

=: A f1(A, B),

Q(A, B) =

(
τ2A2

A2 + β
− ω

)
B =: B f2(A, B),

a(A, B) = −c1hA, b(A, B) = −c2hB + Λ, φ(A, B) = µA + (1 − µ)B.

By direct calculations, we get

∂P
∂A

= f1(A, B) + A f1A(A, B),
∂Q
∂B

= f2(A, B),

∂a
∂A

= −c1h,
∂b
∂B

= −c2h,
∂φ

∂A
= µ,

∂φ

∂B
= 1 − µ.

Whereupon, we can obtain
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∆1 =
µ(1 − c2h)P+ + (1 − µ)(1 − c1h)Q+

µP + (1 − µ)Q

=
(1 − c1h)(1 − c2h)(1 − (1−c1h)I

Kµ )α

(1 − ( I
Kµ )α)

=
(1 − c1h)(1 − c2h)(Kαµα − (1 − c1h)αIα)

Kαµα − Iα
.

Moreover, ∫ T̃

0+

[
∂P
∂A

+
∂Q
∂B

]
(Ã,0)

dt =

∫ T̃

0+

f1(Ã, 0) + Ã f1A(Ã, 0) + f2(Ã) dt

=

∫ I/µ

(1−c1)I/µ

1
Ã

dA +

∫ T̃

0
Ã f1A(Ã, 0) + f2(Ã) dt

= − ln(1 − c1h) +

∫ T̃

0
Ã f1A(Ã, 0) + f2(Ã) dt,

where Ã = Ã(t, A0), and then

µ2 = ∆1 exp
∫ T̃

0

[
∂P
∂A

+
∂Q
∂B

]
(Ã(t),0)

dt


=
(1 − c1h)(1 − c2h)(Kαµα − (1 − c1h)αIα)

Kαµα − Iα
exp

− ln(1 − c1h) +

∫ T̃

0
Ã f1A(Ã, 0) + f2(Ã) dt

 .
Thus, when c2 > c̃2, we have µ2 < 1 and the periodic solution ρ̃L(t) = (Ã(t, A0), 0) is orbitally

asymptotically stable. On the other hand, if 0 < c2 < c̃2, we find that µ2 > 1, implying the instability
of the periodic solution ρ̃L(t) = (Ã(t, A0), 0). The proof is completed. �

Assume H is a point on the phase set with dB
dA |H =

−µ(1−c2h)
(1−c1h)(1−µ) . The trajectory of the system (2.2)

starting from H intersects the isoclinic line f1(A, B) = 0 and the impulse set at points H′ and H′′,
respectively. Define some thresholds for the system (2.2) as follows:

I∗ := µA∗ + (1 − µ)B∗, µ∗ :=
B∗

K − A∗ + B∗
, Im := max{I | µAH′′ + (1 − µ)BH′′ ≥ I}. (3.9)

Theorem 4. System (2.2) has a positive order-1 periodic solution, if one of the conditions (i)–(iii)
holds: (i) Λ = 0, I ≤ min{I∗, µK}, 0 < c2 < c̃2; (ii) Λ = 0, µ < µ∗, µK < I < Im; (iii) 0 < Λ < Λm, I ≤
Im, where Λm = min{ c2h

1−µ ,
c1h(1−c2h)Λ
(1−µ)(1−c1h) }.

Proof. (i) Referring to Theorem 1, the boundary periodic solution of (2.2) is unstable under this
condition. For any P1 ∈ N̄ ∩ U(L, δ), where δ is sufficiently small, the trajectory originating from
P1 intersects the impulse set M̄ at point P−1 and then is instantly pulsed to the point P+

1 in the phase set
N̄. Here, P+

1 is above P1 as shown in Figure 3. Following Definition 1, we have

S 1(P1) = d(P+
1 , L) − d(P1, L) > 0.
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Figure 3. The phase-plane analysis in Theorem 4.

Assuming that the point P2(A2, B2) ∈ N̄ satisfies function (3.6), the trajectory of system (2.2) starting
from P2(A2, B2) first intersects the impulse set M̄ at P−2 (A−2 , B

−
2 ) and then pulses to the phase set N̄ at

P+
2 . There are three possible situations: (1)P+

2 = P2, (2)P+
2 = P+

2 and (3)P+
2 = P

+

2 (shown in Figure 3).
Firstly, for the case of P+

2 = P2, by Definition 1 we have S 1(P2) = d(P+
2 , L) − d(P2, L) = 0. This

implies the solution starting from P2 forms an order-1 periodic solution of system (2.2). Suppose
P+

2 = P+
2 , then we obtain that S 1(P2) = d(P+

2 , L) − d(P2, L) < 0. As we have already established that
S 1(P1) = d(P+

1 , L) − d(P1, L) > 0, a point E ∈ P1P2 must exist such that S 1(E) = 0. Consequently,
there exists a positive order-1 periodic solution starting from point E.

In the scenario P+
2 = P

+

2 , we have S 1(P2) = d(P
+

2 , L) − d(P2, L) > 0. Since the trajectory of
system (2.2) starting from P2(A2, B2) is tangent to the phase set N̄, the trajectory of system (2.2) starting
from P+

2 crosses N̄ once more at P
+

2 before reaching M̄ at P+−
2 and then pulsing back to the phase set at

P++
2 . According to the properties of system (2.1), P+−

2 is below P−1 and P++
2 is below P+

1 , which leads to

S 2(P
+

2 ) = d(P++
2 , L) − d(P

+

2 , L) < 0.

In addition, due to the continuity of solution in the system (2.1) and for ε = d(P2, P+
2 )/2, we

know that there must exist some δ < ε such that D ∈ U(P2, δ), d(D−, P−2 ) < ε, and d(D+, P
+

2 ) ≤
max{(1 − τ1), (1 − τ2)}d(D−, P−2 ) < 0.

Consequently,
S 2(D) = d(D+, L) − d(D, L)

= d(P
+

2 , L) − d(P
+

2 ,D
+) − (d(P2, L) + d(D, P2))

= d(P
+

2 , P2) − d(P
+

2 ,D
+) + d(D, P2) > 0.

Thus, there must exist a point E ∈ P2P
+

2 such that S 2(E) = 0, and the trajectory from E forms a
positive order-1 periodic solution.

(ii) For this case, we can easily have that the positive equilibrium (A∗, B∗) is above the pulse line
M̄. Let the intersections of M̄ with f1(A, B) = 0 and A-axis be the points Z and Z1, respectively, where
point Z1 is on the right of point (K, 0). Therefore, we can obtain

µ <
B∗

K − A∗ + B∗
:= µ∗.

Because µK < I < Im, the system doesn’t yield an extinction periodic solution, and all orbits
starting from the phase set N̄ reach the pulse set M̄. Similar to the proof in (i), choosing P1 ∈ N̄ with
BP1 = (1 − τ2h)BZ, we can confirm the existence of an order-1 periodic solution of system (2.2).
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(iii) Choose P1 ∈ N̄ with d(P1, L) = Λ, and similar to the discussion in case (i), we can obtain the
existence of a positive order-1 periodic solution for (2.2). The proof is completed. �

In Theorem 4, we’ve already proven the existence of positive order-1 periodic solution of
system (2.2). In the upcoming part, we aim to study the stability of the periodic solution. For simplicity,
we introduce some notations in the following.

Let’s assume a positive order-1 periodic solution of (2.2) as ρ̄E(t) = (Ā(t), B̄(t)) with period T̄1,
and the orbit Γ(E) = ÊE−E, where E = (Ā0, B̄0) ∈ N̄, E− = (Ā1, B̄1) ∈ M̄, Ā1 , Ā(T̄ ), B̄1 , B̄(T̄ ),
Ā0 , (1 − c1h)Ā1, B̄0 , (1 − c2h)B̄1 + Λ. Furthermore, we mark P̄0 , P(Ā0, B̄0), P̄1 , P(Ā1, B̄1),
Q̄0 , Q(Ā0, B̄0), Q̄1 , Q(Ā1, B̄1).

Denote

ℵ , ln
(

Ā0B̄0

Ā1B̄1

µP̄1 + (1 − µ)Q̄1

(1 − c2h)µP̄+
0 + (1 − µ)(1 − c1h)Q̄+

0

)
.

Theorem 5. The positive order-1 periodic solution ρ̄E(t) = (Ā(t), B̄(t)) of system (2.2) is orbitally
asymptotically stable if ∫ T̄

0

τ1ĀB̄(Ā2 − β)
(Ā2 + β)2

− αr
(

Ā
K

)α
dt < ℵ. (3.10)

Proof. According to Lemma 2, we have

∆1 =
µ(1 − c2h)P̄+

0 + (1 − µ)(1 − c1h)Q̄+
0

µP̄1 + (1 − µ)Q̄1

and

exp
∫ T̄

0

[
∂P̄
∂Ā

+
∂Q̄
∂B̄

]
(Ā,B̄)

 dt =
Ā(T̄ )B̄(T̄ )
Ā(0)B̄(0)

exp
∫ T̄

0

[
τ1ĀB̄(Ā2 − β)

(Ā2 + β)2
− αr

(
Ā
K

)α]
dt

 .
When condition (3.10) is satisfied, we can obtain

|µ2| = ∆1 exp
∫ T̄

0

[
∂P̄
∂Ā

+
∂Q̄
∂B̄

]
(Ā,B̄)

 dt < 1,

which implies that the positive order-1 periodic solution of system (2.2) is orbitally asymptotically
stable. �

3.4. Optimal harvest control strategy

The existence of a positive periodic solution for the system (2.2), as shown in Theorem 4, justifies
the possibility of implementing a periodic harvesting strategy with a period of T̄ . Let’s consider
Ac(A2 < Ac < A−2 ) and Bc := %Ac to represent the target densities of prey and predator, respectively. As
h relies on Ac, and both h and Λ depend on µ and Ac, we assume that

Λ(µ, Ac) , µ[Λ1 + (Ac − A2)Λ2/(A−2 − A2)],

I(µ, Ac) , µAc + (1 − µ)Bc, and h , h(Ac) = h1 + (Ac − A2)h2/(A−2 − A2).

We can also infer that T̄ depends on µ and Ac. Let n1 and n2 denote the sale prices of unit prey and
predator, respectively, while n3 signifies the cost per unit capture strength and n4 represents the cost of
feeding predators per unit.
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To assure the sustainable renewal of resources while maximizing commercial profits, it is essential
to optimize the harvesting process. The profit from harvesting can be formulated as

Wpro f its(µ, Ac) = n1τ1hĀ1 + n2τ2hB̄1 − n3h − n4Λ(µ, Ac).

The primary objective here is to optimize the profit cycle, i.e.,

max
Wpro f its(µ, Ac)

T̄ (µ, Ac)
, (3.11)

where A2 < Ac < A−2 and 0 ≤ µ ≤ 1.

By solving the optimization problem (3.11), we can deduce the optimal harvest level A∗c and weight
µ∗, as well as the optimal predator release amount Λ∗, the optimal harvesting intensity h∗ and the
optimal harvesting period T̄ ∗. Note that these results depend on ni, where i = 1, 2, 3, 4.

4. Numerical simulation

This section presents some numerical simulations to validate the conclusions drawn in section 3.
We adopt the following model parameters for numerical simulations:

r = 0.25, τ1 = 0.33, τ2 = 0.2, α = 0.5, ω = 0.1, β = 3.5,K = 10.

4.1. Simulation for system (2.1)

From (3.1) we can directly compute the positive equilibrium P∗(A∗, B∗) ≈ (1.87, 1.61) with
τ2 = 0.2, ω = 0.1, β = 3.5, τ2K2

K2+β
≈ 0.193 > ω. Under these conditions, the positive equilibrium

point P∗ of system (2.1) is globally asymptotically stable, as illustrated in Figure 4(a)–(c). This
observation aligns with the conclusion in Theorem 2. However, if ω = 0.3, then τ2K2

K2+β
≈ 0.193 < ω,

the positive equilibrium point disappears, and the boundary equilibrium point Pk = (K, 0) becomes
globally asymptotically stable, as shown in Figure 4(d)–(f). This finding is consistent with Theorem 1.
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Figure 4. Dynamics of the model (2.1). (a)–(c) Global stability of the positive equilibrium
P∗ when τ2 = 0.2, ω = 0.1, β = 3.5; (d)–(f) Global stability of the boundary equilibrium
point Pk when ω = 0.3.

4.2. Simulation for system (2.2)

For the complex pulse system (2.2) we selected the following harvesting parameters:

c1 = 0.7, c2 = 0.3, h = 0.8.

With Λ = 0, I = 1.5, µ = 0.5 satisfying I ≤ µK = 5 and c2 = 0.3 satisfying c2 > c̃2 ≈ 0.061, a
predator-extinction periodic solution exists for system (2.2). As c2 > c̃2, this period solution is orbitally
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asymptotically stable, as depicted in Figure 5(a)–(c). This aligns with the conclusion of Theorem 3.
If, however, 0 < c2 < c̃2 (for instance c2 = 0.04), the predator-extinction periodic solution becomes
unstable, and a positive periodic solution emerges, as shown in Figure 5(d)–(f). This corresponds to
the positive periodic solution for the case (i) in Theorem 4.
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Figure 5. (a)–(c) The stability of the predator-extinction periodic solution for c2 > c̃2; (d)–(f)
The existence and stability of a positive periodic solution for c2 < c̃2.

From (3.9), we derive µ∗ ≈ 0.17, Im ≈ 1.95. Choosing µ = 0.1, I = 1.5 satisfies µ < µ∗ and µK <

I < Im. Under these conditions, the predator-extinction periodic solution does not exist. Figure 6(a)
shows the existence of a positive periodic solution, which is orbitally asymptotically stable. When
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I = 1.5, µ = 0.4 > µ∗, the predator-extinction periodic solution emerges while the positive periodic
solution disappears (see Figure 6(b)). It’s worth mentioning that a positive period solution also exists
when I = 1.5, µ = 0.2 (see Figure 6(c)), suggesting that the conditions in Theorem 4(ii) are necessary
but not sufficient. If I = 1.98 > Im, µ = 0.1, the system’s periodic behavior ceases, and the trajectory
approaches the positive equilibrium point P∗(1.87, 1.61) closely (see Figure 6(d)).
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Figure 6. Positive order-1 periodic solution of system (2.2) for case (ii) in Theorem 4.

For Λ , 0, with fixed parameters I = 1.5 < Im, µ = 0.5 and choosing Λ = 0.8 < Λm, the
system (2.2) exhibits a positive order-1 periodic solution (see Figure 7(a), Theorem 4 (iii)). If Λ=1.32 >
Λm while keeping other parameters unchanged, the predator population surpasses the threshold and the
periodic solution becomes unstable, causing the prey population to become extinct after a finite number
of pulses (Figure 7(c) and (e)). In order to maintain symbiosis between two populations, we can
decrease prey harvesting and predator release while increasing the capture of adult predators. Setting
c1 = 0.3,Λ = 1, c2 = 0.6 results in the disappearance of the positive periodic solution for system (2.2)
and the trajectory converges to the positive equilibrium point P∗(1.87, 1.61) (see Figure 7 (b)).
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Figure 7. Positive order-1 periodic solution of system (2.2) for case (iii) in Theorem 4.

When the release amount of predator cubs is reduced to Λ = 1.3 (which is less than or equal to Λm)
and the effective capture rate of the prey is set to c1 = 0.4, system (2.2) exhibits a bistable phenomenon,
as seen in Figure 8(a) and (b). This system features both a locally asymptotically stable equilibrium
point and a positive periodic solution. This implies that in the system (2.2), a pulse effect will not
manifest if the weighted sum of the two populations is insufficient to activate it. However, a positive
equilibrium does exist.
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Figure 8. Bistable phenomenon of system (2.2) with Λ = 1.3 ≤ Λm and c1 = 0.4.

5. Conclusions

This study presents and examines a Gilpin-Ayala predator-prey system with state feedback weighted
harvest strategy and a Holling III type functional response. Through the construction of two Lyapunov
functions, we have primarily studied the global stability of both the coexistence equilibrium point P∗

and the boundary equilibrium point Pk. The position of the positive equilibrium point is influenced by
the magnitude of the exponential factor α, while its stability is predominantly affected by τ2, ω and β
(refer to Theorem 1, Figure 4). Aiming to optimize harvest economic value and support sustainable
ecological development, we introduced a weighted harvest strategy and initiating harvesting once the
weighted sum of the two populations reached a predetermined threshold, causing complex dynamic
effects on the predator-prey model.

For the complex pulse harvesting system, our focus lay on analyzing the existence and stability
of predator-extinction periodic solutions and positive order-1 periodic solutions. In the absence of
predator cub release (Λ = 0), a predator-extinction periodic solution occurs when I < µK and
B(0) = 0. Further, this solution is asymptotically stable if c2 > c̃2, as demonstrated in Theorem 3
(see Figure 5); that is, when no predator seedlings are placed and harvesting parameter c2 meets the
threshold condition, the predator population will become extinct. From the perspective of ecological
balance and commercial value, we do not want any species to become extinct. To this end, options
include introducing predator pups into the environment or reducing the predator capture rate c2.
Initially, without releasing predator cubs (Λ = 0) and keeping c2 < c̃2, the harvesting system (2.2)
yields an asymptotically stable positive order-1 periodic solution (refer to Theorem 4, Figure 5).
Moreover, when predator cubs are released, a positive order-1 periodic solution exists provided I ≤ Im

and Λ < Λm (see Theorem 4, Figures 6 and 7). It indicates that, due to human harvesting action,
the number of individuals in the area will decrease, which is not conducive to population growth and
harvesting. Proper supplementation of predator seedlings can help improve population development
and increase economic benefits.

A clear demonstration of bistability in system (2.2) is evident from Figures 8. This crucial
observation underlines the system’s sensitivity to initial conditions. In the future, we hope to prove it
theoretically through mathematical methods. Due to the complexity of the switching system, only the
local stability of the positive order-1 periodic solution was proven in Theorem 5, but its global stability
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cannot be determined using our current methods. In the future, we will try appropriate methods to
study it, such as constructing Lyapunov function methods. In addition, due to a more comprehensive
exploration of the predator-prey relationship in nature, we will incorporate the Allee effect, time delay
effect and optimal control into the model in future work.
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