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1. Introduction

Graph distinguishing coloring is a hot issue in the area of graph coloring theory. As an application,
graph distinguishing colorings may be connected with the frequency assignment problem in wireless
communication. The vertices (nodes) of graphs (networks) represent transmitters, the set C[u, π] of
colors assigned to a vertex u and the edges (links) incident to u under a total coloring π indicates the
frequencies usable. For a pair of adjacent vertices u and v, the property C[u, π] , C[v, π] ensures the
corresponding two stations can operate on a wide range of frequencies without the danger of interfering
with each other.

We use standard notation and terminology of graph theory [1]. Some additional notations will be
used. The shorthand notation [m, n] stands for a set {m,m + 1, . . . , n}, where integers n and m hold
n > m ≥ 0. The set of vertices that are adjacent to a vertex u of G is denoted as N(u), thus, the degree
dG(u) of the vertex u is equal to the cardinality |N(u)|. N(u) is also called the neighborhood of the
vertex u. The edge neighborhood of the vertex u is defined as Ne(u) = {uv : v ∈ N(u)}. Let ∆(G) (or
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∆) and δ(G) denote the maximum degree and minimum degree of G, respectively. Let nd(G) be the
number of vertices of degree d in G. In a graph, a k-degree vertex is a vertex of degree k, especially,
a ∆-vertex is a vertex of maximum degree; a leaf is a vertex of degree one; a k-cycle is a cycle of k
vertices.

Graphs mentioned here are undirected, connected and simple, and all graph colorings are proper.
A k-total coloring π of a graph G from a nonempty subset S ⊂ V(G) ∪ E(G) to [1, k] (also, [1, k] is
called a color set) satisfies that π(x) , π(y) for any two adjacent/incident elements x, y ∈ S . The set
{π(ux) : ux ∈ Ne(u)} is called the edge-color set of the vertex u, and denoted by C(u, π). Notice that an
edge-color set C(u, π) is never a multiset, that is, |C(u, π)| = dG(u). Let π be a total coloring of G, the
set C[u, π] = C(u, π)∪ {π(u)} is called a closed color set of vertex u. Clearly, |C[u, π]| = dG(u)+ 1. The
following distinguishing constraints will be used in the following Definitions:

(A1) C(u, π) , C(v, π) for distinct vertices u, v ∈ V(G);
(A2) C(u, π) , C(v, π) for each edge uv ∈ E(G);
(A3) C[u, π] , C[v, π] for distinct vertices u, v ∈ V(G);
(A4) C[u, π] , C[v, π] for each edge uv ∈ E(G).

For the purpose of simplicity, two notations π(V(G)) = {π(x) : x ∈ V(G)} and π(E(G)) = {π(xy) :
xy ∈ E(G)} will be used here. We reformulate the definitions of several known distinguishing colorings
of graphs occurred in literature.

Definition 1.1. [2, 3] Let π : E(G) → [1, k] be an edge coloring of G. If (A1) holds, then π is called a
vertex distinguishing edge k-coloring (k-vdec) of G. The vdec chromatic number of G is the minimum
number of k colors required for which G admits a k-vdec, and denoted by χ ′s(G).

Definition 1.2. [4] Let π : E(G) → [1, k] be an edge coloring of G. If (A2) holds, then π is called an
adjacent vertex distinguishing edge k-coloring (k-avdec) of G. The avdec chromatic number of G is
the minimum number of k colors required for which G admits a k-avdec, and denoted by χ ′as(G).

Definition 1.3. [5] Let π : V(G) ∪ E(G) → [1, k] be a total coloring of G. If (A3) holds, then π is
called a vertex distinguishing total k-coloring (k-vdtc) of G. The vdtc chromatic number of G is the
minimum number of k colors required for which G admits a k-vdtc, and denoted by χ ′′s (G).

Definition 1.4. [6] Let π : V(G) ∪ E(G) → [1, k] be a total coloring of G. If (A4) holds, then π is
called an adjacent vertex distinguishing total k-coloring (k-avdtc) of G. The avdtc chromatic number
of G is the minimum number of k colors required for which G admits a k-avdtc, and denoted by χ ′′as(G).

A graph G is called a vdec no-covered graph (resp. a vdtc no-covered graph) if there exists a proper
subgraph H of G such that χ ′s(H) > χ ′s(G) (resp. χ ′′s (H) > χ ′′s (G)). Similarly, a graph G is called
an avdec no-covered graph (resp. an avdtc no-covered graph) if G contains a proper subgraph H with
χ ′as(H) > χ ′as(G) (resp. χ ′′as(H) > χ ′′as(G)).

The following three lemmas will be used.

Lemma 1.1. [7] For a graph G of order at least three, χ ′s(G) ≤ |V(G)| + 1.

Lemma 1.2. [8] For integers n,m ≥ 3, χ ′s(Cm) = n if and only if either n is odd and m ∈
[

n2−4n+5
2 ,

n2−n−6
2

] ⋃ {n2−n
2

}
, or n is even and m ∈

[
n2−3n−2

2 , n2−3n
2

]⋃ [n2−3n+4
2 , n2−n

2

]
.
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Lemma 1.3. Let Kn, Pn and Cn be a complete graph, path and cycle on n vertices, respectively; and
let Km,n be a complete bipartite graph on m + n vertices. Then

(1) [4] χ ′as(Km,n) = n for n > m > 0 and χ ′as(Kn,n) = n + 2 for n ≥ 2.
(2) [5] χ ′′s (Km,n) = n + 1 for n > m ≥ 2, and χ ′′s (Kn,n) = n + 3 for n ≥ 3.
(3) [9] χ ′′as(K2m+2) = χ ′′as(K2m+1) = 2m + 3 for all integers m ≥ 1.
(4) [6] χ ′′as(Pn) = 4 for n ≥ 4; χ ′′as(Cn) = 4 for n ≥ 6.

In 1997, Burris and Schelp [2] studied the vertex distinguishing edge colorings (vdec) on graphs.
Independently, as “observability” of a graph, the concept of the vdec was proposed by Černý, Horňák
and Soták [3]. This graph coloring has absorbed researchers’ intentions. Surprisingly, determining the
vdec chromatic numbers of graphs seems to be quite difficult, even for some special graphs. In 2002,
Balister, Bollobás and Schelp [10] proved that k ≤ χ ′s(G) ≤ k + 5 for a graph G with ∆(G) = 2,
n1(G) ≤ k and n2(G) ≤

(
k
2

)
. Zhang, Liu and Wang [4] introduced the adjacent vertex distinguishing edge

colorings (avdec) of graphs, a weaker version of a vdec. However, finding avdec chromatic number
of graphs is not easy, even for special planar graphs [11]. Three conjectures on graph distinguishing
colorings are listed as follows.

Conjecture 1.1. [2] For a graph G of order at least three, if k is the minimal integer such that(
k
d

)
≥ nd(G) for all d with δ(G) ≤ d ≤ ∆(G), then χ ′s(G) = k or k + 1.

Conjecture 1.2. [4] For a graph G of order at least three, if G is not a cycle on five vertices, then
χ ′as(G) ≤ ∆(G) + 2.

Conjecture 1.3. [6] For a graph G of order at least three, χ ′′as(G) ≤ ∆(G) + 3.

In [10,12–15], some results on Conjecture 1.1 were obtained. Conjecture 1.2 was partially answered
in [16] and [17]. A good result on Conjecture 1.2, due to Hatami [18], is that if G has no isolated edges
and ∆(G) > 10 20, then χ ′as(G) ≤ ∆(G) + 300. Since ∆(G) ≤ χ ′as(G), the Hatami’s result implies
that lim

∆(G)→∞

χ ′as(G)
∆(G) = 1. Conjecture 1.3 has been verified for some special graphs in [6] and [19]. It is

noticeable, Conjecture 1.2 implies that G is not an avdec no-covered graph if χ ′as(G) = ∆(G) + 2; and
Conjecture 1.3 implies that G is not an avdtc no-covered graph if χ ′′as(G) = ∆(G) + 3.

2. Vertex distinguishing edge and total colorings

Theorem 2.1. Each connected graph is a proper subgraph of a vdec no-covered Hamilton graph.

Proof. First of all, we prove the following claim.
Claim. Let G be a Hamilton graph with δ(G) ≥ 3. Then G has a vdec no-covered Hamilton graph

with |E(G)| − 1 edges.
The proof of Claim. Suppose that a Hamilton graph G on n vertices admits a k-vdec π with k =

χ ′s(G). Without loss of generality, π(uv) = 1 for a certain edge uv of a Hamilton cycle of G. By
Lemma 1.1, two cases appear as follows:

For k < n + 1 we take a cycle Cm on m =
(

n
2

)
vertices. Clearly, χ ′s(Cm) = n by Lemma 1.2. Let ϕ be

a n-vdec of Cm, and ϕ(xy) = 1 for a certain edge xy ∈ E(Cm). We construct a new graph G ∗ by deleting
two edges uv and xy from G and Cm respectively, and then join u with x, v with y together. Next, we
define an edge coloring ψ of G ∗ as: ψ(st) = π(st) if st ∈ (E(G) \ {uv}) ⊂ E(G ∗); ψ(st) = ϕ(st) if
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st ∈ (E(Cm) \ {xy}) ⊂ E(G ∗), and ψ(ux) = ψ(vy) = 1. It is easy to see that C(a, ψ) , C(b, ψ) for distinct
vertices a, b ∈ V(G ∗), since degrees dG ∗(x) ≥ 3 for x ∈ V(G ∗) \ V(Cm). Immediately, χ ′s(G

∗) ≤ n,
and furthermore χ ′s(G

∗) = n since G ∗ has
(

n
2

)
vertices of degree two. Notice that Cm+n ⊂ G ∗, and

m + n =
(

n
2

)
+ n =

(
n+1

2

)
as well as χ ′s(Cm+n) = n + 1 according to Lemma 1.2. Therefore, G ∗ is a vdec

no-covered graph.
If k = n + 1, we take a cycle Cm on m =

(
n+1

2

)
vertices, and then we still have a graph H ∗ obtained

from G and Cm by the same construction as the above one. Clearly, χ ′s(H
∗) = n + 1, and H ∗ is vdec

no-covered, since H ∗ contains a Hamilton cycle Cm+n with m + n =
(

n+1
2

)
+ n >

(
n+1

2

)
, which means

χ ′s(Cm+n) > n + 1. The proof of the claim is finished.
By adding vertices and edges to a given connected graph H, we can obtain a Hamilton graph G with

δ(G) ≥ 3 and G has a Hamilton cycle containing an edge uv < E(H) and π(uv) = 1 under a k-vdec π of
G. The theorem follows from the above claim. □

The construction of the graph G ∗ in the proof of Theorem 2.1 enables us to obtain the following
result:

Corollary 2.1. For given positive integers M and N, there is a vdec no-covered Hamilton graph G
having ∆(G) ≥ M and |V(G)| ≥ N.

Theorem 2.2. There exist Hamilton graphs H0,H1, . . . ,Hm with m ≥ 1 such that Hi is a proper
subgraph of Hi−1 and χ ′s(Hi) > χ ′s(Hi−1) for i ∈ [1,m].

Proof. For m = 1, the conclusion is deduced by Theorem 2.1. The case m ≥ 2 is discussed as follows.
Let N be a positive integer, and let G1,G2, . . . ,Gm be m vertex-disjoint Hamilton graphs with |Gi| =

N + i − 1, 2 ≤ ki = χ
′
s(Gi) ≤ N, ∆(G j−1) < δ(G j) for j ∈ [2,m], and δ(G1) ≥ 3. Suppose that πi is a

ki-vdec of Gi for i ∈ [1,m]. Since ki ≥ 2, we have two edges xiyi and uivi of a Hamilton cycle Ti of Gi

with πi(xiyi) = 1 and πi(uivi) = 2, i ∈ [1,m]. We construct a graph G by means of G1,G2, . . . ,Gm in the
following two steps.

Step 1. Delete edges u1v1 of G1, umvm of Gm, and xiyi and uivi of Gi for i ∈ [2,m − 1], respectively.
Step 2. Join xi with yi−1, yi with xi−1, ui with vi−1 and vi with ui−1, respectively, i ∈ [3,m− 1]; join u2

with v1, v2 with u1; and join um with vm−1, vm with um−1.
Let Cn be a cycle on n =

(
N
2

)
vertices. Suppose that an edge x0y0 of Cn is labelled as π(x0y0) = 1

under a N-vdec π of Cn from Lemma 1.2. Now, we have a graph H0 obtained by joining x0 ∈ V(Cn) with
y1 ∈ V(G), y0 ∈ V(Cn) with x1 ∈ V(G), and removing the edge x0y0. Clearly, H0 is hamiltonian by the
above construction. We define an edge coloring θ of H0 as: θ(wz) = πi(wz) when wz ∈ E(Gi)\{xiyi, uivi}

for i ∈ [2,m − 1]; θ(xiyi−1) = θ(yixi−1) = 1 for i ∈ [3,m − 1]; θ(uivi−1) = θ(viui−1) = 2 for i ∈ [2,m];
θ(x1y0) = θ(y1x0) = 1 and θ(wz) = π(wz) when wz ∈ E(Cn) \ {x0y0}; θ(umvm−1) = θ(vmum−1) = 2
and θ(wz) = πm(wz) for wz ∈ E(Gm) \ {umvm}. By the choices of Cn and G1,G2, . . . ,Gm, we have
C(w, θ) , C(z, θ) for distinct vertices w, z ∈ V(H0) and χ ′s(H0) ≤ N.

Deleting every edge of S 1 = E(H0) ∩
(
E(G1) \ E(T1)

)
from H0 results in a graph H1. Notice that

H1 is hamiltonian and has |G1| + n = N +
(

N
2

)
=
(

N+1
2

)
vertices of degree 2 that form a set X(2)

1 , which
implies χ ′s(H1) ≥ N + 1 ≥ 1+ χ ′s(H0). By Lemm 1.2 we have χ ′s(H1) = N + 1, since dH1(z) ≥ 3 for z ∈
V(H1)\X(2)

1 . In general, we have Hamilton graphs Hi = Hi−1−S i, where S i = E(Hi−1)∩
(
E(Gi)\E(Ti)

)
with χ ′s(Hi) = N + i, since Hi has |Gi| +

(
N+i−1

2

)
= (N + i − 1) +

(
N+i−1

2

)
=
(

N+i
2

)
vertices of degree 2

that form a set X(2)
i such that dHi(z) ≥ 3 for z ∈ V(Hi) \ X(2)

i , i ∈ [1,m]. Continue with this method,
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finally, we obtain Hm that is a cycle of order M = |Gm| +
(

N+m−1
2

)
= (N + m − 1) +

(
N+m−1

2

)
=
(

N+m
2

)
with

χ ′′s (Hm) = N + m. The proof is completed. □

Theorem 2.3. Each Hamilton graph is a proper subgraph of some vdtc no-covered Hamilton graph.

Proof. By Lemma 1.3, χ ′′s (Kn,n−1) = n + 1 and χ ′′s (Kn−1,n−1) = n + 2 for n ≥ 4. Let G be a graph
having a Hamilton cycle Cm = x1x2 · · · xmx1 and let n be so large such that n − 1 ≥ max{∆(G), 7}
and n − 5 ≥ k = χ ′′s (G). Since Kn−1,n−1 = Kn,n−1 − {u} is hamiltonian, we have a Hamilton cycle
C2n−2 = u1v1u2v2 · · · un−1vn−1u1 of Kn−1,n−1, where u is adjacent to vi for i ∈ [1, n − 1] in Kn,n−1. Let
H = C4 + {w2w4}, where C4 = w1w2w3w4w1.

Let f be a (n+1)-vdtc of Kn,n−1, without loss of generality, f (v1u2) = 1, f (u1v1) = 2 and f (u1vn−1) =
3; and let g be a k-vdtc of G. Select an edge uivi with 2 ≤ i ≤ n − 1. We can modify the colors of
elements of V(G) ∪ E(G) under the coloring g such that some edge x jx j+1 of Cm holds g(x j) , f (vi),
g(x j+1) , f (ui), g(x jx j+1) = f (uivi) (if k < f (uivi), we set g(x jx j+1) = f (uivi) directly). Now, we define
a total coloring h of H as: {h(wi) : i ∈ [1, 4]} = {n−2, n−1, n, n+1} with h(w1) , f (v1), h(w2) , f (u2),
h(w3) , f (vn−1) and h(w4) , f (u1); h(w1w2) = 1, h(w2w3) = 2, h(w3w4) = 3, h(w1w4) = 4 and
h(w2w4) = 5.

We do: (1) delete w1w2 of H and v1u2 of Kn,n−1, and join w2 with u2, join w1 with v1; (2) delete
w3w4 of H and u1vn−1 of Kn,n−1, and join w3 with vn−1, join w4 with u1; (3) delete the edge x jx j+1 of G
and the edge uivi of Kn,n−1, and join x j with ui, join x j+1 with vi. Through the above measures, we get
a connected graph G∗ and G∗ has a total coloring θ as folows: θ(V(G∗)) = f (V(Kn,n−1)) ∪ g(V(G)) ∪
h(V(H)),

θ(E(G∗) \ {w2u2,w1v1,w3vn−1,w4u1, x jui, x j+1vi})
= f (E(Kn,n−1) \ {v1u2, u1vn−1}) ∪ g(E(G) \ {x jx j+1}) ∪ h(E(H) \ {w1w2,w3w4}),

and θ(w2u2) = 1, θ(w1v1) = 1, θ(w3vn−1) = 3, θ(w4u1) = 3, θ(x jui) = f (uivi) and θ(x j+1vi) = f (uivi).
Notice that C(a, θ) , C(b, θ) for distinct vertices a, b ∈ V(G ∗) according to the definitions of the total
colorings f , g, h and θ. We conclude that θ is a (n + 1)-vdtc of G∗. Clearly, χ ′′s (G ∗) ≤ n + 1 and, G∗

has a Hamilton cycle uu1v1w1w4w2w3vn−1un−1 · · · v jx j+1x j+2 · · · xmx1 · · · x juivi−1 · · · v2u2u.
Since G and Kn−1,n−1 both are the proper subgraphs of G ∗, the theorem is covered. □

3. Adjacent vertex distinguishing edge and total colorings

Theorem 3.1. For given integers M ≥ 3 and N ≥ 5, there is a connected graph G with ∆ ≥ M and
n ≥ N vertices such that G contains a proper subgraph H with χ ′as(H) > χ ′as(G).

Proof. First of all, we define the avd-linking operation on two graphs. Suppose that each connected
graph Gi has a ki-avdec πi with ki = χ ′as(Gi) for i = 1, 2, and furthermore π1(u1v1) = π2(u2v2) for
uivi ∈ E(Gi), and C(ui, πi) , C(v3−i, π3−i), i = 1, 2. We obtain a new graph H ∗ by deleting edges uivi

from Gi, and join ui to v3−i for i = 1, 2. Clearly, H ∗ admits a k0-avdec π, where k0 = max{k1, k2},
by defining an edge-coloring π as: π(uv) = πi(uv) for uv ∈ E(Gi) \ {uivi}, and π(uiv3−i) = πi(uivi) for
i = 1, 2.

There are many ways to construct the desired graph G mentioned in this theorem. Here, we take a
complete graph K∆+1,∆ with ∆ ≥ M ≥ 3. Clearly, a proper subgraph K∆,∆ ⊂ K∆+1,∆ holds χ ′as(K∆,∆) =
∆ + 2 > ∆ + 1 = χ ′as(K∆+1,∆).
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Let K ′
∆+1,∆ be a copy of K∆+1,∆, and let the edge u ′v ′ ∈ E(K ′

∆+1,∆) be isomorphic to an edge
uv ∈ E(K∆+1,∆). By the avd-linking operation on two graphs K∆+1,∆ and K ′

∆+1,∆, we obtain a connected
graph H1(2(2∆ + 1)) that contains two copies of K∆,∆ and has 2(2∆ + 1) vertices. Since χ ′as(H1(2(2∆ +
1))) = χ ′as(K∆+1,∆) = ∆ + 1, so χ ′as(K∆,∆) > χ ′as(H1(2(2∆ + 1))). Consequently, by implementing the
avd-linking operation, we take a copy H ′

1(2(2∆+ 1)) of H1(2(2∆+ 1)), and then construct a connected
graph H2(22(2∆+ 1)) such that χ ′as(K∆,∆) = ∆+ 2 > ∆+ 1 = χ ′as(H2(22(2∆+ 1))) for a proper subgraph
K∆,∆ of H2(22(2∆ + 1)). Go on in this way, we can construct a connected graph Hk(2k(2∆ + 1)) having
a proper subgraph K∆,∆, and furthermore, χ ′as(Hk(2k(2∆ + 1))) = ∆ + 1 and 2k(2∆ + 1) ≥ N ≥ 5. □

An example for illustrating the avd-linking operation used in the proof of Theorem 3.1 is given in
Figures 1 and 2.

G0 H0

Figure 1. Two avdec no-covered, 3-regular and hamiltonian graphs G0 and H0.

Figure 2. An avdec no-covered, 3-regular and hamiltonian graph obtained by using the avd-
linking operation on two graphs G0 and H0 shown in Figure 1.

Theorem 3.2. Each connected graph is a proper subgraph of an avdec no-covered graph.

Proof. Let the bipartition (X,Y) of vertex set of Kn+1,n for n ≥ 3 be defined as X = {ui : i ∈ [1, n + 1]}
and Y = {vi : i ∈ [1, n]}, and let f be a (n + 1)-avdec of Kn+1,n by Lemma 1.3. Suppose that each given
connected graph H j has a k j-avdec g j with k j = χ

′
as(H j) ≤ n − 2 and ∆(H j) ≤ n − 2 for j = 1, 2.

We delete the edge u1v1 from Kn+1,n, without loss of generality, set f (u1v1) = n+ 1. Next we join u1

with a vertex w1 of H1, join v1 with a vertex w2 of H2, the resultant graph is denoted by G. Notice that
χ ′as(G) ≥ n + 1 since dG(vi) = n + 1 for i ∈ [2, n]. We define an edge coloring h of G as: h(xy) = f (xy)
for xy ∈

(
E(Kn+1,n) \ {u1v1}

)
⊂ E(G); h(u1w1) = f (u1v1) and h(v1w2) = f (u1v1); h(xy) = g j(xy) for

xy ∈ E(H j), j = 1, 2. Furthermore, ∆(G) = n+1 ≤ χ ′as(G) ≤ n+1 = max{χ ′as(Kn+1,n), k1, k2}. However,
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χ ′as(Kn,n) = n+ 2 > n+ 1 = χ ′as(G) since Kn,n ⊂ G. The theorem is covered since each given connected
graph H j is a proper subgraph of G for j = 1, 2. □

Theorem 3.3. There are infinitely many connected 3-regular graphs G on n(≥ 6) vertices that are
avdec no-covered, planar and hamiltonian, and furthermore χ ′as(G) = χ ′′(G) = 4.

Proof. For the sake of simplicity, we define Property (I) as follows: A graph G has Property (I) if (i)
G is connected, 3-regular, planar and hamiltonian; (ii) G is embedded well in the plane; (iii) G has a
particular edge uv locating in the bound of the outer-face and a Hamilton cycle of G, G − {uv} contains
at least a 5-cycle; and (iv) χ ′as(G) = 4.

Obviously, a graph having Property (I) is avdec no-covered. Let G0 and H0 be two vertex-disjoint
graphs shown in Figure 1. Clearly, G0 and H0 both possess Property (I). Let u0v0 ∈ E(G0) and x0y0 ∈

E(H0) be the particular edges described in Property (I). And let C0 be a Hamilton cycle of G0 such that
u0v0 ∈ E(C0) and C ′0 be a Hamilton cycle of H0 such that x0y0 ∈ E(C ′0). Since χ ′as(G0) = 4 = χ ′as(H0),
we have a 4-avdec π0 of G0 and a 4-avdec π ′0 of H0 such that π0(u0v0) = π ′0(x0y0) (we can modify
the colors used in π ′0 to achieve the desired requirement, since G0 and H0 are vertex-disjoint). We
construct a graph G1 by deleting the edges u0v0 and x0y0 from G0 and H0, respectively, and then join u0

with y0, join v0 with x0. Clearly, G1 has a Hamilton cycle (C0−u0v0)+u0y0+ (C ′0− x0y0)+ x0v0, and has
Property (I). We select another graph H1 having Property (I), and then construct a graph G2 from G1

and H1 by the above way such that G2 has Property (I). Go on in this way, we have graphs Gm having
Property (I) for all integers m ≥ 1. Notice that C(s, fi) , C(t, fi) for every edge st ∈ E(Gi) under a
4-avdec fi of Gi, so [1, 4] \ C(s, fi) , [1, 4] \ C(t, fi), i ≥ 1. We can use one color in [1, 4] \ C(s, fi) to
color the vertex s, and use one color in [1, 4] \C(t, fi) to color the vertex t for every edge st of Gi, thus,
χ ′′(Gi) = 4 for i ≥ 1, as desired. □

For a graph G with ∆(G) = 3, let P = ux1x2 · · · xmv be a (u, v)-path of G if dG(v) = 3 and dG(xi) = 2
for i ∈ [1,m]. We call P a (k, 3; m)-path if dG(u) = k for k = 1, 3.

Lemma 3.1. If χ ′′as(G) = 3, then G contains no proper subgraph H such that χ ′′as(H) ≥ 4.

Proof. Since χ ′′as(G) = 3, we have ∆(G) ≤ 2. By Lemma 1.3, G is a path of length at most two, which
implies that G has no proper subgraph H with χ ′′as(H) ≥ 4. □

Lemma 3.2. Suppose that a graph H has maximum degree ∆ = 3 and no adjacent ∆-vertices. If
each 2-degree vertex is adjacent to two 3-degree vertices in H, then χ ′′as(H) = 4.

Proof. It is trivial for |V(H)| = 4. For |V(H)| = 5, H = K2,3 and χ ′′as(K2,3) = 4. The case |V(H)| ≥ 6
is considered as follows. Notice that dH(x) , dH(y) for every edge xy of H, which means that each
proper total coloring of H is also an avdtc, and vice versa. Thereby, we can use the induction on orders
of graphs.

Case 1. H has leaves.
Let N(w) = {w1,w2,w3} be the neighborhood of a 3-degree vertex w of H. If w1,w2 both are leaves,

and w3 is adjacent to two 3-degree vertices w and v. We know that χ ′′as(H−{w1,w2,w}) = 4 by induction
hypothesis. Suppose that H−{w1,w2,w} has a 4-avdtc f such that f (v) = 1, f (w3v) = 2 and f (w3) = 3.
We can extend f to a 4-avdtc of H described in Figure 3(a).

If w1,w2 both are 2-degree vertices, where w1 is adjacent to a 3-degree vertex x, w2 is adjacent
to a 3-degree vertex y, and w3 is a leaf. We have a graph G1 obtained by deleting w and all vertices
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in N(w), and adding a new vertex u to join x and y respectively. Clearly, G1 is a graph holding the
hypothesis of the lemma. Let f1 be a 4-avdtc of G1 by induction hypothesis. Without loss of generality,
f1(xu) = 1, f1(u) = 2 and f1(uy) = 3. Thereby, we can extend f1 to a 4-avdtc of H, see Figure 3(b).

Figure 3. The first diagram for the proof of Lemma 3.2.

Case 2. H has no leaves.
Subcase 2.1. H has 4-cycles. H , K2,3 since |V(H)| ≥ 6. Let u1u2u3u4 be a 4-cycle of H. Notice

that δ(H) = 2 and each 2-degree vertex of H is adjacent to two 3-degree vertices. Hence, a local part of
H that contains the 4-cycle u1u2u3u4 is shown in Figure 3(c). Let X = {u1, u2, u3, u4, u5, u6}. Thereby,
a graph G2 can be obtained by deleting every vertex of X and add a new vertex w ′ to join u and v,
respectively. Clearly, G2 is a graph holding the hypothesis of the lemma. By induction hypothesis, G2

has a 4-avdtc f2 such that f2(uw ′) = 1, f2(w ′) = 2 and f2(w ′v) = 3. It is not hard to extend f2 to
a 4-avdtc of H (see Figure 3(c)).

If u is adjacent to u6, refereing Figure 3(c), we have a graph G′2 = H − {u1, u2, u3, u4} having leaves.
So χ ′′as(G

′
2) = 4 by the proof in Case 1. Then we can extend a 4-avdtc of G′2 to a 4-avdtc of G.

Subcase 2.2. H has no 4-cycles. If H has the exact four 3-degree vertices, then it is an edge-
subdivision of K4, so we are done, see Figure 4(a). We, now, consider that H has at least six 3-degree
vertices in the following. H has a subgraph H ∗ with vertex set V(H ∗) = {u, v,w, u1, u2, v1, v2} by
referring to Figure 4(b). In H, two vertices u, v both have 3-degree, each vertex of V(H ∗) \ {u, v}
has 2-degree, where N(u1) = {u, x}, N(u2) = {u, y}, N(v1) = {v, s} and N(v2) = {v, t} (see Figure 4(b)).
Now, we have a graph G3 obtained by deleting V(H ∗) from H and adding a new vertex x0 to join
x and y, and adding another new vertex s0 to join s and t, respectively. So G3 has a 4-avdtc f3 by
induction hypothesis, since G3 satisfies the lemma’s hypothesis. Without loss of generality, f3(xx0) = 1,
f3(x0) = 2, f3(x0y) = 3. We define a proper total coloring h3 of H in the following two steps.

Step 1. (1) Set h3(z) = f3(z) for z ∈
(
V(G3) ∪ E(G3)

)
\ {xx0, x0, x0y, ss0, s0, s0t}; (2) h3(xu1) = 1,

h3(u1) = 2, h3(yu2) = 3, h3(u2) = 2; (3) h3(u1u) = 3, h3(u) = 4, h3(u2u) = 1 and h3(uw) = 2 (see
Figure 4(c)).

Figure 4. The second diagram for the proof of Lemma 3.2.
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Step 2. To color every element of S = {sv1, v1, v1v, tv2, v2, v2v, v, vw,w}, we consider the colors on
ss0, s0, s0t under f3. Let f3(ss0) = a, f3(s0) = b, f3(s0t) = c (see Figure 4(c)).

Step 2.1. (a, b, c) = (1, 2, 3). Thus, we need to consider two cases f3(t) = 4 and f3(t) = 1,
respectively.

(i) When f3(t) = 4, we set h3(sv1) = 1, h3(v1) = 2, h3(v1v) = 3, h3(tv2) = 3, h3(v2) = 1, h3(v2v) = 2,
h3(v) = 4 and h3(vw) = 1 and h3(w) = 3. Thereby, h3 is a desired 4-avdtc of H.

(ii) If f3(t) = 1, we set h3(sv1) = 1, h3(v1) = 2, h3(v1v) = 3, h3(tv2) = 3, h3(v2) = 4, h3(v2v) = 2,
h3(v) = 1 and h3(vw) = 4 and h3(w) = 3. In this situation, h3 is a desired 4-avdtc of H.

Step 2.2. (a, b, c) = (a, 2, c) and (a, b, c) , (1, 2, 3), where distinct a, c ∈ [1, 4]\{2}. The procedure of
coloring properly every element of S is very similar to that in Step 2.1. We still obtain a desired 4-avdtc
of H.

Step 2.3. b , 2. We set h3(sv1) = a, h3(v1) = b, h3(tv2) = c, h3(v2) = b, h3(vw) = b, h3(v) = 2
and h3(w) ∈ [1, 4] \ {2, b, 4} (see Figure 3(c)). For the last two edges v1v and v2v, we set h3(v1v) = c
and h3(v2v) = a if a, c ∈ [1, 4] \ {2, b}; and if a = 2, without loss of generality, we set h3(v1v) = c and
h3(v2v) ∈ [1, 4] \ {2, b, c}. Eventually, we can get a desired 4-avdtc of H.

The proof is completed. □

Since χ ′′as(Pn) = 4 for n ≥ 4, it is not hard to get the following result.

Lemma 3.3. Let H be a graph with ∆(H) = 3, no adjacent ∆-vertices and χ ′′as(H) = 4. If H has an
edge uv with dH(u) = 1 and dH(v) = 3, replace the edge uv with a path P = ux1x2 · · · xmv (m ≥ 1),
where each xi is out of H for i ∈ [1,m], the resultant graph is denoted by H2, then χ ′′as(H2) = 4.

Theorem 3.4. For a graph G with ∆ = 3 and no adjacent ∆-vertices, χ ′′as(G) = 4.

Proof. Obviously, the conclusion holds when |E(G)| = 3. Next we consider the case that |E(G)| ≥ 4.
If G contains some (3, 3; m)-(u, v)-paths with m ≥ 2. For every (3, 3; m)-(u, v)-path P = ux1x2 · · · xmv
of G, we delete xi for i ∈ [1,m], and add a new vertex w out of G by joining w with u, v respectively.
The resulting graph is denoted as G′. If G′ contains some (1, 3; m)-paths Q = uy1y2 · · · ymv with m ≥ 1,
dG(u) = 1 and dG(v) = 3. To each (1, 3; m)-path Q of G′, we delete y j for j ∈ [1,m] and then join u with
v. Eventually, we obtain a graph G′′ that contains no adjacent ∆-vertices, and each 2-degree vertex is
adjacent to two 3-degree vertices.

According to Lemma 3.2, χ ′′as(G
′′) = 4, and then χ ′′as(G

′) = 4 by Lemma 3.3. Thereby, we can use
the induction on orders of G′ in the following argument.

Let G′ have a 2-degree vertex w that is adjacent to two 3-degree vertices u, v, after replacing some
(3, 3; m)-(u, v)-path P = ux1x2 · · · xmv of G with m ≥ 2 by a path uwv.

Case 1. Replace the path uwv by a path ux1x2v.
If one of two vertices u, v is in a 4-cycle of G′, without loss of generality, G′ has a 4-cycle vu1u2u3v

shown in Figure 5(a). We delete the set {w, v, u1, u2, u3, u4} from G′, and then add a new vertex s out
of G′ by joining s with u, u5, respectively. The resulting graph is written as H1. Clearly, H1 admits 4-
avdtcs by induction hypothesis, since H1 has ∆(H1) = 3 and no adjacent ∆-vertices. Next, we substitute
by a path ux1x2v the path uwv of G′ to obtain another graph H2. By means of a 4-avdtc of H1, we can
get a desired 4-avdtc of H2 shown in Figure 5(a).

Suppose that two vertices u, v are not in any 4-cycle of G′. If G′ is the graph shown in Figure 4(a),
we are done. Otherwise, G′ has a part shown in Figure 5(b) (no dashing lines and black vertices).
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We have a graph H3 obtained by deleting every vertex of {u1, u2, u,w, v, v1, v2} from G′ and adding
a new vertex x0 out of G′ to join x and y, and adding another new vertex s0 out of G′ to join s and t,
respectively. Since H3 has ∆(H3) = 3 and no adjacent ∆-vertices that is a 4-avdtc f3 of H3 by induction
hypothesis. Thus, we construct a graph H4 in the way of replacing by a path ux1x2v the path uwv of G′,
and extend f3 to a proper total coloring h4 of H4. Clearly, H4 has maximum degree 3 and no adjacent
∆-vertices.

Except h4(x1) = 1, h4(x1x2) = 2 and h4(x2) = 3, each h4(z) for z ∈
(
V(H4) ∪ E(H4)

)
\ {x1, x1x2, x2}

are determined well based on f3 (see Figure 5(b)) such that h4(u) , h4(v) since h4(u1u) = c or d, and
h4(u) = d or c, where d ∈ [1, 4] \ {a, b, c}. Notice that d′ ∈ [1, 4] \ {a′, b′, c′}. By exhaustion we can
select appropriately colors 1, 2, 3 such that h4 is a 4-avdtc of H4.

Figure 5. A diagram for the proof of Theorem 3.4.

Case 2. Let H′ be a graph having maximum degree 3, a (3, 3; m)-path P = ux1x2 · · · xmv with m ≥ 2
and no adjacent ∆-vertices as well as χ ′′as(H

′) = 4. Our goal is to construct a new graph G∗ having
maximum degree 3 and no adjacent ∆-vertices by replacing an edge xixi+1 of the path P for some
i ∈ [1,m − 1] by a path xiyxi+1, where y is a new vertex out of H′, and then show χ ′′as(G

∗) = 4. Note
that G∗ contains a path (3, 3; m)-path Q = ux1x2 · · · xiyxi+1 · · · xmv with m ≥ 2 and |G∗| > |G|.

Subcase 2.1. For m = 2, H′ contains a (3, 3; 2)-path ux1x2v.
Let η21 be a 4-avdtc of H′. Without loss of generality, η21(ux1) = 2, η21(x1) = 1, η21(x1x2) = 3.

Hence, η21(x2) ∈ {2, 4} and η21(x2v) ∈ {1, 2, 4}, since C(x, η21) , C(y, η21) for each edge xy of H′.
Now, we delete the edge x1x2 from H′ and add a new vertex z out of H′ and two edges zx1, zx2.
The resulting graph is denoted as H21. We can define a 4-avdtc λ21 of H21 by means of η21. Let
Z = {x1z, zx2, x2v}∪{z, x2}. We define λ21(s) = η21(s) for s ∈ (V(H21)∪E(H21))\Z; and λ21(x2) = η21(x2),
λ21(x2v) = η21(x2v).

If η21(x2) = 2 and η21(x2v) = 4, set λ21(x1z) = 4, λ21(z) = 3 and λ21(zx2) = 1.
If η21(x2) = 4 and η21(x2v) = 2, define λ21(x1z) = 4, λ21(z) = 1 and λ21(zx2) = 3.
If η21(x2) = 4 and η21(x2v) = 1, then let λ21(x1z) = 4, λ21(z) = 3 and λ21(zx2) = 2.
If η21(x2) = 2 and η21(x2v) = 1, so η21(v) ∈ {3, 4}. If η21(v) = 3, we reset λ21(x2) = 4, and let

λ21(x2z) = 2, λ21(z) = 3 and λ21(zx1) = 4; if η21(v) = 4, we reset λ21(x2) = 3, and let λ21(x2z) = 2,
λ21(z) = 4 and λ21(zx1) = 3. Thereby, λ21 is really a 4-avdtc of H21.

Subcase 2.2. For m = 3, let N(u) = {u ′, u ′′, x1} and N(v) = {x3, v ′, v ′′}. Let η22 be a 4-avdtc of
H′. Without loss of generality, assume that η22(u ′u) = 2, η22(u ′′u) = 3, η22(u) = 4, η22(ux1) = 1,
η22(x1) = 2, η22(x1x2) = 3. So, η22(x2) ∈ {1, 4} and η22(x2x3) ∈ {1, 2, 4}. We replace the edge ux1 of H′

by a path uzx1, where z is a new vertex out of H′, and the resulting graph is denoted as H22. We will
extend η22 to a 4-avdtc λ22 of H22.

First, we define λ22(s) = η22(s) for s ∈ (V(H22) ∪ E(H22)) \ Z ′, where Z ′ = {z, zx1, x1, x1x2, x2,
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x2x3}. If η22(x2) = 4 and η22(x2x3) = 2, we define λ22(z) = 2, λ22(zx1) = 4, λ22(x1) = 1; λ22(y) = η22(y)
for y ∈ {x1x2, x2, x2x3}.

We have two subcases for colors η22(x2) and η22(x2x3) in the following. (i) If η22(x3) = 2 and
η22(x3v) = 4, then define λ22(z) = 3, λ22(zx1) = 4, λ22(x1) = 2, λ22(x1x2) = 1, λ22(x2) = 4 and
λ22(x2x3) = 3. If η22(x3) = 3 and η22(x3v) = 2 (resp. η22(x3) = 2 and η22(x3v) = 3), thus, we set
λ22(z) = 2, λ22(zx1) = 4, λ22(x1) = 3, λ22(x1x2) = 2, λ22(x2) = 4 and λ22(x2x3) = 1. (ii) If η22(x2) = 1
and η22(x3) = 2 or 4, we can extend η22 to a 4-avdtc λ22 of H22 by the way similarly to the above one.

Subcase 2.3. For m ≥ 4, we let N(u) = {u ′, u ′′, x1} and let η23 be a 4-avdtc of H′. Without loss
of generality, we assume that η23(u ′u) = 2, η23(u ′′u) = 3, η23(u) = 4, η23(ux1) = 1, η23(x1) = 2,
η23(x1x2) = 3. So, η23(x2) ∈ {1, 4} and η23(x2x3) ∈ {1, 2, 4}, since C(x, η23) , C(y, η23) for each edge
xy ∈ E(H′).

In order to obtain a new graph H23 we replace the edge ux1 of H′ by a path uzx1, where z is
a new vertex out of H′. Next, we extend η23 to a 4-avdtc λ23 of H23. We set λ23(s) = η23(s) for
s ∈ (V(H23) ∪ E(H23)) \ Z ′′, where Z ′′ = {z, zx1, x1, x1x2, x2}. Suppose that η23(x2) = 4, η23(x2x3) = 1
(resp. η23(x2x3) = 2). If η23(x3) = 2 and η23(x3x4) = 4, define λ23(z) = 2, λ23(zx1) = 3, λ23(x1) = 4,
λ23(x1x2) = 2 and λ23(x2) = 3. So C(s, λ23) , C(t, λ23) for every edge st ∈ E(H23). If η23(x3) = 2
and η23(x3x4) = 3 (resp. η23(x3) = 3 and η23(x3x4) = 4), which imply η23(x2x3) = 1 or 4, so we define
λ23(z) = 2, λ23(zx1) = 4, λ23(x1) = 3, λ23(x1x2) = 2, and λ23(x2) = 4 when η23(x2x3) = 1, or λ23(x2) = 1
if η23(x2x3) = 4.

For the other choices of colors η23(u ′u), η23(u ′′u), η23(u), η23(ux1), η23(x1) and η23(x1x2) under the
distinguishing constraint C(s, η23) , C(t, η23) for each edge st ∈ E(H′), by the above ways we can
obtain a 4-avdtc of H23.

Based on the proofs in Case 1 and Case 2 above, we can reconstruct G from G′ step by step such
that χ ′′as(G) = 4. The proof is covered. □

Theorem 3.4 implies that a connected graph G with ∆ = 3 and no adjacent ∆-vertices holds χ ′′as(G) =
χ ′′(G) = 4 and χ ′as(G) = χ ′(G) = 3, and furthermore χ(G) = 3 if G contains odd-cycles.

Corollary 3.1. There are infinitely many avdtc no-covered graphs.

Proof. The result follows from Lemmas 3.1, 3.2, 3.3 and Theorem 3.4. □

4. Further works

Motivated from the avd-linking operation introduced in the proof of Theorem 3.1, we define the
avd-equivalent operation on a graph as below. Let π be a k-avdec of graph G. If there are two edges
u1v1, u2v2 of G such that π(u1v1) = π(u2v2), C(ui, π) , C(v3−i, π) and uiv3−i < E(G) for i = 1, 2, then we
have an avd-equivalent graph G ′ obtained by deleting u1v1, u2v2 from G and join ui to v3−i for i = 1, 2.
Clearly, the avd-equivalent graph G ′ has a k-avdec generated from π. Notice that V(G) = V(G ′),
|E(G)| = |E(G ′)|, and χ ′as(G

′) ≤ χ ′as(G). The avd-equivalent class Gas(G) is the set of avd-equivalent
graphs generated from G. In other words, each H ∈ Gas(G) is an avd-equivalent graph of a certain
graph of Gas(G), and χ ′as(H) ≤ χ ′as(G). It is noticeable, |Gas(G0)| = 1, where G0 is the graph shown in
Figure 1. We want to figure out Gas(G) for a simple and connected graph G.

Observe that some connected graph G having a proper subgraph H with χ ′s(H) > χ ′s(G) may hold
|∆(G) − ∆(H)| ≥ M for given integers M ≥ 1. However, for cases χ ′as(H) > χ ′as(G) and χ ′′as(H) >
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χ ′′as(G), can we say |∆(G) − ∆(H)| ≤ 1?
In [9], the author point out that no simple graph G having maximum degree three and χ ′′as(G) = 6

has been discovered, although all graphs H of maximum degree three obey χ ′′as(H) ≤ 6. For a graph
G with ∆(G) ≥ 4, we do not find a proper subgraph H of G such that χ ′′as(G) < χ ′′as(H). Therefore, we
propose:

Conjecture 4.1. (1) Let H be a proper subgraph of G. Then χ ′as(H) ≤ χ ′as(G) + 1 and χ ′′as(H) ≤
χ ′′as(G) + 1.

(2) Let H be a proper subgraph of G. Then there is no proper subgraph H ∗ of H such that χ ′as(H
∗) >

χ ′as(H) > χ ′as(G), or χ ′′as(H
∗) > χ ′′as(H) > χ ′′as(G).

(3) Let H be a common proper subgraph of two graphs G1 and G2. If χ ′as(H) > χ ′as(Gi) for i = 1, 2,
then χ ′as(G1) = χ ′as(G2).

(4) Let G be a graph having adjacent ∆-vertices and ∆ = 3. Then G is not avdtc no-covered.

As known, χ′(G) ≤ χ′′(G) is true in the traditional colorings of graph theory. But we can see
χ ′′as(C5) = 4 < 5 = χ ′as(C5) and χ ′′s (C13) = 6 < 7 = χ ′s(C13). We call G an avdtc no-covering avdec
(resp. vdtc no-covering vdec) if χ ′′as(G) < χ ′as(G) (resp. χ ′′s (G) < χ ′s(G)). It may be interesting to
characterize avdtc no-covering avdec graphs or vdtc no-covering vdec graphs.
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proper edge-colorings of graphs, J. Comb. Theory Ser. B, 75 (1999), 288–301.
https://doi.org/10.1006/jctb.1998.1884

8. A. C. Burris, Vertex-distinguishing edge-colorings, Memphis State Univ., 1993.

9. J. Hulgan, Concise proofs for adjacent vertex distinguishing total colorings, Discrete Math., 309
(2009), 2548–2550. https://doi.org/10.1016/j.disc.2008.06.002

10. P. N. Balister, B. Bollobás, R. H. Schelp, Vertex distinguishing colorings of graphs with ∆(G) = 2,
Discrete Math., 252 (2002), 17–29. https://doi.org/10.1016/S0012-365X(01)00287-4

11. W. F. Wang, Y. Q. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller
maximum average degree, J. Comb. Optim., 19 (2010), 471–485. https://doi.org/10.1007/s10878-
008-9178-5

12. S. Akbafi, H. Bidkhori, N. Nosrati, r-Strong edge coloring of graphs, Discrete Math., 306 (2006),
3005–3010. https://doi.org/10.1016/j.disc.2004.12.027

13. P. N. Balister, Vertex-distinguishing edge colorings of random graphs, Random Struct. Algor., 20
(2001), 89–97. https://doi.org/10.1002/rsa.10002

14. C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak, A note on the vertex-distinguishing
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