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Abstract: Strengthening the evaluation of teaching satisfaction plays a crucial role in guiding
teachers to improve their teaching quality and competence, as well as in aiding educational institutions
in the formulation of effective teaching reforms and plans. The evaluation process for teaching
satisfaction is usually regarded as a typical multi-attribute decision-making (MADM) process, which
inherently possesses uncertainty and fuzziness due to the subjective nature of human cognition. In
order to improve the subtle discrimination of evaluation information data and enhance the accuracy
of the evaluation results, we have developed an integrated MADM method by combining a new
distance measure and an improved TOPSIS method for interval-valued intuitionistic fuzzy sets
(IvIFSs). First, a novel distance measure for IvIFSs based on triangular divergence is proposed
to capture the differences between two IvIFSs, and some properties of this distance measure are
investigated. Then, the superiority of this new distance measure is compared with some existing
distance measures. Afterward, an improved TOPSIS method is also established based on the proposed
triangular distance under the interval-valued intuitionistic fuzzy setting. Besides, to illustrate the
practicality of the new method, a numerical example is presented to evaluate mathematics teaching
satisfaction. Moreover, a comparative analysis that includes existing TOPSIS methods, is presented to
demonstrate the superiority of the given method. The comparison outcomes show that the proposed
technique can effectively discern uncertainties or subtle differences in IvIFSs, resulting in more
accurate and comprehensive evaluation results for teaching satisfaction. Overall, the findings of this
study emphasize the importance of incorporating the new distance measure in MADM. The proposed
approach serves as a valuable tool for decision-makers to compare and evaluate alternatives effectively.
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1. Introduction

In recent decades, there has been a global trend of placing increased importance on the teaching
quality of higher education. Teaching satisfaction, as a crucial evaluation criterion, is widely
recognized as essential information for enhancing teaching quality. By evaluating teachers’ teaching
satisfaction, they are encouraged to identify areas for improvement, reflect on their teaching practices,
address weaknesses and, ultimately, enhance the quality of education [1]. This, in turn, promotes
the development and advancement of colleges and universities. Currently, there are many studies on
teaching satisfaction, including the evaluation index and its influence. Previous studies [2–6] have
indicated that teaching satisfaction is affected by diverse factors, such as the expertise of teachers,
teaching attitude, content of courses and teaching methods, among others. Additionally, many colleges
and universities have also established evaluation index systems that integrate standardized criteria and
talent training programs [7]. The process of comparing and selecting a desirable option from several
schemes evaluated on various dimensions or attributes is often considered as a multi-attribute decision-
making (MADM) process [8].

In the specific decision-making situation of teaching satisfaction, two issues should be the focus [9]:
(1) How does a decision-maker express decision-related information appropriately?
(2) How can an ideal scheme be determined by using relevant decision-making methods?
Regarding the first issue, during the evaluation process, the meaning of each attribute representing

the target is determined. For instance, when evaluating whether a teacher is fully prepared, a
decision-maker may simply provide a binary opinion of “yes” or “no”. However, in practical decision
expressions, there is fuzziness and a large amount of uncertainties, which often involve subjective terms
such as “very poor”, “good” or “excellent”. These terms do not always correspond to precise data. To
address this issue, Zadeh [10] initially created fuzzy sets (FSs) with the concept of a membership
function in 1965. By utilizing a FS, evaluation values can extend beyond the binary scale of {0, 1} to
a more flexible range of [0, 1]. The theory of FSs has been widely applied in engineering, business
management, education and other domains.

With the development of theoretical research and practical demonstration, new problems have
emerged. For instance, if 10 people decide “whether the teacher is patient with students”, five
evaluators may answer “yes/agreement”, and four people may answer “no/disagreement”. But one
person may have some uncertainty in making decisions, and may even decline to answer. In this
case, the hesitancy must be taken into consideration. Then, Atanassov [11] proposed the intuitionistic
FS (IFS). Unlike FSs, IFSs have a membership degree, non-membership degree, hesitancy degree or
intuitionistic index, which are consistent with humans’ subjective habit of describing decisions with
“negation”, “affirmation” and “hesitation”. In this case, IFSs are more suitable for describing and
collecting decision-making information. However, in IFSs, the values of the membership degrees and
others need to be precise numbers, which may be difficult to obtain because of the complex factors of
a realistic environment and the limitations of decision-makers’ cognitive abilities [8]. For example, if
0.6 represents “good” and 0.75 is “very good”, a decision-maker is inclined to decide with an interval
of [0.6, 0.7] rather than an exact value of 0.7. Subsequently, Atanassov and Gargov [12] further came
up with the interval-valued intuitionistic fuzzy set (IvIFS) in 1989. They employ interval values rather
than crisp values to express the degree of membership, non-membership and uncertainty for each
element. The theory of IvIFSs has received widespread attention in theoretical research and practical
application [13–16]. It has been demonstrated that the IvIFS is a more powerful tool to deal with
uncertain and ambiguous information in actual environments, rather than previous theories, such as
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FSs and IFSs [17, 18].
Regarding the second issue, various approaches are employed in academic research to determine

the optimal scheme(s) within the framework of IvIFSs, such as the approach of determining index
weights, use of a distance measure, use of the technique for order performance by similaity to ideal
solution (TOPSIS), and so on.

(1) The method of determining index weight. For the case in which the weight value is unknown
or uncertain, the entropy weight method has been widely recognized as an efficient technique for
calculating index weights. Zhang and Jiang [19] initially established the concept of entropy and then
gave a couple of formulas to compute IvIFSs’ entropy, which could be used in clustering analysis
and various fields. Wu and Wan [20] further advanced the entropy method with IvIFSs in supplier
selection problems and computed the corresponding index weights, which made the conclusions more
reliable and objective. Considering the risk preferences of experts, Zhang et al. [21] constructed a
novel score function (P − λ) and then introduced the concept of average entropy for IvIFSs. They
incorporated experts’ risk preferences into the weighting process, enhancing the reliability of the
results. Additionally, Xian et al. [14] developed a new weight approach based on the entropy measure,
considering the presence of both positive and indeterminate preferences for attributes. This approach
assigns unique weights to each attribute, therefore providing a comprehensive evaluation.

(2) Distance measure of IvIFSs. It is an effective tool for handling uncertain and vague information
within the framework of FS theory [22–25]. IvIFSs’ distance method is generalized on the basis
of FSs’ distance as developed in [23, 24]. Xu [22, 25] defined several distance measures, such as
the (normalized) Hamming distance, (normalized) Euclidean distance and hybrid weighted distance
measures. Park [26] redefined pairs of various distance measures including the (normalized) Hamming
distance and (normalized) Euclidean distance, by taking the amplitude of the membership of the
elements into consideration. Muharrem [27] put forward a novel distance measure, which could
be utilized to compare counter intuitive examples for IvIFSs. Inspired by intervals, Liu and Jiang
[17] established a new interval-valued intuitionistic distance for IvIFSs, and it preserves the entire
interval information and effectively avoids information loss. Garg and Kumar [18] constructed a new
exponential distance based on different connection numbers.

(3) TOPSIS method. TOPSIS is a widely employed MADM model initially introduced by Hwang
and Yoon [28]. The fundamental principle of TOPSIS is to identify the ideal scheme(s) with the shortest
distance to the positive ideal solution (PIS) and the longest distance to the negative ideal solution
(NIS) [29]. In recent years, researchers have extended and applied the TOPSIS method for suitability
with IvIFSs in various fields [30–32], such as signal processing [33], supplier selection [31, 34] and
emergency rescue [35].

For instance, Qiao et al. [36] presented a TOPSIS method for IvIFSs which considers the preference
information of schemes. Using the weighted TOPSIS method, Huang and Zhang [37] conducted a
teaching effectiveness evaluation for higher education. Zhao [38] introduced an advanced TOPSIS
method based on the conventional one to calculate the distances between schemes and the PIS/NIS;
they were able to determine an ideal teaching quality. AI-Shamiri et al. [39] integrated TOPSIS and
ELECTRE-I within the framework of cubic m-polar FSs to diagnose psychiatric disorders.

In light of the literature analysis and discussion provided, the motivations of this research can be
summarized as follows:

(1) The evaluation process for teaching satisfaction needs to take multiple criteria into account
from different perspectives, which often leads to internal ambiguity and inconsistency. Additionally,
decision-makers may struggle to provide crisp values due to the inherent vagueness and uncertainty
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in cognition. Because the IvIFS can effectively handle fuzziness and uncertainty by considering both
membership and non-membership degrees, it can reduce the vagueness in decision-making. Hence, we
utilize IvIFSs to express decision-makers’ evaluation opinions.

(2) Although the research about distance measures has significantly advanced, as far as we know,
the triangular divergence fails to be explored under the conditions of the interval-valued intuitionistic
fuzzy (IvIF) environment. Besides, some existing measures cannot be adopted to distinguish subtle
differences in data, while others involve complex and tedious calculation processes. Therefore, this
research serves to introduce a novel IvIF triangular distance to enrich the information measure theory
and yeild a new TOPSIS method based on it.

Based on these motivations, this research has several key contributions. First, the proposed IvIF
triangular distance enhances the information measure theory by providing a new perspective. Second,
an improved TOPSIS method is established by utilizing the novel triangular distance within the IvIF
environment. This method enables a more accurate and reliable evaluation of teaching satisfaction.
Lastly, a comprehensive framework for teaching satisfaction evaluation, as based on the novel distance
measure and TOPSIS method for IvIFSs, is developed to provide decision support for education
managers. This framework serves as a driving force for teachers to enhance teaching quality, and
for students to improve learning efficiency.

Regarding the IvIFS environment, this study was designed to yield a new TOPSIS method
through the introduction a novel distance measure for evaluating the teaching satisfaction of a college
mathematics course. The structure of this paper is organized as follows. Section 2 provides an
overview of the elementary concepts related to IvIFSs, including interval-valued intuitionistic fuzzy
numbers (IvIFNs) and their relationships, as well as the entropy weight method. Section 3 proposes
a new distance measure, and it is proved that the new distance measure satisfies the requirements
for the related axiomatic properties. Additionally, several examples are illustrated to examine the
superiority of the proposed distance measure in Section 4. Building upon the new distance measure,
Section 5 presents an improved TOPSIS method. In Section 6, a novel decision-making approach
specifically tailored to teaching quality evaluation is established, and a numerical example investigating
the teaching satisfaction of mathematics courses is presented to illustrate the practical application of
the proposed methodology. Furthermore, comparisons and counter intuitive examples are discussed to
prove the rationality and superiority of the proposed TOPSIS method in Section 7. Finally, Section 8
concludes the study by summarizing the main findings and contributions of this research.

2. Preliminaries

In this section, related basic concepts, including the IvIFS and its properties, as well as the distance
measures, are recalled briefly.

2.1. IvIFS

Definition 2.1. [12] Suppose that Γ is a nonempty set ; an IvIFS H̃ over Γ could be defined as below.

H̃ =
{〈
τ,

[
uL

H̃
(τ) , uR

H̃
(τ)

]
,
[
vL

H̃
(τ) , vR

H̃
(τ)

]〉
|τ ∈ Γ

}
, (2.1)

where
[
uL

H̃
(τ) , uR

H̃
(τ)

]
⊆ [0, 1],

[
vL

H̃
(τ) , vR

H̃
(τ)

]
⊆ [0, 1] are the interval membership degree and non-

membership degree of the element τ to H̃, respectively. Besides, the formula satisfies the condition
that uR

H̃
(τ) + vR

H̃
(τ) ≤ 1 for any τ ∈ Γ. The interval intuitionistic index or hesitancy degree is πH̃ (τ) =[

πL
H̃

(τ) , πR
H̃

(τ)
]

=
[
1 − uR

H̃
(τ) − vR

H̃
(τ) , 1 − uL

H̃
(τ) − vL

H̃
(τ)

]
, and πH̃ (τ) ⊆ [0, 1] .
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For convenience, we denote the IvIFN as
([

uL, uR
]
,
[
vL, vR

])
[13].

Especially, when uL
H̃

(τ) = uR
H̃

(τ) and vL
H̃

(τ) = vR
H̃

(τ), an IvIFS is reduced to an IFS and an IvIFN is
reduced to an intuitionistic fuzzy number.

Definition 2.2. [40] Suppose that H̃k =

〈
τ,

[
uL

H̃k
(τ) , uR

H̃k
(τ)

]
,
[
vL

H̃k
(τ) , vR

H̃k
(τ)

]〉
(k = 1, 2) are any two

IvIFSs in Γ, we have:
(1) H̃1 = H̃2 iff uL

H̃1
(τ) = uL

H̃2
(τ), uR

H̃1
(τ) = uR

H̃2
(τ), vL

H̃1
(τ) = vL

H̃2
(τ) and vR

H̃1
(τ) = vR

H̃2
(τ) for ∀τ ∈ Γ;

(2) H̃1 ⊆ H̃2 iff uL
H̃1

(τ) ≤ uL
H̃2

(τ), uR
H̃1

(τ) ≤ uR
H̃2

(τ), vL
H̃1

(τ) ≥ vL
H̃2

(τ) and vR
H̃1

(τ) ≥ vR
H̃2

(τ) for ∀τ ∈ Γ;

(3) H̃1 ∪ H̃2 =

{〈
τ,

[
max

(
uL

H̃k
(τ)

)
,max

(
uR

H̃k
(τ)

)]
,
[
min

(
vL

H̃k
(τ)

)
,min

(
vR

H̃k
(τ)

)]
|τ ∈ Γ

〉}
;

(4) H̃1 ∩ H̃2 =

{〈
τ,

[
min

(
uL

H̃k
(τ)

)
,min

(
uR

H̃k
(τ)

)]
,
[
max

(
vL

H̃k
(τ)

)
,max

(
vR

H̃k
(τ)

)]
|τ ∈ Γ

〉}
;

(5) H̃C
1 =

{〈
τ,

[
vL

H̃1
(τ) , vR

H̃1
(τ)

]
,
[
uL

H̃1
(τ) , uR

H̃1
(τ)

]〉
|τ ∈ Γ

}
.

Definition 2.3. [13] Assume that β̃k =

([
uL
β̃k
, uR

β̃k

]
,
[
vL
β̃k
, vR

β̃k

])
(k = 1, 2) represents any two IvIFNs; then,

one has the following operational laws.

(1) β̃1 ⊕ β̃2 =

([
uL
β̃1

+ uL
β̃2
− uL

β̃1
uL
β̃2
, uR

β̃1
+ uR

β̃2
− uR

β̃1
uR
β̃2

]
,
[
vL
β̃1

vL
β̃2
, vR

β̃1
vR
β̃2

])
;

(2) β̃1 ⊗ β̃1 =

([
uL
β̃1

uL
β̃2
, uR

β̃1
uR
β̃2

]
,
[
vL
β̃1

+ vL
β̃2
− vL

β̃1
vL
β̃2
, vR

β̃1
+ vR

β̃2
− vR

β̃1
vR
β̃2

])
;

(3) γβ̃ =

([
1 −

(
1 − uL

β̃

)γ
, 1 −

(
1 − uR

β̃

)γ]
,
[(

vL
β̃

)γ
,
(
vR
β̃

)γ])
, γ > 0;

(4) (̃β)
γ

=

([(
uL
β̃

)γ
,
(
uR
β̃

)γ]
,
[
1 −

(
1 − vL

β̃

)γ
, 1 −

(
1 − vR

β̃

)γ])
γ > 0.

Definition 2.4. [13] Suppose that β̃ refers to an IvIFN ; the score function and accuracy function of β̃
will be given as below, respectively.

fs

(
β̃
)

=
uL
β̃

+ uR
β̃
− vL

β̃
− vR

β̃

2
,−1 ≤ fs

(
β̃
)
≤ 1. (2.2)

fa

(
β̃
)

=
uL
β̃

+ uR
β̃

+ vL
β̃

+ vR
β̃

2
, 0 ≤ fa

(
β̃
)
≤ 1. (2.3)

For any two IvIFNs β̃1 and β̃2, the order relationship could be defined as follows.
(1) β̃1 > β̃2 when fs

(
β̃1

)
> fs

(
β̃2

)
;

(2) If fs

(
β̃1

)
= fs

(
β̃2

)
, the following holds:

a. β̃1 > β̃2 when fa

(
β̃1

)
> fa

(
β̃2

)
;

b. β̃1 = β̃2 when fa

(
β̃1

)
= fa

(
β̃2

)
.

2.2. Entropy, aggregation operator and distances of IvIFSs

Definition 2.5. [19] Set Γ as a nonempty set; H̃k is a separate element in an IvIFS H̃ in Γ. Then, the
entropy of H̃k can be given in the following form:

E
(
H̃k

)
= 1 −

1
2n

n∑
k=1

(
|uL

H̃k
(τ) − vL

H̃k
(τ) | + |uR

H̃k
(τ) − vR

H̃k
(τ) |

)
; (2.4)
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the weight of element H̃k is defined as in Eq (2.5):

w
(
H̃k

)
=

1 − E
(
H̃k

)
n∑

k=1

(
1 − E

(
H̃k

)) . (2.5)

Definition 2.6. [13] For a group of IvIFNs β̃k (k = 1, 2, · · · , n), the IvIF weighted arithmetic average
operator (IvIFWAA) will be given by Eq (2.6).

IvIFWAA
(
β̃1, β̃2, · · · , β̃n

)
=

n∑
k=1

wkβ̃k =

1 − n∏
k=1

(
1 − uL

β̃k

)wk

, 1 −
n∏

k=1

(
1 − uR

β̃k

)wk
 ,  n∏

k=1

(
vL
β̃k

)wk

,

n∏
k=1

(
vR
β̃k

)wk
 . (2.6)

Here, wk is the weight of β̃k, satisfying 0 ≤ wk ≤ 1, and
n∑

k=1
wk = 1.

Definition 2.7. [19] A mapping d : IvIFS (Γ) × IvIFS (Γ) → [0, 1] denotes the distance measure
between the IvIFSs H̃i and H̃ j if the following conditions are satisfied:

(1) d
(
H̃i, H̃ j

)
= 0⇔ H̃i = H̃ j;

(2) d
(
H̃i, H̃ j

)
= d

(
H̃ j, H̃i

)
;

(3) 0 ≤ d
(
H̃i, H̃ j

)
≤ 1;

(4) If H̃i ≤ H̃ j ≤ H̃k, then d
(
H̃i, H̃ j

)
≤ d

(
H̃i, H̃k

)
, and d

(
H̃ j, H̃k

)
≤ d

(
H̃i, H̃k

)
.

Suppose that H̃k =

〈
τ,

[
uL

H̃k
(τ) , uR

H̃k
(τ)

]
,
[
vL

H̃k
(τ) , vR

H̃k
(τ)

]〉
(k = 1, 2) presents any two IvIFSs in

Γ = {τ1, τ2, · · · , τm}; some existing distance measures between H̃1 and H̃2 are stated as below, which
will be used in a later discussion.

(1) Hamming distance [22]

dH

(
H̃1, H̃2

)
=

1
4m

 m∑
i=1

∣∣∣∣uL
H̃1

(τi) − uL
H̃2

(τi)
∣∣∣∣ +

∣∣∣∣uR
H̃1

(τi) − uR
H̃2

(τi)
∣∣∣∣ +

∣∣∣∣vL
H̃1

(τi) − vL
H̃2

(τi)
∣∣∣∣ +

∣∣∣∣vR
H̃1

(τi) − uR
H̃2

(τi)
∣∣∣∣ . (2.7)

(2) Euclidean distance [22]

dE

(
H̃1, H̃2

)
=

√√
1

4m

m∑
i=1

[(
uL

H̃1
(τi) − uL

H̃2
(τi)

)2
+

(
uR

H̃1
(τi) − uR

H̃2
(τi)

)2
+

(
vL

H̃1
(τi) − vL

H̃2
(τi)

)2
+

(
vR

H̃1
(τi) − uR

H̃2
(τi)

)2
]
. (2.8)

(3) Hausdorff–Hamming distance [26]

dHH

(
H̃1, H̃2

)
=

1
2m

m∑
i=1

[∣∣∣∣uL
H̃1

(τi) − uL
H̃2

(τi)
∣∣∣∣ ∨ ∣∣∣∣uR

H̃1
(τi) − uR

H̃2
(τi)

∣∣∣∣ +
∣∣∣∣vL

H̃1
(τi) − vL

H̃2
(τi)

∣∣∣∣ ∨ ∣∣∣∣vR
H̃1

(τi) − uR
H̃2

(τi)
∣∣∣∣]. (2.9)

(4) Hausdorff–Euclidean distance [26]

dHE

(
H̃1, H̃2

)
=

√√
1

2m

m∑
i=1

[(∣∣∣∣uL
H̃1

(τi) − uL
H̃2

(τi)
∣∣∣∣ ∨ ∣∣∣∣uR

H̃1
(τi) − uR

H̃2
(τi)

∣∣∣∣)2
+

(∣∣∣∣vL
H̃1

(τi) − vL
H̃2

(τi)
∣∣∣∣ ∨ ∣∣∣∣vR

H̃1
(τi) − uR

H̃2
(τi)

∣∣∣∣)2
]
. (2.10)
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(5) Muharrem [27] created a novel distance measure for IvIFSs

dt
p

(
H̃1, H̃2

)
=

p

√√√√√√√√√√ 1
4m(t+1)p

m∑
i=1

{∣∣∣∣∣t (uL
H̃1

(τi) − uL
H̃2

(τi)
)
−

(
vL

H̃1
(τi) − vL

H̃2
(τi)

)∣∣∣∣∣p +

∣∣∣∣∣t (vL
H̃1

(τi) − vL
H̃2

(τi)
)
−

(
uL

H̃1
(τi) − uL

H̃2
(τi)

)∣∣∣∣∣p
+

∣∣∣∣∣t (uR
H̃1

(τi) − uR
H̃2

(τi)
)
−

(
vR

H̃1
(τi) − vR

H̃2
(τi)

)∣∣∣∣∣p +

∣∣∣∣∣t (vR
H̃1

(τi) − vR
H̃2

(τi)
)
−

(
uR

H̃1
(τi) − uR

H̃2
(τi)

)∣∣∣∣∣p} , (2.11)

where t = 2, 3, 4, · · · , the parameter p represents the Lp norm and t is used to identify the uncertainty
level. For the calculations, t = 2 and p = 1 are used in this study.

(6) Liu and Jiang [17] established a new distance measure for IvIFSs:

dL

(
H̃1, H̃2

)
=

√
1
2

(
D2

u + D2
v + D2

π + DπDu + DπDv
)

(2.12)

where an IvIFN
〈[

uL, uR
]
,
[
vL, vR

]〉
is converted into an interval vector

([
uL, uR

]
,
[
vL, vR

]
,
[
πL, πR

])T
,

and

D2
u

(
H̃1, H̃2

)
=

uL
H̃1

(τi) + uR
H̃1

(τi)

2
−

uL
H̃2

(τi) + uR
H̃2

(τi)

2


2

+
1
3

uR
H̃1

(τi) − uL
H̃1

(τi)

2
−

uR
H̃2

(τi) − uL
H̃2

(τi)

2


2

,

D2
v

(
H̃1, H̃2

)
=

vL
H̃1

(τi) + vR
H̃1

(τi)

2
−

vL
H̃2

(τi) + vR
H̃2

(τi)

2


2

+
1
3

vR
H̃1

(τi) − vL
H̃1

(τi)

2
−

vR
H̃2

(τi) − vL
H̃2

(τi)

2


2

,

D2
π

(
H̃1, H̃2

)
=

πL
H̃1

(τi) + πR
H̃1

(τi)

2
−

πL
H̃2

(τi) + πR
H̃2

(τi)

2


2

+
1
3

πR
H̃1

(τi) − πL
H̃1

(τi)

2
−

πR
H̃2

(τi) − πL
H̃2

(τi)

2


2

,

and

Du =


√

D2
u when uL

H̃1
(τi) + uR

H̃1
(τi) ≥ uL

H̃2
(τi) + uR

H̃2
(τi) ;

−
√

D2
u when uL

H̃1
(τi) + uR

H̃1
(τi) < uL

H̃2
(τi) + uR

H̃2
(τi) .

Dv =


√

D2
v when vL

H̃1
(τi) + vR

H̃1
(τi) ≥ vL

H̃2
(τi) + vR

H̃2
(τi) ;

−
√

D2
v when vL

H̃1
(τi) + vR

H̃1
(τi) < vL

H̃2
(τi) + vR

H̃2
(τi) .

Dπ =


√

D2
π when πL

H̃1
(τi) + πR

H̃1
(τi) ≥ πL

H̃2
(τi) + πR

H̃2
(τi) ;

−
√

D2
π when πL

H̃1
(τi) + πR

H̃1
(τi) < πL

H̃2
(τi) + πR

H̃2
(τi) .

(7) Garg and Kumar [18] defined a new exponential distance through the use of a connection set
H̃ =

{(
τi, rH̃ (τi) + sH̃ (τi) i + tH̃ (τi) j

)}
, as follows:

If fs

(
H̃1

)
, fs

(
H̃2

)
and fa

(
H̃1

)
, fa

(
H̃2

)
, then

rH̃ (τi) =

(
uL

H̃
(τi)+uR

H̃
(τi)

)(
2−vL

H̃
(τi)−vR

H̃
(τi)

)
4 ;

sH̃ (τi) =
1+

(
1−uL

H̃
(τi)−uR

H̃
(τi)

)(
1−vL

H̃
(τi)−vR

H̃
(τi)

)
2 ;

tH̃ (τi) =

(
vL

H̃
(τi)+vR

H̃
(τi)

)(
2−uL

H̃
(τi)−uR

H̃
(τi)

)
4 .

If fs

(
H̃1

)
= fs

(
H̃2

)
( either fa

(
H̃1

)
, fa

(
H̃2

)
or fa

(
H̃1

)
= fa

(
H̃2

)
) , one has

rH̃ (τi) =

(
uL

H̃
(τi)

(
1−uR

H̃
(τi)−vR

H̃
(τi)

)
+uR

H̃
(τi)

(
1−uL

H̃
(τi)−vL

H̃
(τi)

))(
2−vL

H̃
(τi)−vR

H̃
(τi)

)
4 ;
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sH̃ (τi) = 1 − rH̃ (τi) − tH̃ (τi);

tH̃ (τi) =

(
vL

H̃
(τi)

(
1−uR

H̃
(τi)−vR

H̃
(τi)

)
+vR

H̃
(τi)

(
1−uL

H̃
(τi)−vL

H̃
(τi)

))(
2−uL

H̃
(τi)−uR

H̃
(τi)

)
4 .

Thus, a new normalized exponential Hamming distance is given by Eq (2.13):

dH
exp

(
H̃1, H̃1

)
=

1 − exp

− 1
3

n∑
i=1

(∣∣∣∣∣ √rH̃1
(τi) −

√
rH̃2

(τi)
∣∣∣∣∣ +

∣∣∣∣∣ √sH̃1
(τi) −

√
sH̃2

(τi)
∣∣∣∣∣ +

∣∣∣∣∣ √tH̃1
(τi) −

√
tH̃2

(τi)
∣∣∣∣∣)


/(

1 − exp (−n)
)
, (2.13)

and a new normalized exponential Euclidean distance is given by Eq (2.14):

dE
exp

(
H̃1, H̃1

)
=

1 − exp

−
 1

3

n∑
i=1

(∣∣∣∣∣ √rH̃1
(τi) −

√
rH̃2

(τi)
∣∣∣∣∣2 +

∣∣∣∣∣ √sH̃1
(τi) −

√
sH̃2

(τi)
∣∣∣∣∣2 +

∣∣∣∣∣ √tH̃1
(τi) −

√
tH̃2

(τi)
∣∣∣∣∣2)

1/2

/(

1 − exp
(
−
√

n
))
. (2.14)

3. A novel distance measure for IvIFSs

The distance measure plays a crucial role in distinguishing the differences among alternatives,
making it a critical component in decision-making processes such as the TOPSIS method [17]. The
distance measure with a higher distinguishing ability will lead to a better decision-making method,
thus providing decision-makers with a definite choice. However, some existing distance measures
have been established without explicit physical meaning, while others involve complex calculations.
In some cases, these measures fail to adequately distinguish decision-making information, and the
calculated results may even contradict theoretical requirements or intuitive feelings.

Triangular divergence, a classical measure widely applied in probability distributions, has
successfully handled counter intuitive problems better than other existing distance methods [41–43].
Therefore, based upon the concept of triangular divergence and the approaches described in [43], we
have created a new distance measure in the IvIFS environment. By utilizing triangular divergence, the
proposed distance measure aims to overcome the limitations of existing measures and provide a more
effective tool for distinguishing differences between IvIFSs.

In the following sections, we will discuss the concept of triangular divergence and its application in
the new distance measure for IvIFSs.

3.1. Triangular divergence

Definition 3.1. [42] Set Ψn =

{
P = (p1, p2, . . . , pn) |pi > 0,

n∑
i=1

pi = 1
}
, n ≥ 2 as a set of finite discrete

probability distributions. For ∀P,Q ∈ Ψn, the classical triangular divergence measure between P and
Q is defined as

∆ (P,Q) =

n∑
i=1

(pi − qi)2

pi + qi
. (3.1)

The bigger the triangular divergence value, the greater the difference between the probability
distributions P and Q.

With Eq (3.1), the square root of the triangular divergence could be described as follows:

d (P,Q) =

√√
n∑

i=1

(pi − qi)2

pi + qi

where, by convention, 0/0 = 0.
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3.2. New distance measure for IvIFSs based on the triangular divergence

Definition 3.2. Suppose that H̃k =

〈
τ j,

[
uL

H̃k
(τ) , uR

H̃k
(τ)

]
,
[
vL

H̃k
(τ) , vR

H̃k
(τ)

]〉
(k = 1, 2) represents any

two IvIFSs in Γ = {τ1, τ2, · · · , τm}; then, the distance between H̃1 and H̃2 could be determine by using
the following formula.

dIv

(
H̃1, H̃2

)
=

√√√√√√√√√ 1
4m

m∑
j=1


(
uL

H̃1

(
τ j

)
− uL

H̃2

(
τ j

))2

uL
H̃1

(
τ j

)
+ uL

H̃2

(
τ j

) +

(
uR

H̃1

(
τ j

)
− uR

H̃2

(
τ j

))2

uR
H̃1

(
τ j

)
+ uR

H̃2

(
τ j

) +

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2

vL
H̃1

(
τ j

)
+ vL

H̃2

(
τ j

) +

(
vR

H̃1

(
τ j

)
− vR

H̃2

(
τ j

))2

vR
H̃1

(
τ j

)
+ vR

H̃2

(
τ j

)
. (3.2)

We denote dIv as an interval-valued intuitionistic distance measure based on triangular divergence
(IvIFTD). As stated previously, the bigger the value of dIv, the greater the difference between the
IvIFSs.

Theorem 3.1. Set dIv

(
H̃1, H̃2

)
in Eq (3.2) as the distance measure between two IvIFSs; then, the

following properties are satisfied:
(1) dIv

(
H̃1, H̃2

)
= 0⇔ H̃1 = H̃2;

(2) dIv

(
H̃1, H̃2

)
= dIv

(
H̃2, H̃1

)
;

(3) 0 ≤ dIv

(
H̃1, H̃2

)
≤ 1;

(4) If H̃1 ≤ H̃2 ≤ H̃3, then one has dIv

(
H̃1, H̃2

)
≤ dIv

(
H̃1, H̃3

)
and dIv

(
H̃2, H̃2

)
≤ dIv

(
H̃1, H̃3

)
.

Proof. (1) dIv

(
H̃1, H̃2

)
= 0⇔ H̃1 = H̃2.

Necessity:
For any τ j ∈ Γ, if dIv

(
H̃1, H̃2

)
= 0, one has

dIv

(
H̃1, H̃2

)
=

√√√√√√√√√ 1
4m

m∑
j=1


(
uL

H̃1

(
τ j

)
− uL

H̃2

(
τ j

))2

uL
H̃1

(
τ j

)
+ uL

H̃2

(
τ j

) +

(
uR

H̃1

(
τ j

)
− uR

H̃2

(
τ j

))2

uR
H̃1

(
τ j

)
+ uR

H̃2

(
τ j

) +

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2

vL
H̃1

(
τ j

)
+ vL

H̃2

(
τ j

) +

(
vR

H̃1

(
τ j

)
− vR

H̃2

(
τ j

))2

vR
H̃1

(
τ j

)
+ vR

H̃2

(
τ j

)
 = 0.

Then we have

(
uL

H̃1

(
τ j

)
− uL

H̃2

(
τ j

))2

uL
H̃1

(
τ j

)
+ uL

H̃2

(
τ j

) =

(
uR

H̃1

(
τ j

)
− uR

H̃2

(
τ j

))2

uR
H̃1

(
τ j

)
+ uR

H̃2

(
τ j

) =

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2

vL
H̃1

(
τ j

)
+ vL

H̃2

(
τ j

) =

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2

vL
H̃1

(
τ j

)
+ vL

H̃2

(
τ j

) = 0,

that is (
uL

H̃1

(
τ j

)
− uL

H̃2

(
τ j

))2
=

(
uR

H̃1

(
τ j

)
− uR

H̃2

(
τ j

))2
=

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2
=

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2
= 0.

According to Definition 2.1, one has

0 ≤ uL
H̃1
, uR

H̃1
, vL

H̃1
, vR

H̃1
, uL

H̃2
, uR

H̃2
, vL

H̃2
, vR

H̃2
≤ 1;

hence, we have

uL
H̃1

(
τ j

)
= uL

H̃2

(
τ j

)
, uR

H̃1

(
τ j

)
= uR

H̃2

(
τ j

)
, vL

H̃1

(
τ j

)
= vL

H̃2

(
τ j

)
, vL

H̃1

(
τ j

)
= vL

H̃2

(
τ j

)
.
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Therefore, H̃1 = H̃2 is deduced.
Sufficiency:

When H̃1 = H̃2, one has

uL
H̃1

(
τ j

)
= uL

H̃2

(
τ j

)
, uR

H̃1

(
τ j

)
= uR

H̃2

(
τ j

)
, vL

H̃1

(
τ j

)
= vL

H̃2

(
τ j

)
, vL

H̃1

(
τ j

)
= vL

H̃2

(
τ j

)
.

Then, we can obtain

dIv

(
H̃1, H̃2

)
=

√√√√√√√√√ 1
4m

m∑
j=1


(
uL

H̃1

(
τ j

)
− uL

H̃2

(
τ j

))2

uL
H̃1

(
τ j

)
+ uL

H̃2

(
τ j

) +

(
uR

H̃1

(
τ j

)
− uR

H̃2

(
τ j

))2

uR
H̃1

(
τ j

)
+ uR

H̃2

(
τ j

) +

(
vL

H̃1

(
τ j

)
− vL

H̃2

(
τ j

))2

vL
H̃1

(
τ j

)
+ vL

H̃2

(
τ j

) +

(
vR

H̃1

(
τ j

)
− vR

H̃2

(
τ j

))2

vR
H̃1

(
τ j

)
+ vR

H̃2

(
τ j

)
 = 0.

�

Proof. (2) dIv

(
H̃1, H̃2

)
= dIv

(
H̃2, H̃1

)
.

dIv

(
H̃1, H̃2

)
=

√√√√
1

4m

m∑
j=1


(
uL

H̃1
(τ j)−uL

H̃2
(τ j)

)2

uL
H̃1

(τ j)+uL
H̃2

(τ j) +

(
uR

H̃1
(τ j)−uR

H̃2
(τ j)

)2

uR
H̃1

(τ j)+uR
H̃2

(τ j) +

(
vL

H̃1
(τ j)−vL

H̃2
(τ j)

)2

vL
H̃1

(τ j)+vL
H̃2

(τ j) +

(
vR

H̃1
(τ j)−vR

H̃2
(τ j)

)2

vR
H̃1

(τ j)+vR
H̃2

(τ j)


=

√√√√
1

4m

m∑
j=1


(
uL

H̃2
(τ j)−uL

H̃1
(τ j)

)2

uL
H̃2

(τ j)+uL
H̃1

(τ j) +

(
uR

H̃2
(τ j)−uR

H̃1
(τ j)

)2

uR
H̃2

(τ j)+uR
H̃1

(τ j) +

(
vL

H̃2
(τ j)−vL

H̃1
(τ j)

)2

vL
H̃2

(τ j)+vL
H̃1

(τ j) +

(
vR

H̃2
(τ j)−vR

H̃1
(τ j)

)2

vR
H̃2

(τ j)+vR
H̃1

(τ j)


= dIv

(
H̃2, H̃1

)
.

�

Proof. (3) 0 ≤ dIv

(
H̃1, H̃2

)
≤ 1.

Clearly, 0 ≤ dIv

(
β̃i, β̃ j

)
holds.

According to Definition 2.1, one has

0 ≤ uL
H̃1

+ vL
H̃1
≤ uR

H̃1
+ vR

H̃1
≤ 1, 0 ≤ uL

H̃2
+ vL

H̃2
≤ uR

H̃2
+ vR

H̃2
≤ 1. (3.3)

So the following inequalities hold:(
uL

H̃1
− uL

H̃2

)2
≤

(
uL

H̃1
+ uL

H̃2

)2
,
(
uR

H̃1
− uR

H̃2

)2
≤

(
uR

H̃1
+ uR

H̃2

)2
,
(
vL

H̃1
− vL

H̃2

)2
≤

(
vL

H̃1
+ vL

H̃2

)2
,
(
vR

H̃1
− vR

H̃2

)2
≤

(
vR

H̃1
+ vR

H̃2

)2
;

then, one has

dIv

(
H̃1, H̃2

)
=

√√√√
1

4m

m∑
j=1


(
uL

H̃1
(τ j)−uL

H̃2
(τ j)

)2

uL
H̃1

(τ j)+uL
H̃2

(τ j) +

(
uR

H̃1
(τ j)−uR

H̃2
(τ j)

)2

uR
H̃1

(τ j)+uR
H̃2

(τ j) +

(
vL

H̃1
(τ j)−vL

H̃2
(τ j)

)2

vL
H̃1

(τ j)+vL
H̃2

(τ j) +

(
vR

H̃1
(τ j)−vR

H̃2
(τ j)

)2

vR
H̃1

(τ j)+vR
H̃2

(τ j)


≤

√√√√
1

4m

m∑
j=1


(
uL

H̃1
(τ j)+uL

H̃2
(τ j)

)2

uL
H̃1

(τ j)+uL
H̃2

(τ j) +

(
uR

H̃1
(τ j)+uR

H̃2
(τ j)

)2

uR
H̃1

(τ j)+uR
H̃2

(τ j) +

(
vL

H̃1
(τ j)+vL

H̃2
(τ j)

)2

vL
H̃1

(τ j)+vL
H̃2

(τ j) +

(
vR

H̃1
(τ j)+vR

H̃2
(τ j)

)2

vR
H̃1

(τ j)+vR
H̃2

(τ j)


=

√
1

4m

m∑
j=1

(
uL

H̃1

(
τ j

)
+ uL

H̃2

(
τ j

)
+ uR

H̃1

(
τ j

)
+ uR

H̃2

(
τ j

)
+ vL

H̃1

(
τ j

)
+ vL

H̃2

(
τ j

)
+ vR

H̃1

(
τ j

)
+ vR

H̃2

(
τ j

))
≤

√
1

4m

m∑
j=1

(4)

= 1.

Consequently, the formula 0 ≤ dIv

(
β̃i, β̃ j

)
≤ 1 is proved. �
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Proof. (4) If H̃1 ≤ H̃2 ≤ H̃3, then dIv

(
H̃1, H̃2

)
≤ dIv

(
H̃1, H̃3

)
and dIv

(
H̃2, H̃2

)
≤ dIv

(
H̃1, H̃3

)
.

When H̃1 ≤ H̃2 ≤ H̃3, we have

uL
H̃1
≤ uL

H̃2
≤L

H̃3
, uR

H̃1
≤ uR

H̃2
≤ uR

H̃3
, vL

H̃3
≤ vL

H̃2
≤ vL

H̃1
, vR

H̃3
≤ vR

H̃2
≤ vR

H̃1
. (3.4)

For 0 ≤ ηk ≤ 1 (k = 1, 2, 3, 4) and 0 ≤ η1 + η3 ≤ 1, 0 ≤ η2 + η4 ≤ 1, a function g (x1, x2, x3, x4) could
be established as below:

g (x1, x2, x3, x4) =

4∑
k=1

(xk − ηk)2

xk + ηk
, xk ∈ [0, 1] ; (3.5)

then, the partial derivation of the function g (x1, x2, x3, x4) in terms of xi will be calculated as follows:

∂g
∂xk

=
(xk − ηk) (xk + 3ηk)

(xk + ηk)2 ; (3.6)

from the partial derivation function of Eq (3.6), one has ∂g
∂xk
≥ 0, 0 ≤ ηk ≤ xk ≤ 1,

∂g
∂xk

< 0, 0 ≤ xk < ηk ≤ 1.
(3.7)

Therefore, when xk ≥ ηk, g (x1, x2, x3, x4) is a monotonically increasing function for xk, and when
xk ≤ ηk, g (x1, x2, x3, x4) is a monotonically decreasing function for xk.

Let η1 = uL
H̃1

, η2 = uR
H̃1

, η3 = vL
H̃1

and η4 = vR
H̃1

.

When H̃1 ≤ H̃2 ≤ H̃3, we have

η1 = uL
H̃1
≤ uL

H̃2
≤ uL

H̃3
, η2 = uR

H̃1
≤ uR

H̃2
≤ uR

H̃3
, vL

H̃3
≤ vL

H̃2
≤ vL

H̃1
= η3, vR

H̃3
≤ vR

H̃2
≤ vR

H̃1
= η4.

Because g (x1, x2, x3, x4) is monotonically increasing when x1 ≥ η1, if uL
H̃3
≥ uL

H̃2
, one has

g
(
uL

H̃3
, uR

H̃3
, vL

H̃3
, vR

H̃3

)
≥ g

(
uL

H̃2
, uR

H̃3
, vL

H̃3
, vR

H̃3

)
; (3.8)

similarly, because g (x1, x2, x3, x4) is monotonically increasing when x2 ≥ η2, if uR
H̃3
≥ uR

H̃2
, one obtains

g
(
uL

H̃2
, uR

H̃3
, vL

H̃3
, vR

H̃3

)
≥ g

(
uL

H̃2
, uR

H̃2
, vL

H̃3
, vR

H̃3

)
; (3.9)

meanwhile, because g (x1, x2, x3, x4) is monotonically decreasing when x3 ≤ η3, if vL
H̃3
≤ vL

H̃2
, one has

g
(
uL

H̃2
, uR

H̃2
, vL

H̃3
, vR

H̃3

)
≥ g

(
uL

H̃2
, uR

H̃2
, vL

H̃2
, vR

H̃3

)
; (3.10)

besides, because g (x1, x2, x3, x4) is monotonically decreasing when x4 ≤ η4, if vR
H̃3
≤ vR

H̃2
, one has

g
(
uL

H̃2
, uR

H̃2
, vL

H̃2
, vR

H̃3

)
≥ g

(
uL

H̃2
, uR

H̃2
, vL

H̃2
, vR

H̃2

)
. (3.11)

Combining Eqs (3.8)–(3.11), one has

g
(
uL

H̃3
, uR

H̃3
, vL

H̃3
, vR

H̃3

)
≥ g

(
uL

H̃2
, uR

H̃2
, vL

H̃2
, vR

H̃2

)
, (3.12)
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that is,
(
uL

H̃2
− uL

H̃1

)2

uL
H̃2

+ uL
H̃1

+

(
uR

H̃2
− uR

H̃1

)2

uR
H̃2

+ uR
H̃1

+

(
vL

H̃2
− vL

H̃1

)2

vL
H̃2

+ vL
H̃1

+

(
vR

H̃2
− vR

H̃1

)2

vR
H̃2

+ vR
H̃1

≤

(
uL

H̃3
− uL

H̃1

)2

uL
H̃3

+ uL
H̃1

+

(
uR

H̃3
− uR

H̃1

)2

uR
H̃3

+ uR
H̃1

+

(
vL

H̃3
− vL

H̃1

)2

vL
H̃3

+ vL
H̃1

+

(
vR

H̃3
− vR

H̃1

)2

vR
H̃3

+ vR
H̃1

. (3.13)

Consequently, we have

dIv

(
H̃1, H̃2

)
=

√√√√
1

4m

m∑
j=1


(
uL

H̃2
(τ j)−uL

H̃1
(τ j)

)2

uL
H̃2

(τ j)+uL
H̃1

(τ j) +

(
uR

H̃2
(τ j)−uR

H̃1
(τ j)

)2

uR
H̃2

(τ j)+uR
H̃1

(τ j) +

(
vL

H̃2
(τ j)−vL

H̃1
(τ j)

)2

vL
H̃2

(τ j)+vL
H̃1

(τ j) +

(
vR

H̃2
(τ j)−vR

H̃1
(τ j)

)2

vR
H̃2

(τ j)+vR
H̃1

(τ j)


≤

√√√√
1

4m

m∑
j=1


(
uL

H̃3
(τ j)−uL

H̃1
(τ j)

)2

uL
H̃3

(τ j)+uL
H̃1

(τ j) +

(
uR

H̃3
(τ j)−uR

H̃1
(τ j)

)2

uR
H̃3

(τ j)+uR
H̃1

(τ j) +

(
vL

H̃3
(τ j)−vL

H̃1
(τ j)

)2

vL
H̃3

(τ j)+vL
H̃1

(τ j) +

(
vR

H̃3
(τ j)−vR

H̃1
(τ j)

)2

vR
H̃3

(τ j)+vR
H̃1

(τ j)


= dIv

(
H̃1, H̃3

)
.

Hence, dIv

(
H̃1, H̃2

)
≤ dIv

(
H̃1, H̃3

)
is proved.

Similarly, dIv

(
H̃2, H̃3

)
≤ dIv

(
H̃1, H̃3

)
could be proved, too. �

Definition 3.3. Specifically, for any two IvIFNs β̃i and β̃ j, the distance measure between β̃i and β̃ j

could be given by Eq (3.14).

dIv

(
β̃i, β̃ j

)
=

√√√√√√√√√1
4


(
uL
β̃i
− uL

β̃ j

)2

uL
β̃i

+ uL
β̃ j

+

(
uR
β̃i
− uR

β̃ j

)2

uR
β̃i

+ uR
β̃ j

+

(
vL
β̃i
− vL

β̃ j

)2

vL
β̃i

+ vL
β̃ j

+

(
vR
β̃i
− vR

β̃ j

)2

vR
β̃i

+ vR
β̃ j

. (3.14)

Example 3.1. There are three IvIFSs , H̃1 = {〈[0, 0] , [1, 1]〉}, H̃2 = {〈[0.35, 0.55] , [0.25, 0.35]〉} and
H̃3 = {〈[1, 1] , [0, 0]〉}. According to Definition 2.2, it holds that H̃1 ⊆ H̃2 ⊆ H̃3.

With the proposed IvIFTD distance measure, one has the following:

dIv

(
H̃1, H̃2

)
=

√
1
4 ×

(
0.352

0.35 + 0.552

0.55 +
(1−0.25)2

1+0.25 +
(1−0.35)2

1+0.35

)
= 0.6448,

dIv

(
H̃2, H̃3

)
=

√
1
4 ×

(
(0.35−1)2

0.35+1 +
(0.55−1)2

0.55+1 + 0.252

0.25 + 0.352

0.35

)
= 0.5108,

dIv

(
H̃1, H̃3

)
=

√
1
4 ×

(
12

1 + 12

1 + 12

1 + 12

1

)
= 1.

Hence, we have that dIv

(
H̃1, H̃2

)
≤ dIv

(
H̃1, H̃3

)
and dIv

(
H̃2, H̃3

)
≤ dIv

(
H̃1, H̃3

)
.

Example 3.2. Suppose that there are two IvIFSs H̃4 and H̃5 , as follows:
H̃4 = {〈x1, [0.55, 0.67] , [0.1, 0.28]〉 , 〈x2, [0.26, 0.37] , [0.55, 0.63]〉} .
H̃5 = {〈x1, [0.7, 0.8] , [0.15, 0.2]〉 , 〈x2, [0.61, 0.71] , [0, 0.1]〉} .

The distance measure for
(
H̃4, H̃5

)
will be calculated by using the proposed distance measure, as

follows:

dIv

(
H̃4, H̃5

)
=

√
1

4×2

(
(0.55−0.7)2

0.55+0.67 +
(0.67−0.8)2

0.67+0.8 +
(0.1−0.15)2

0.1+0.15 +
(0.28−0.2)2

0.28+0.2 +
(0.26−0.61)2

0.26+0.61 +
(0.37−0.71)2

0.37+0.71 +
(0.55)2

0.55 +
(0.63−0.1)2

0.63+0.1

)
= 0.39.
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4. The superiority of the IvIFTD distance measure

To demonstrate the superiority of the IvIFTD distance measure over some previous measures, some
examples are presented below.

Example 4.1. Assume that there are three IvIFSs, as below:

H̃6 = {〈[0.2, 0.3] , [0.3, 0.4]〉} , H̃7 = {〈[0.25, 0.35] , [0.35, 0.45]〉} , H̃8 = {〈[0.25, 0.35] , [0.25, 0.35]〉} .

We note that H̃7 , H̃8, so the distance measure between
(
H̃6, H̃7

)
and

(
H̃6, H̃8

)
should be different.

Table 1. Comparison of distance measures for Example 4.1.

Pair dH dE dHH dHE dt
p dL dH

exp
dE

exp
dIv(

H̃6, H̃7

)
0.05 0.05 0.05 0.05 0.0167 0.055 0.0387 0.0233 0.0636(

H̃6, H̃8

)
0.05 0.05 0.05 0.05 0.05 0.05 0.0582 0.0402 0.0657

Table 1 lists the values for different distance methods. It shows that the results in bold, with the
Hamming distance, Euclidean distance and some other existing distance methods yielding the same
results between

(
H̃6, H̃7

)
and

(
H̃6, H̃8

)
. However, the values calculated by using the exponential

distance [18] and our proposed distance method are consistent with the intuitive experience
and theoretical requirements, i.e., dH

exp

(
H̃6, H̃7

)
< dH

exp

(
H̃6, H̃8

)
, dE

exp

(
H̃6, H̃7

)
< dE

exp

(
H̃6, H̃8

)
and

dIv

(
H̃6, H̃7

)
< dIv

(
H̃6, H̃8

)
.

Example 4.2. We discuss the distance measure for two IvIFNs H̃9 = {〈[0, 0] , [0, 0]〉} and H̃10 =

{〈[0.5, 0.5] , [0.5, 0.5]〉}.
Obviously, H̃9 , H̃10. Therefore, the distance between H̃9 and H̃10 should not be 0. However, using

the exponential distance measure described in [18], we have that dH
exp

(
H̃9, H̃10

)
= dE

exp

(
H̃9, H̃10

)
= 0 as

shown in Table 2, which demonstrates that the exponential distance method is limited in this example.
Alternatively, the result is 0.7071 with the proposed IvIFTD distance measure, which is in line with an
actual intuitive experience.

Table 2. Distance measures for Example 4.2.

Pair dH dE dHH dHE dt
p dL dH

exp
dE

exp
dIv(

H̃9, H̃10

)
0.5 0.5 0.5 0.5 0.1667 0.5 0 0 0.7071

Example 4.3. In the case of three IvIFSs H̃11, H̃12 and H̃13, we have

H̃11 = {〈[0.3, 0.4] , [0.2, 0.3]〉} , H̃12 = {〈[0.5, 0.55] , [0.35, 0.4]〉} , H̃13 = {〈[0.5, 0.55] , [0.2, 0.3]〉} .

In the case of the distance measures for the pair of IvIFSs
(
H̃11, H̃12

)
and

(
H̃11, H̃13

)
, the distance

between the pair
(
H̃11, H̃12

)
should be larger than the distance between

(
H̃11, H̃13

)
from an intuitive

perspective.
However, regarding the results for the different distance measures in Table 3, the distance value

for dt
p [27] is dt

p

(
H̃12, H̃12

)
= 0.05 < dt

p

(
H̃11, H̃13

)
= 0.0875, and those for dH

exp
and dH

exp
[18] are,

respectively, dH
exp

(
H̃11, H̃12

)
= 0.0696 < dH

exp

(
H̃11, H̃13

)
= 0.1186 and dE

exp

(
H̃11, H̃12

)
= 0.0438 <
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dE
exp

(
H̃11, H̃13

)
= 0.0734. These results are counter intuitive and different from those for the other

distance measures, i.e., dH, dE [22], dHH, dHE [26] and dL [17] , as well as the new IvIFTD distance
measure. Therefore, the existing distance methods using dt

p, dH
exp

and dH
exp

are invalid in this example.
Alternatively, dH, dE, dHH, dHE, dL and our proposed new IvIFTD can work well in this situation.

Table 3. Distance measures for Example 4.3.

Pair dH dE dHH dHE dt
p dL dH

exp
dE

exp
dIv(

H̃11, H̃12

)
0.15 0.1541 0.175 0.1768 0.05 0.1527 0.0696 0.0438 0.1795(

H̃11, H̃13

)
0.0875 0.125 0.1 0.1414 0.0875 0.1242 0.1186 0.0734 0.1357

Example 4.4. Mr. X needs to choose a product from an alternative house set, that is {pi|i = 1, 2, · · · , 6},
from five of the same weighted attributes {a1, a2, · · · , a5}. Relevant decision-making information in the
IvIFS is supplied as shown in the following matrix, and it is assumed that the ideal alternative is p0.
The following is proposed to determine the best choice by adopting the proposed IvIFTD distance
measure :

M6×5 =



([0.7, 0.8] , [0.1, 0.2]) ([0.82, 0.84] , [0.05, 0.15]) ([0.52, 0.72] , [0.18, 0.25]) ([0.55, 0.6] , [0.3, 0.35]) ([0.7, 0.8] , [0.1, 0.2])
([0.85, 0.9] , [0.05, 0.1]) ([0.7, 0.74] , [0.17, 0.25]) ([0.1, 0.23] , [0.6, 0.7]) ([0.15, 0.25] , [0.2, 0.3]) ([0.05, 0.1] , [0.65, 0.8])

([0.5, 0.7] , [0.2, 0.3]) ([0.86, 0.9] , [0.04, 0.1]) ([0.6, 0.7] , [0.2, 0.28]) ([0.2, 0.3] , [0.5, 0.6]) ([0.65, 0.8] , [0.15, 0.2])
([0.4, 0.6] , [0.3, 0.4]) ([0.52, 0.64] , [0.23, 0.35]) ([0.72, 0.78] , [0.11, 0.21]) ([0.3, 0.5] , [0.4, 0.5]) ([0.8, 0.9] , [0.05, 0.1])
([0.6, 0.8] , [0.15, 0.2]) ([0.3, 0.35] , [0.5, 0.65]) ([0.58, 0.68] , [0.18, 0.3]) ([0.68, 0.77] , [0.1, 0.2]) ([0.72, 0.85] , [0.1, 0.15])
([0.3, 0.5] , [0.3, 0.45]) ([0.5, 0.68] , [0.25, 0.3]) ([0.33, 0.43] , [0.5, 0.55]) ([0.62, 0.65] , [0.15, 0.35]) ([0.84, 0.93] , [0.04, 0.07])


.

Table 4. The ideal solution for Example 4.4.

a1 a2 a3 a4 a5 a6

p0 ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) ([1, 1] , [0, 0])

Table 5. The distance measure for Example 4.4.

Pair (p1, p0) (p2, p0) (p3, p0) (p4, p0) (p5, p0) (p6, p0)
dIv 0.3437 0.2908 0.4125 0.4178 0.4031 0.446

The proposed IvIFTD distance measure yielded the distance values presented in Table 5. According
to the results for the IvIFTD distance, the ranking order is p2 � p1 � p5 � p3 � p4 � p6. Hence, h2

is accessed as the best choice. On the one hand, the ranking order is the same as that in [17], which
proved the rationality of the proposed IvIFTD distance measure. On the other hand, it is unlike the
original ranking in [44]: p2 � p1 = p5 � p3 = p4 = p6, which also demonstrates the superiority of
the proposed IvIFTD distance measure especially in terms of discriminating information with subtle
differences, such as p1, p5 or p3, p4, p6.

From the above examples, unlike some of the existing distance measures that failed to work
for the IvIFSs, the proposed IvIFTD distance measure can effectively reflect the differences among
IvIFSs. Therefore, the new IvIFTD distance measure is rational and superior to some existing distance
methods.
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5. An improved TOPSIS method

According to the new IvIFSTD distance measure for IvIFSs, an improved TOPSIS method is
established correspondingly. The specific implementation process for TOPSIS is outlined as follows.

Step 1. Set the biggest IvIFN β̃+ as the PIS and the smallest β̃− as the NIS. Then, for any IvIFN β̃k,
the distance between β̃k and β̃+ (β̃−) will be dIv

(
β̃k, β̃+

)
(dIv

(
β̃k, β̃−

)
).

Step 2. Calculate the relative closeness of the scheme β̃k with respect to β̃+, which could be given
by the following expression :

ρk =
dIv

(
β̃k, β̃−

)
dIv

(
β̃k, β̃+

)
+ dIv

(
β̃k, β̃−

) . (5.1)

Step 3. Rank the schemes based on the values of ρk. The larger the value of ρk, the better the
scheme performs. Therefore, the decision-maker can select the optimal scheme based on the ranking
results.

6. Decision-making method and application of the proposed TOPSIS method

As mentioned in the introduction, teaching quality in higher education is a hot topic for educational
administrators, teachers and students alike. To further observe the teaching quality in higher education,
a relevant decision-making method and application was employed by using the proposed TOPSIS
method. This analysis serves to provide valuable information and evaluation regarding teaching quality
in higher education.

6.1. Establish a new decision-making framework for teaching satisfaction

With the proposed TOPSIS method and related knowledge in Section 2, a new MADM method for
teaching satisfaction evaluation was constructed as shown in Figure 1.

Figure 1. The decision-making flowchart for teaching satisfaction.
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6.2. Illustrative examples

Example 6.1. L University needs to determine the teaching satisfaction for four mathematics teaching
courses. Assume that there are four experts with relevant knowledge and rich experience. Let
S = {S1,S2,S3, S 4} be a scheme set to be evaluated, C j ( j = 1, 2, · · ·m) -the first level criteria
for this teaching satisfaction evaluation system and C j consist of second level attributes, i.e.,
C j =

{
a j1, a j2, · · · , a jl, · · · a jn

}
. The characteristics of a jl are expressed as IvIFNs, that is, a jl =([

uL
a jl
, uR

a jl

]
,
[
vL

a jl
, vR

a jl

])
. All expert weights are assumed to be equal to each other, but the criteria weight

(wC j) and attribute weight (wa jl) are unknown and need to be determined.

6.2.1. Preparation of MADM problem

Based on the existing theoretical research and practical evaluation environment, an index system
was constructed as shown in Table 6.

Table 6. Teaching satisfaction evaluation system.

First level: Criterion (C j) Second level: Attribute(a jl)

C1: Teaching attitude

a11: Fully prepared,
a12: Rigorous attitude,

a13: Respectful/patient with students,
a14: Manage the classroom,

C2: Teaching content

a21: Correct concept/knowledge,
a22: Explain clearly,

a23: Highlight key and difficult points,
a24: Connection between mathematics and social life,

C3: Teaching method

a31: Various methods,
a32: Teaching material,

a33: Participation and interaction,
a34: Focus on inspiration,

C4: Teaching effect
a41: Understanding /mastering of knowledge,

a42: Achievement of teaching objective,
a43: Stress the cultivation of comprehensive quality.

Table 7. Evaluation reference criteria.

Linguistic variables IvIFNs
Especially good (EG) ([0.9, 0.95] , [0.005, 0.01])

Very good (VG) ([0.778, 0.9] , [0.01, 0.05])
Good (G) ([0.667, 0.778] , [0.1, 0.172])
Relatively good (RG) ([0.556, 0.6675] , [0.2, 0.283])
Medium (M) ([0.445, 0.556] , [0.3, 0.394])
Relatively bad (RB) ([0.334, 0.445] , [0.4, 0.505])
Bad (B) ([0.223, 0.334] , [0.5, 0.616])
Very bad (VB) ([0.1, 0.223] , [0.6, 0.72])
Especially bad (EB) ([0, 0.1] , [0.72, 0.9])
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In this study, four experts were invited to evaluate the courses by using IvIFNs. To facilitate the
decision-making process for experts, we established evaluation reference criteria by using linguistic
variables, which are presented as shown in Table 7.

The decision-making data from four experts are shown in Tables 8–11.

Table 8. The initial decision-making data by Expert1.
Scheme a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43

S1 G RG G VG EG G G VG G VG G VG G VG RG
S2 RG VG VG RG G VG M G RG G VG M RG G VG
S3 G VG RB M VG G VG G VG RG G G VG G G
S4 VG G VG G RG MG G RG G G RG G MG RG G

Table 9. The initial decision-making data by Expert2.
Scheme a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43

S1 VG RG EG VG G G RG G G M G M G G M
S2 G G VG RG G VG G VG G VG VG RG G VG RG
S3 M RG G G VG M G G RG G RG G VG G G
S4 G G VG VG RG G VG RG VG VG VG M VG G G

Table 10. The initial decision-making data by Expert3.
Scheme a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43

S1 RG G G RG VG M EG G MG G G G RG RG RG
S2 G RG M G G RG G M G VG M VG EB G VG
S3 G G VG VG G G G VG RG G G RG G G EG
S4 VG VG G VG M VG VG RG G VG VG G VG VG G

Table 11. The initial decision-making data by Expert4.
Scheme a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43

S1 G G RG M VG G G G VG G VG VG G MG VG
S2 RG RG G VG RG RG RG RG G RG RG G M RG G
S3 VG G VG G G VG EG G EG VG G VG VG G RG
S4 G G M G VG G M VG G M VG G RG G RB

6.2.2. Decision-making method and implementation process

After obtaining the evaluation data, the decision-making procedure generally proceeds as follows.
Step 1. Aggregating experts’ evaluation values for the attribute into one value by using Eq (2.6);
Step 2. Computing the weight of attributes with by using the entropy method via Eqs (2.4) and

(2.5);
Step 3. Aggregating attributes’ values into corresponding criteria by using Eq (2.6);
Step 4. Calculating the weight by using the entropy method via Eqs (2.4) and (2.5);
Step 5. Obtaining a comprehensive evaluation value for (Si) by using Eq (2.6);
Step 6. Computing the distance between the scheme and the PIS (NIS) by using Eq (3.14);
Step 7. Computing the relative closeness value for scheme (Si) by using Eq (5.1);
Step 8. Ranking schemes.
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Step 1. Taking attribute a11 as an example, the evaluation values from four experts were aggregated
to obtain one value by using Eq (2.6). Here, the weights of experts are the same, i.e., 0.25:

([
1 − (1 − 0.667)0.25(1 − 0.778)0.25(1 − 0.556)0.25(1 − 0.667)0.25, 1 − (1 − 0.778)0.25(1 − 0.9)0.25(1 − 0.667)0.25(1 − 0.778)0.25

]
,[

0.10.250.010.250.20.250.10.25, 0.1720.250.050.250.2830.250.1720.25
] )

= ([0.6767, 0.7987] , [0.0669, 0.1430]) .

Similarly, the aggregation values for all attributes can be obtained as shown in Table 12.

Table 12. Aggregation values for attributes.
S1 S2 S3 S4

a11 ([0.677, 0.799] , [0.067, 0.143]) ([0.616, 0.728] , [0.141, 0.221]) ([0.658, 0.784] , [0.074, 0.155]) ([0.728, 0.851] , [0.032, 0.093])

a12 ([0.616, 0.728] , [0.141, 0.221]) ([0.653, 0.777] , [0.08, 0.162]) ([0.677, 0.799] , [0.067, 0.143]) ([0.699, 0.818] , [0.056, 0.126])

a13 ([0.735, 0.831] , [0.056, 0.096]) ([0.691, 0.823] , [0.042, 0.114]) ([0.677, 0.813] , [0.045, 0.122]) ([0.691, 0.823] , [0.042, 0.114])

a14 ([0.668, 0.804] , [0.05, 0.129]) ([0.653, 0.777] , [0.08, 0.162]) ([0.658, 0.784] , [0.074, 0.155]) ([0.728, 0.851] , [0.032, 0.927])

a21 ([0.799, 0.897] , [0.150, 0.0456]) ([0.642, 0.754] , [0.119, 0.195]) ([0.728, 0.851] , [0.032, 0.093]) ([0.605, 0.735] , [0.106, 0.199])

a22 ([0.622, 0.736] , [0.132, 0.212]) ([0.686, 0.818] , [0.045, 0.119]) ([0.658, 0.784] , [0.074, 0.155]) ([0.677, 0.799] , [0.074, 0.143])

a23 ([0.735, 0.831] , [0.056, 0.088]) ([0.593, 0.708] , [0.157, 0.24]) ([0.777, 0.875] , [0.027, 0.062]) ([0.691, 0.823] , [0.042, 0.1])

a24 ([0.699, 0.818] , [0.056, 0.126]) ([0.633, 0.761] , [0.088, 0.164]) ([0.699, 0.818] , [0.056, 0.126]) ([0.627, 0.754] , [0.095, 0.184])

a31 ([0.658, 0.784] , [0.074, 0.145]) ([0.642, 0.754] , [0.119, 0.195]) ([0.743, 0.847] , [0.038, 0.08]) ([0.699, 0.818] , [0.056, 0.126])

a32 ([0.658, 0.784] , [0.074, 0.145]) ([0.708, 0.835] , [0.038, 0.105]) ([0.677, 0.798] , [0.067, 0.143]) ([0.691, 0.823] , [0.042, 0.114])

a33 ([0.699, 0.818] , [0.056, 0.126]) ([0.668, 0.804] , [0.05, 0.129]) ([0.642, 0.754] , [0.119, 0.195]) ([0.708, 0.835] , [0.038, 0.106])

a34 ([0.691, 0.823] , [0.042, 0.105]) ([0.633, 0.761] , [0.088, 0.176]) ([0.677, 0.799] , [0.067, 0.143]) ([0.699, 0.818] , [0.056, 0.126])

a41 ([0.642, 0.754] , [0.119, 0.195]) ([0.517, 0.633] , [0.221, 0.314]) ([0.754, 0.878] , [0.017, 0.068]) ([0.583, 0.715] , [0.116, 0.217])

a42 ([0.633, 0.761] , [0.088, 0.176]) ([0.677, 0.799] , [0.067, 0.144]) ([0.667, 0.778] , [0.1, 0.172]) ([0.671, 0.835] , [0.038, 0.105])

a43 ([0.605, 0.735] , [0.105, 0.199]) ([0.708, 0.835] , [0.038, 0.105]) ([0.735, 0.831] , [0.056, 0.096]) ([0.604, 0.721] , [0.141, 0.225])

Step 2. By using the entropy weight method as given by Eqs (2.4) and (2.5), the attribute weight
(wa jl) at the second level could be obtained as shown in Table 13.

Table 13. Attribute weights.

Criterion Attribute Entropy Weight (wa jl)

C1

a11 0.386 0.242
a12 0.404 0.235
a13 0.318 0.269
a14 0.365 0.254

C2

a211 0.349 0.258
a22 0.397 0.239
a23 0.342 0.26
a24 0.386 0.243

C3

a31 0.361 0.249
a32 0.344 0.255
a33 0.361 0.249
a34 0.363 0.248

C4

a41 0.299 0.302
a42 0.178 0.354
a43 0.199 0.345
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Step 3. Using the weights from Step 2, repeat the aggregation method with the corresponding
criteria at the first level. Then, we obtain the values listed in Table 14.

Table 14. Aggregation values for criteria.
S1 S2 S3 S4

C1 ([0.679, 0.795] , [0.071, 0.139]) ([0.655, 0.78] , [0.077, 0.159]) ([0.668, 0.795] , [0.063, 0.143]) ([0.712, 0.837] , [0.039, 0.106])

C2 ([0.723, 0.832] , [0.049, 0.01]) ([0.639, 0.762] , [0.094, 0.175]) ([0.721, 0.837] , [0.043, 0.102]) ([0.652, 0.781] , [0.074, 0.151])

C3 ([0.677, 0.803] , [0.06, 0.129]) ([0.664, 0.792] , [0.066, 0.147]) ([0.664, 0.792] , [0.066, 0.147]) ([0.699, 0.824] , [0.047, 0.118])

C4 ([0.626, 0.75] , [0.102, 0.189]) ([0.648, 0.775] , [0.078, 0.163]) ([0.719, 0.831] , [0.049, 0.106]) ([0.623, 0.767] , [0.083, 0.167])

Step 4. Repeat the entropy weight method; the criteria weight (wC j) at the first level will be obtained
as shown in Table 15.

Table 15. Criterion weight.
Criterion Entropy Weight (wC j )

C1 0.3594 0.2529

C2 0.3553 0.2546

C3 0.3524 0.2557

C4 0.4003 0.2368

Step 5. With the criterion weight, we could get the integrated evaluation values shown in Table 16
by using the IvIFWAA operator.

Table 16. Integrated evaluation values.
Scheme Integrated evaluation values (β̃i)

C1 ([0.6789, 0.7977] , [0.0673, 0.1349])

C2 ([0.6517, 0.7774] , [0.0783, 0.1606])

C3 ([0.699, 0.8170] , [0.0545, 0.1201])

C4 ([0.6742, 0.8045] , [0.0577, 0.133])

Steps 6–8. Suppose that β̃+ = ([1, 1] , [0, 0]), β̃− = ([0, 0] , [1, 1]) are, respectively, the PIS and NIS
for the IvIFS in this example. Then, we could obtain the relative closeness degree for all schemes by
using our proposed TOPSIS method. Then, all courses’ teaching satisfaction is as ranked in Table 17.

Table 17. The closeness of different schemes.
Scheme dIv

(
β̃i, β̃+

)
/dIv

(
β̃i, β̃−

)
ρIv Ranking

S1 0.2676/0.8589 0.7625 3

S2 0.2917/0.8402 0.7423 4

S3 0.2482/0.8739 0.7788 1

S4 0.2623/0.8634 0.7628 2

In this evaluation, the teaching course S3 had the highest satisfaction degree. On the contrary, S2

was evaluated with the lowest satisfaction degree. That is, S3 � S4 � S1 � S2.

7. Comparative analysis

To provide a more objective comparison of the proposed IvIF-TOPSIS method and existing
methods, we adopt an example of teaching quality evaluation under the conditions of the IvIFS
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environment originally presented by Zhao [38]. This example will serve to illustrate the comparative
process and showcase the effectiveness of the IvIF-TOPSIS method.

Example 7.1. We evaluate five schools’ teaching quality by using IvIFSs. Five alternatives
Ai (i = 1, 2, 3, 4, 5) need to be evaluated based on four attributes G j ( j = 1, 2, 3, 4). The weight vector
for the four attributes is w j = (0.15, 0.35, 0.395, 0.105), and the decision matrix is

M5×4 =


([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.2, 0.4]) ([0.3, 0.4] , [0.4, 0.5]) ([0.5, 0.6] , [0.1, 0.3])
([0.5, 0.6] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3]) ([0.5, 0.6] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2])
([0.3, 0.5] , [0.3, 0.4]) ([0.1, 0.3] , [0.5, 0.6]) ([0.2, 0.5] , [0.4, 0.5]) ([0.2, 0.3] , [0.4, 0.6])
([0.2, 0.5] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2]) ([0.4, 0.5] , [0.3, 0.5]) ([0.5, 0.8] , [0.1, 0.2])
([0.3, 0.4] , [0.1, 0.3]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.4]) ([0.6, 0.7] , [0.1, 0.2])


.

In this evaluation, the PIS and NIS are, respectively,
s̃+ = [([0.5, 0.6] , [0.1, 0.3]) , ([0.7, 0.8] , [0.1, 0.2]) , ([0.5, 0.6] , [0.2, 0.4]) , ([0.6, 0.8] , [0.1, 0.2])],
s̃− = [([0.2, 0.4] , [0.3, 0.4]) , ([0.1, 0.3] , [0.5, 0.6]) , ([0.2, 0.4] , [0.4, 0.5]) , ([0.2, 0.3] , [0.4, 0.6])].
Then, we used our proposed IvIFTD distance measure to decide which alternative is better, as

shown in Table 18.

Table 18. Conclusions for Example 7.1.
Scheme dIv (Ai, s̃+) /dIv (Ai, s̃−) ρIv Ranking

A1 0.2013/0.2035 0.5027 4

A2 0.0985/0.3128 0.7605 2

A3 0.3572/0.0341 0.0870 5

A4 0.1394/0.27 0.6595 3

A5 0.0268/0.3578 0.9304 1

According to the results presented in Table 18, the ranking result is A5 � A2 � A4 � A1 � A3. This
ranking order is aligned with the original order reported in [38].

We also performed a comparison with other methods, including the score function described by
Xu [13], similarity function described by Wang [45], classical TOPSIS based on Hamming distance
as described by Hu and Xu [30], Euclidean distance described by Qiao et al [36], M-TOPSIS method
described by Aikhuele and Turan [34], correlation coefficient method described by Jun [46] and a new
TOPSIS based on exponential distance by using connections, as described by Garg and Kumar [18].
These different methods were applied to the given data; the corresponding results are presented in
Table 19. It is worth noting that, except for some minor differences observed with the score function
[13], all of the ranking results for the five alternatives remained the same as that for the improved
IvIF-TOPSIS method.

Table 19. Ranking results for different methods for Example 7.1.
Methods VA1 VA2 VA3 VA4 VA5 Ranking

Score function [13] 0.0832 0.306 0.1808 0.2123 0.3838 A5 � A2 � A4 � A3 � A1

Similarity function [45] 0.5377 0.6345 0.427 0.5843 0.668 A5 � A2 � A4 � A1 � A3

Hu’s TOPSIS [30] 0.4815 0.788 0.0888 0.6387 0.9215 A5 � A2 � A4 � A1 � A3

Qiao’s TOPSIS [36] 0.4693 0.822 0.0548 0.6742 0.9444 A5 � A2 � A4 � A1 � A3

Aikhuele’s M-TOPSIS [34] 0.13 0.0293 0.2295 0.0773 0 A5 � A2 � A4 � A1 � A3

Correlation coefficient method [46] 0.7486 0.8884 0.5044 0.8178 0.9053 A5 � A2 � A4 � A1 � A3

Garg and Kumar’s TOPSIS [18] 0.4367 0.7762 0.067 0.6234 0.9259 A5 � A2 � A4 � A1 � A3

Our Proposed TOPSIS 0.5027 0.7605 0.0870 0.6595 0.9304 A5 � A2 � A4 � A1 � A3
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Example 7.2. Suppose that there are four courses B1, B2, B3 and B4 that need to be evaluated; its
comprehensive IvIFN values are γ̃B1 = ([0.15, 0.25] , [0.25, 0.35]), γ̃B2 = ([0.2, 0.3] , [0.15, 0.25]),γ̃B3 =

([0.25, 0.35] , [0.2, 0.3]) and γ̃B4 = ([0.352, 0.43] , [0.095, 0.123]) respectively.
According to Definition 2.4, the score function values are fs

(
γ̃B1

)
= −0.1, fs

(
γ̃B2

)
= 0.05, fs

(
γ̃B3

)
=

0.05 and fs
(
γ̃B4

)
= 0.282 and the accuracy function values are fa

(
γ̃B2

)
= 0.45 and fa

(
γ̃B3

)
= 0.55.

Thus, one has γ̃B2 ≺ γ̃B3 ≺ γ̃B4 .
Besides, we set the PIS as γ̃+ =

([
max

{
uL

Bi

}
,max

{
uR

Bi

}]
,
[
min

{
vL

Bi

}
,min

{
vR

Bi

}])
and the NIS as γ̃− =([

min
{
uL

Bi

}
,min

{
uR

Bi

}]
,
[
max

{
vL

Bi

}
,max

{
vR

Bi

}])
. Hence, we can get the PIS (γ̃+) and NIS (γ̃−) as γ̃B4 and

γ̃B1 , respectively. Then , the relative closeness for the four courses was calculated by using Eq (5.1),
and all schemes are ranked in Table 20.

Table 20. Comparison with different TOPSIS methods for Example 7.2.
TOPSIS Methods The relative closeness degree Ranking

Hu and Xu’s [30], Qiao’s [36] ρH (B2) = ρH (B3) = 0.3927, ρH (B1) = 0, ρH (B4) = 1 B4 � B2 = B3 � B1

Wang’s [45], Zhou’s [47] ρE (B2) = ρE (B3) = 0.3940, ρE (B1) = 0, ρE (B4) = 1 B4 � B2 = B3 � B1

This study ρIv (B1) = 0, ρIv (B2) = 0.3995, ρIv (B3) = 0.3792, ρIv (B4) = 1 B4 � B2 � B3 � B1

As observed, certain traditional TOPSIS methods are unable to effectively compare the four courses
due to the identical relative closeness values. Specifically, ρH (B2) = ρH (B3) = 0.3927 and ρE (B2) =

ρE (B3) = 0.3940. On the contrary, the proposed IvIF-TOPSIS method yielded ρIv (B2) = 0.3995 and
ρIv (B3) = 0.3792, indicating a noticeable distinction. Consequently, the IvIF-TOPSIS method allows
for a comparison between course B2 and B3, with B2 being superior to B3.

Based on the aforementioned comparisons, it is evident that the proposed IvIF-TOPSIS method
is not only applicable to decision-making problems, but it also demonstrates a superior ability to
rank schemes with subtle differences. Therefore, the improved IvIF-TOPSIS method is proven to
be advantageous for decision-making problems.

8. Conclusions and future research

Teaching satisfaction evaluation plays an essential role in enhancing teaching quality in higher
education. However, due to human limitations in terms of knowledge, cognitive uncertainty, and
thinking habits, IvIFSs are often utilized to address MADM issues. In this domain, two vital aspects
have arisen: how to objectively determine evaluation index weights and how to compare schemes with
a decision-making method. To address these problems, we created a new distance measure based on
the triangular divergence and demonstrated that the IvIFTD distance measure meets the requirements
for the properties of the distance metric. Compared to some existing distance methods without explicit
physical meaning or with complex calculations, the proposed IvIFTD distance measure is more in line
with humans’ intuitive experience and theoretical requirements. Additionally, it proves superior in the
area of distinguishing subtle differences between different IvIFSs.

Based on the IvIFTD distance measure, an improved TOPSIS method has been proposed.
This method was subsequently applied for the establishment of an MADM approach for teaching
satisfaction evaluation. An example was conducted to illustrate the decision-making process, and it
included problem construction, calculation of comprehensive evaluation values, ranking and a selection
of schemes using the IvIFTD distance measure and TOPSIS method. Comparative analyses have
been presented to validate the rationality and superiority of the proposed method. The outcomes
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demonstrate that the improved TOPSIS method, based on the new distance measure, effectively handles
uncertainty and subtle differences in actual evaluation problems involving different IvIFSs or IvIFNs.
This advantage allows for the utilization of diverse evaluation values, providing more comprehensive
decision-making information for teaching satisfaction evaluation.

However, our study also has limitations that need to be addressed in future work. First, the
proposed method does not consider the subjective weight of the evaluation criteria, thus overlooking
the subjective preferences of decision-makers in the criteria. Additionally, the teaching satisfaction
evaluation index system can be further improved by incorporating other innovative criteria. Moreover,
considering a group decision-making approach for teaching satisfaction evaluation may be a more
viable method to achieve objective evaluations.

In future studies, we will aim to construct a more comprehensive teaching satisfaction evaluation
index system from multiple perspectives through expert investigation and consultation. We will also
extend subjective weight methods such as the best-worst method, full-consistency method, and step-
wise weight assessment ratio analysis to the IvIFS environment to incorporate objective criterion
importance. Furthermore, the construction of group decision-making methods, considering multi-
granularity linguistic information, consensus processes, and behavioral decision theory are crucial for
MADM problems.
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