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Abstract: Let G = (V(G), E(G)) be a graph with a vertex set V(G) and an edge set E(G). For every
injective vertex labeling f : V (G)→ Z, there are two induced edge labelings denoted by f + : E (G)→
Z and f − : E (G) → Z. These two edge labelings f + and f − are defined by f +(uv) = f (u) + f (v)
and f −(uv) = | f (u) − f (v)| for each uv ∈ E(G) with u, v ∈ V(G). The sum index and difference index
of G are induced by the minimum ranges of f + and f −, respectively. In this paper, we obtain the
properties of sum and difference index labelings. We also improve the bounds on the sum indices and
difference indices of regular graphs and induced subgraphs of graphs. Further, we determine the sum
and difference indices of various families of graphs such as the necklace graphs and the complements
of matchings, cycles and paths. Finally, we propose some conjectures and questions by comparison.
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1. Introduction

Let G = (V(G), E(G)) be a simple graph, where V(G) is the set of vertices of G and E(G) is the set
of edges of G. Two edges e1 and e2 of G are adjacent, if they have exactly one common end vertex
(otherwise, e1 and e2 of G are non-adjacent). If e = {u, v} is an edge of G, then u and v are adjacent
while u and e are incident. If all the vertices of G have the same degree d, then G is d-regular and
its degree sequence is π = (d, d, · · · , d). Let G′ = (V(G′), E(G′)), we call G′ is a subgraph of G if
V(G′) ⊆ V(G) and E(G′) ⊆ E(G). If G′ contains all the edges uv ∈ E(G) with u, v ∈ V(G′), then G′ is
an induced subgraph of G.

The complement of G denoted by G, is the simple graph whose vertex set is V(G) and whose edges
are the pairs of non-adjacent vertices of G. A matching of a graph G is a set of pairwise non-adjacent
edges in E(G). A m-matching is a matching consisting of m edges denoted by mK2. As usual, we use
Pn and Cn to denote the path and cycle of order n, respectively.

Let f : V (G) → Z be an injective vertex labeling of G. There are two edge labelings of G induced
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by f , which are defined as f + : E (G) → Z and f − : E (G) → Z. For each edge uv ∈ E(G), two edge
labelings f +(uv) and f −(uv) are defined by

f +(uv) = f (u) + f (v) and f −(uv) = | f (u) − f (v)| .

The sum index s(G) and difference index d(G) of G are defined by the minimum ranges of f + and
f − of G, respectively. They were introduced by Harrington et al. in [1]. To avoid much ambiguity,
we denote f − by g−. The injective vertex labeling corresponding to g− is denoted by g throughout the
article.

Definition 1.1. [1] The sum index of G, denoted by s(G), is the minimum positive integer k such that
there exists a vertex labeling f of G satisfying | f +| = k, where | f +| is the range of f . A vertex labeling
f such that | f +| = s(G) is referred to as a sum index labeling of G.

Definition 1.2. [1] Let g : V(G) → Z be a vertex labeling of G, and let g− : E(G) → Z be the
induced edge labeling defined by g−(uv) = |g(u) − g(v)| for each edge uv ∈ E(G). The difference index
of G, denoted by d(G), is the minimum positive integer k such that there exists a vertex labeling g of G
satisfying |g−| = k, where |g−| is the range of g. A vertex labeling g such that |g−| = d(G) is referred to
as a difference index labeling of G.

Degree-based indices are served as meaningful models for a broad range of applications. For
example, the Randić index [2] is denoted by

R(G) =
∑

uv∈E(G)

1
√

dG(u)dG(v)
,

where dG(u) is the degree of the vertex u ∈ V(G). The Randić index has great applications in modeling
the properties of certain molecular structures. As another important degree-based topological index,
the Sombor index [3] is used to model the higher-order interactions represented by clique structures
and defined by

S O(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

The atom-bond connectivity (ABC) index of G has proven to be a valuable predictive index in the
study of the heat of function in alkanes [4, 5] and defined by

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v) − 2

dG(u)dG(v)
.

In graph theory, regular graphs are one of the most important classes of graphs. Let G0 be d-regular
with order n. Then the above three indices are R(G0) = n

2 , S O(G0) =
√

2
2 d2n and ABC(G0) = n

√
2d−2
2 .

Moreover, the first Zagreb index [6], the variable sum exdeg index [7], the Harmonic index [8] and so
on are all widely used in graphs including regular graphs.

Graph indices derived from graph labelings are also of great value in coding theory, radar, circuit
design, data base management and among others. The notations of the (integral) sum labelings of
graphs were introduced by F. Harary in [9]. Since that time the problems of finding the (integral) sum
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numbers and proving the (integral) sum graphs have been studied and discussed by scholars referring
to [10,11]. A graph G is called an (integral) sum graph if there is a bijection f from V(G) to S ⊂ (Z) N
such that xy ∈ E(G) if and only if f (x) + f (y) ∈ S . The (integral) sum number of G is the minimum
number of isolated vertices that must be added to G such that the resulting graph is an (integral) sum
graph.

Based on the above, graph labelings of graphs attracted lots of attention of researchers. For example,
the vertex-magic total labelings were introduced by MacDougall, Miller, Slamin and Wallis in [12].
Ponraj and Parthipan posited pair sum labelings in [13]. Harrington and Wong used super totient
numbers to label vertices of graphs and found that the restricted super totient indices of graphs were
equal to their sum indices in [14]. In this regard, Harrington, Henninger-Voss et al. defined the sum
indices and difference indices of graphs and lower bounds on these two indices were also determined
in [1]. Further, both the sum and difference indices of several graphs were also obtained such as the
complete graphs, complete bipartite graphs, caterpillars, cycles, wheels and rectangular grids in [1].
Besides, Haslegrave improved bounds on these two indices in [15].

Up to now, some useful results about the sum indices and difference indices of graphs are shown as
follows.

Property 1.1. [14] The sum index is greater than or equal to the maximum degree of G,

s(G) ≥ ∆(G).

Property 1.2. [1] The sum index is greater than or equal to the chromatic index of G,

s(G) ≥ χ′(G).

Property 1.3. [1] Let δ(G) be the minimum degree of G, and recall that χ′(G) is the chromatic index
of G. Then we have

d(G) ≥ max
{⌈
χ′(G)

2

⌉
, δ(G)

}
.

Property 1.4. [15] For any graph G, we have

s(G) ≥ maxk≥1(δk(G) + δk+1(G) − k) and d(G) ≥ maxk≥1(δ2k(G) + 1 − k).

In this paper, we continue to study the sum indices and difference indices of graphs. Firstly,
we improve some bounds on the sum and difference indices in Section 2. In particular, we find
relationships about these two indices between a graph G and its induced subgraph G′. For regular
graphs, we make slight generalizations of Haslegrave’s bounds on the sum and difference indices
in [15]. Secondly, we obtain the sum and difference indices of some graphs in Section 3 such as
the necklace graphs, the complements of matchings, cycles and paths. Finally, we compare the sum
indices with (integral) sum numbers and analyze the sum and difference indices of regular graphs.
Combined with conclusions of the paper, we also put forward some conjectures and open questions.

2. Properties and bounds of sum indices and difference indices of graphs

In this section, we explore the properties of sum index labelings and difference index labelings of
graphs. We also improve the bounds on the sum and difference indices of regular graphs and induced
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subgraphs of graphs. In particular, we make slight improvements to Property 1.4 such that we can
directly determine lower bounds on the sum indices and difference indices of regular graphs.

Theorem 2.1. If f is a sum index labeling of G, then k f is also a sum index labeling of G for any
non-zero integer. The result holds for a difference index labeling g as well.

Proof. If f is a sum index labeling of G, then | f +| = s(G). Denote s(G) = s and f + = {α1, α2, · · · , αs},
where α1, α2, · · · , αs are integers. According to the definition of s(G), one has

(k f )+ (viv j) = k f (vi) + k f (v j) = k
(

f (vi) + f (v j)
)
= k f +(viv j).

Hence we observe that ∣∣∣(k f )+
∣∣∣ = |{kα1, kα2, · · · , kαs}| = s(G).

Thus k f is also a sum index labeling of G. □

Remark 2.1. For a graph G, the sum index of G is unique, while the number of corresponding sum
index labelings is infinite.

Theorem 2.2. Let G′ be an induced subgraph of a graph G. Then s(G′) ≤ s(G) and d(G′) ≤ d(G).

Proof. Let V(G) = {v1, v2, v3, · · · , vn} and V(G′) =
{
vi1 , vi2 , vi3 , · · · , vi j

}
, where V(G′) ⊂ V(G) for i ∈ Z

and j ≤ n. For any vertex vik in G′, we can always find a vertex vl in G such that vik = vl for 1 ≤ k ≤ j
and 1 ≤ l ≤ n. If f is a sum index labeling and g is a difference index labeling of G, then | f +| = s(G)
and |g−| = d(G). For each vertex labeling f ′ and g′ of G′, let f ′(vik) = f (vl) and g′(vik) = g(vl). Thus
we have

s(G′) ≤ s(G) and d(G′) ≤ d(G).

□

Theorem 2.3. Let G be d-regular with order n. Then s(G) ≥ 2d − 1 and d(G) ≥ d.

Proof. Let f : V(G) → Z be an injective vertex labeling of G. Denote f : V(G) → {a1, a1, · · · , an},
where a1, a1, · · · , an are integers such that a1 < a2 < · · · < an. It follows that

a1 + a2 < a1 + a3 < · · · < a1 + an < a2 + an < a3 + an < · · · < an−1 + an.

Note that G is a d-regular graph. Then the sum of the two numbers above has at most 2(n − 1 − d)
elements which do not belong to f +. Thus, we obtain

s(G) ≥ (2n − 3) − 2(n − 1 − d) = 2d − 1.

Next, we will show that d(G) ≥ d. Let g = f be an injective vertex labeling of G. Without loss
of generality, we assume that the vertex labeled a1 is adjacent to vertices labeled a2, a3, · · · , ad+1. By
utilizing the definition of d(G), we have d(G) ≥ d. □

Remark 2.2. Theorem 2.3 is viewed as slight generalizations of Haslegrave’s bounds on the sum and
difference indices of graphs in [15] (see Property 1.4).
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3. Sum indices and difference indices of some graphs

In this section, we discuss the sum indices and difference indices of some graphs such as the
necklace graphs, the complements of matchings, cycles and paths. At the beginning, we introduce
a difinition about the edge labeling of a graph that will be needed in the remaining part of the paper.

Definition 3.1. For two edge labelings f + and g− of G, the contributing elements of f + are the elements
first appearing in f +. For each edge viv j ∈ E(G), let f ′+

(
viv j

)
be a contributing set of f +, which is

a set of all contributing elements of f +. Define
∣∣∣∣ f ′+ (viv j

)∣∣∣∣ as contributions corresponding to f ′+
(
viv j

)
of f +. If f ′+

(
viv j

)
= ∅, then

∣∣∣∣ f ′+ (viv j

)∣∣∣∣ = 0. The definitions of g′−
(
viv j

)
and

∣∣∣∣g′− (viv j

)∣∣∣∣ are similar to

f ′+
(
viv j

)
and

∣∣∣∣ f ′+ (viv j

)∣∣∣∣, respectively.

According to Definition 3.1, it is not difficult to find that∑
i, j

∣∣∣∣ f ′+ (viv j

)∣∣∣∣ = ∣∣∣ f +∣∣∣ and
∑

i, j

∣∣∣∣g′− (viv j

)∣∣∣∣ = ∣∣∣g−∣∣∣ .
Remark 3.1. [1] For the matching mK2 with m ≥ 1, we have s(mK2) = 1 and d(mK2) = 1. The inverse
problem is also true.

Remark 3.2. [1] For the cycle Cn with n ≥ 3, we have s(Cn) = 3 and d(Cn) = 2.

Theorem 3.1. For the necklace graph, or briefly by Nek for k ≥ 1, we have s(Nek) = 5 and d(Nek) = 3.

Proof. Note that the degree sequence of Nek is π = (3, 3, · · · , 3), and hence s(Nek) ≥ 5 by Theorem 2.3.
In what follows, we just find a vertex labeling f such that | f +| = 5.

Let f : V(Nek) → Z be an injective labeling, where V (Nek) = {a1, a2, . . . , ak, b1, b2, . . . , bk, c1, c2}.
For 1 ≤ i ≤ k, we label the vertices in V(Nek) according to the following scheme.

f (ai) =

i, if i is odd,
−i, if i is even,

f (bi) = − f (ai) ,

f
(
c j

)
=

0, if j = 1,
k + 1, if j = 2,

where c1a1 ∈ E(Nek), c1b1 ∈ E(Nek), c1c2 ∈ E(Nek), c2ak ∈ E(Nek), c2bk ∈ E(Nek), a1b1 ∈ E(Nek),
a1a2 ∈ E(Nek) and b1b2 ∈ E(Nek). For 2 ≤ i ≤ k − 1, we observe that ai−1ai ∈ E(Nek), aiai+1 ∈ E(Nek),
aibi ∈ E(Nek), bi−1bi ∈ E(Nek) and bibi+1 ∈ E(Nek) (see Figure 1).

Figure 1. A necklace graph Nek.
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It is clear to see that under the vertex labeling f we have

s(Nek) ≤ |{0, 1,−1, k + 1, 2k + 1}| = 5.

On the other hand, we will show that d(Nek) = 3. Since we know d(Nek) ≥ 3 by Theorem 2.3, it
suffices to find a vertex labeling g such that |g−| = 3.

Let g : V(Nek) → Z be an injective vertex labeling of Nek. For 1 ≤ i ≤ k, we consider the vertex
labeling g defined such that

g (ai) = 2i − 1, g (bi) = 2i,

g
(
c j

)
=

0, if j = 1,
2k + 1, if j = 2.

It is clear to see that
d(Nek) ≤ |{1, 2, 2k + 1}| = 3.

We illustrate the vertex labelings f and g of Ne4, respectively (see Figure 2). □

Figure 2. A sum index labeling f and a difference index labeling g of Ne4.

Remark 3.3. [1, 15] The prism graph is also 3-regular, which satisfies s(Πn) = 5 and d(Πn) = 3.

Theorem 3.2. The complement of a matching mK2, or briefly by mK2, is (n − 2)-regular for m ≥ 4.
Then

s(mK2) = 2n − 5 and d(mK2) = n − 2.

Proof. Throughout this proof, since the complement of a matching mK2 is (n − 2)-regular. The degree
sequence of mK2 is π = (n − 2, n − 2, · · · , n − 2). According to the properties of degree sequence, we
know

∑
v∈V(G) dG(v) = 2|E|. It implies that n is even.

Firstly, we discuss the sum index of mK2. By Theorem 2.3, we have s(mK2) ≥ 2n− 5. Then we just
find a vertex labeling f such that | f +| = 2n − 5. For 1 ≤ i ≤ n, let f : V(mK2) → Z be an injective
labeling such that

f (vi) =

− i−1
2 , if i is odd,

i
2 , if i is even,

where v jv j+1 < E(mK2) and vn+1 = v1 for 2 ≤ j ≤ n and j is even.
According to the labeling f and Definition 3.1, we observe that the following three equations hold.∣∣∣ f ′+(v1vi)

∣∣∣ = ∣∣∣∣∣{1, 2, · · · ,
n
2
− 1,−1,−2, · · · ,−

(n
2
− 1

)}∣∣∣∣∣ = n − 2,∣∣∣ f ′+ (vnvi)
∣∣∣ = ∣∣∣∣∣{n

2
+ 1,

n
2
+ 2, · · · ,

n
2
+

(n
2
− 1

)}∣∣∣∣∣ = n
2
− 1,
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∣∣∣ = ∣∣∣∣∣{− (n

2
− 1 + 1

)
,−

(n
2
− 1 + 2

)
, · · · ,−

(n
2
− 1 +

n
2
− 2

)}∣∣∣∣∣ = n
2
− 2.

Except the above contributions corresponding three contributing sets, the sum of other contributions
of f + is equal to 0. Therefore we know

s(mK2) ≤
∣∣∣ f +∣∣∣ = (n − 2) +

(n
2
− 1

)
+

(n
2
− 2

)
= 2n − 5.

Next, we consider the difference index of mK2. Note that d(mK2) ≥ n − 2 by Theorem 2.3. It
remains to show that d(mK2) ≤ n−2. Let g : V(mK2)→ Z be an injective labeling, where g(vi) = f (vi)
for 1 ≤ i ≤ n. We assume that all vertices of mK2 satisfy v jv j+1 < E(mK2), when j is odd and 1 ≤ j ≤
n − 1.

By Definition 3.1, it holds that

∣∣∣g′− (v1vi)
∣∣∣ = ∣∣∣∣∣{1, 2, · · · ,

n
2

}∣∣∣∣∣ = n
2
,∣∣∣g′− (vnvi)

∣∣∣ = ∣∣∣∣∣{n
2
+ 1,

n
2
+ 2, · · · ,

n
2
+

(n
2
− 2

)}∣∣∣∣∣ = n
2
− 2.

The sum of other contributions of g− is equal to 0, if the contributions corresponding two
contributing sets above are excluded. Thus we have

d(mK2) ≤
∣∣∣g−∣∣∣ = n

2
+

(n
2
− 2

)
= n − 2.

We illustrate the vertex labelings f and g of 6K2, respectively (see Figure 3). □

Figure 3. A sum index labeling f and a difference index labeling g of 6K2.

Next, we achieve the following theorems of the complements of a cycle Cn and a path Pn relating
to sum and difference indices, respectively.

Theorem 3.3. The complement of a cycle Cn, or briefly by Cn, is (n − 3)-regular for n ≥ 6. Then

s(Cn) = 2n − 7 and d(Cn) = n − 3.
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Proof. To begin with, we consider the sum index of Cn. By Theorem 2.3, we have s(Cn) ≥ 2n − 7. It
remains to show that s(Cn) ≤ 2n−7 by defining a vertex labeling f such that | f +| = 2n−7. For 1 ≤ i ≤ n,
let f : V(Cn)→ Z be an injective labeling such that

f (vi) =

− i−1
2 , if i is odd,

i
2 , if i is even.

In what follows, we distinguish two cases according to the parity of n.
Case 1. If n is even.

In this case, we assume that v1v2 < E(Cn) and vn−1vn < E(Cn). For each 1 ≤ m ≤ n−2
2 , all vertices of

Cn satisfy v2mv2m+2 < E(Cn) and v2m−1v2m+1 < E(Cn). Then Definition 3.1 implies that

∣∣∣ f ′+(v1vi)
∣∣∣ = ∣∣∣∣∣{2, 3, · · · ,

n
2
,−2,−3, · · · ,−(

n
2
− 1)

}∣∣∣∣∣ = n − 3,∣∣∣ f ′+ (vnvi)
∣∣∣ = ∣∣∣∣∣{n

2
+ 1,

n
2
+ 2, · · · ,

n
2
+

(n
2
− 2

)}∣∣∣∣∣ = n
2
− 2,∣∣∣ f ′+ (vn−1vi)

∣∣∣ = ∣∣∣∣∣{0,−
(n
2
− 1 + 1

)
,−

(n
2
− 1 + 2

)
, · · · ,−

(n
2
− 1 +

n
2
− 3

)}∣∣∣∣∣ = n
2
− 2.

Except the above contributions corresponding three contributing sets, the sum of other contributions of
f + is equal to 0. Therefore we obtain

s(Cn) ≤
∣∣∣ f +∣∣∣ = (n − 3) +

(n
2
− 2

)
+

(n
2
− 2

)
= 2n − 7.

Case 2. If n is odd.
If n is odd, we assume that v1v2 < E(Cn), v1v3 < E(Cn) and vn−1vn < E(Cn). For each 1 ≤ m ≤ n−3

2 ,
all vertices of Cn satisfy v2mv2m+2 < E(Cn) and v2m+1v2m+3 < E(Cn). Further, Definition 3.1 implies that

∣∣∣ f ′+(v1vi)
∣∣∣ = ∣∣∣∣∣{2, 3, · · · ,

n
2
,−2,−3, · · · ,−(

n
2
− 1)

}∣∣∣∣∣ = n − 3,∣∣∣ f ′+ (vn−1vi)
∣∣∣ = ∣∣∣∣∣∣

{
n − 1

2
+ 1,

n − 1
2
+ 2, · · · ,

n − 1
2
+

n − 5
2

}∣∣∣∣∣∣ = n − 5
2
,

∣∣∣ f ′+ (vnvi)
∣∣∣ = ∣∣∣∣∣∣

{
−

(
n − 1

2
+ 1

)
,−

(
n − 1

2
+ 2

)
, · · · ,−

(
n − 1

2
+

n − 5
2

)}∣∣∣∣∣∣ = n − 5
2
.

The sum of other contributions of f + is equal to 1, if the contributions above are excluded. Thus
based on the definition of the sum index, we obtain

s(Cn) ≤
∣∣∣ f +∣∣∣ = (n − 3) +

(
n − 5

2

)
+

(
n − 5

2

)
+ 1 = 2n − 7.

We illustrate the sum index labelings f of C7 and C8, respectively (see Figure 4).
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Figure 4. Sum index labelings f of C7 and C8.

On the other hand, we consider the difference index of Cn. Note that d(Cn) ≥ n− 3 by Theorem 2.3.
Then it remains to show that d(Cn) ≤ n − 3. For 1 ≤ i ≤ n, let g : V(Cn) → Z be an injective labeling
such that g(vi) = f (vi). Below, we distinguish two cases according to the parity of n.
Case 1. If n is even.

If n is even, then we assume that v1v2 < E(Cn) and vn−1vn < E(Cn). And for each 1 ≤ m ≤ n−2
2 , all

vertices of Cn satisfy v2mv2m+2 < E(Cn) and v2m−1v2m+1 < E(Cn).
In addition, Definition 3.1 enables us to ensure that∣∣∣g′− (v1vi)

∣∣∣ = ∣∣∣∣∣{2, 3, · · · ,
n
2

}∣∣∣∣∣ = n
2
− 1,∣∣∣g′− (vnvi)

∣∣∣ = ∣∣∣∣∣{n
2
+ 1,

n
2
+ 2, · · · ,

n
2
+

(n
2
− 2

)}∣∣∣∣∣ = n
2
− 2.

The sum of other contributions of g− is equal to 0, if the contributions corresponding two
contributing sets above are excluded. Thus, we have

d(Cn) ≤
∣∣∣g−∣∣∣ = (n

2
− 1

)
+

(n
2
− 2

)
= n − 3.

Case 2. If n is odd.
If n is odd, then we assume that v1v2 < E(Cn), v1v3 < E(Cn), vn−5vn−2 < E(Cn), vn−4vn−3 < E(Cn),

vn−3vn < E(Cn), vn−2vn−1 < E(Cn) and vn−1vn < E(Cn). And for each 1 ≤ m ≤ n−7
2 , all vertices of Cn

satisfy v2mv2m+2 < E(Cn) and v2m+1v2m+3 < E(Cn). By Definition 3.1, it holds that∣∣∣g′− (v1vi)
∣∣∣ = ∣∣∣∣∣∣

{
2, 3, · · · ,

n − 1
2

}∣∣∣∣∣∣ = n − 1
2
− 1,

∣∣∣g′− (vnvi)
∣∣∣ = ∣∣∣∣∣∣

{
1,

n − 1
2
+ 1,

n − 1
2
+ 2, · · · ,

n − 1
2
+

(
n − 1

2
− 2

)}∣∣∣∣∣∣ = n − 1
2
− 1.

Except the above contributions corresponding two contributing sets, the sum of other contributions
of g− is equal to 0. It is clear to see that under the vertex labeling g we have

d(Cn) ≤
∣∣∣g−∣∣∣ = n − 1

2
− 1 +

n − 1
2
− 1 = n − 3.

We illustrate difference index labelings g of C7 and C8, respectively (see Figure 5).
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Figure 5. Difference index labelings g of C7 and C8.

□

Theorem 3.4. Let Pn be the complement of a path Pn for n ≥ 6. Then

s(Pn) = 2n − 6 and d(Pn) = n − 3.

Proof. In this proof, let Pn be the complement of a path Pn for n ≥ 6. Then its degree sequence is
π = (n − 2, n − 2, n − 3, n − 3, · · · , n − 3). Without loss of generality, we assume that d (v1) = d (v2) =
n − 2, d (vi) = n − 3 for 3 ≤ i ≤ n.

Firstly, we discuss the sum index of Pn. Property 1.4 implies that s(Pn) ≥ 2n − 6. Then it remains
to show that s(Cn) ≤ 2n − 7 by defining a vertex labeling f such that | f +| = 2n − 6. Let f : V(Cn)→ Z
be an injective labeling of Cn such that

f (vi) =

− i−1
2 , if i is odd,

i
2 , if i is even,

for 1 ≤ i ≤ n. Below, we distinguish two cases according to the parity of n.
Case 1. If n is even.

If n is even, then we assume that v1v2 < E(Pn) and vn−1vn < E(Pn). And for each 1 ≤ m ≤ n−2
2 , all

vertices of Pn satisfy v2mv2m+2 < E(Pn) and v2m−1v2m+1 < E(Pn).
By Definition 3.1, we note that∣∣∣ f ′+(v1vi)

∣∣∣ = ∣∣∣∣∣{1, 2, 3, · · · ,
n
2
,−2,−3, · · · ,−(

n
2
− 1)

}∣∣∣∣∣ = n − 2,∣∣∣ f ′+ (vnvi)
∣∣∣ = ∣∣∣∣∣{n

2
+ 1,

n
2
+ 2, · · · ,

n
2
+

(n
2
− 2

)}∣∣∣∣∣ = n
2
− 2,∣∣∣ f ′+ (vn−1vi)

∣∣∣ = ∣∣∣∣∣{0,−
(n
2
− 1 + 1

)
,−

(n
2
− 1 + 2

)
, · · · ,−

(n
2
− 1 +

n
2
− 3

)}∣∣∣∣∣ = n
2
− 2.

We find that except the above contributions corresponding three contributing sets, the sum of other
contributions of f + is equal to 0. Thus we obtain

s(Pn) ≤
∣∣∣ f +∣∣∣ = (n − 2) +

(n
2
− 2

)
+

(n
2
− 2

)
= 2n − 6.

Case 2. If n is odd.
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If n is odd, then we assume that v1v2 ∈ E(Pn), v1v3 < E(Pn) and vn−1vn < E(Pn). And for each 1 ≤
m ≤ n−3

2 , all vertices of Pn satisfy v2mv2m+2 < E(Pn) and v2m+1v2m+3 < E(Pn).
By Definition 3.1, it holds that

∣∣∣ f ′+(v1vi)
∣∣∣ = ∣∣∣∣∣∣

{
1, 2, 3, · · · ,

n − 1
2
,−2,−3, · · · ,−

(
n − 1

2

)}∣∣∣∣∣∣ = n − 2,

∣∣∣ f ′+ (vn−1vi)
∣∣∣ = ∣∣∣∣∣∣

{
n − 1

2
+ 1,

n − 1
2
+ 2, · · · ,

n − 1
2
+

(
n − 5

2

)}∣∣∣∣∣∣ = n − 5
2
,

∣∣∣ f ′+ (vnvi)
∣∣∣ = ∣∣∣∣∣∣

{
−

(
n − 1

2
+ 1

)
,−

(
n − 1

2
+ 2

)
, · · · ,−

(
n − 1

2
+

n − 5
2

)}∣∣∣∣∣∣ = n − 5
2
.

We claim that except the above contributions corresponding three contributing sets, the sum of other
contributions of f + is equal to 1.

As a result, we have

s(Pn) ≤
∣∣∣ f +∣∣∣ = (n − 2) +

(
n − 5

2

)
+

(
n − 5

2

)
+ 1 = 2n − 6.

We illustrate sum index labelings f of P7 and P8, respectively (see Figure 6).

Figure 6. Sum index labelings f of P7 and P8.

Next, we consider the difference index of Pn. We have d(Pn) ≥ n − 3 by Property 1.4, which means
that we just find a vertex labeling g such that |g−| = n − 3 in the following. We distinguish two cases
according to the parity of n.
Case 1. If n is even.

Let g : V(Pn)→ Z be an injective labeling of Pn such that

g (vi) =

 i+1
2 , if i is odd,
− i

2 , if i is even,

for 1 ≤ i ≤ n.
In this case, we assume that v1v2 ∈ E(Pn), vn−5vn−2 < E(Pn), vn−4vn−3 < E(Pn), vn−3vn < E(Pn),

vn−2vn−1 < E(Pn) and vn−1vn < E(Pn). And for each 1 ≤ m ≤ n−6
2 , all vertices of Pn satisfy v2mv2m+2 <

E(Pn) and v2m−1v2m+1 < E(Pn).
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According to Definition 3.1, we have∣∣∣g′− (v1vi)
∣∣∣ = ∣∣∣∣∣{2, 3, · · · ,

n
2
+ 1

}∣∣∣∣∣ = n
2
,∣∣∣g′− (vnvi)

∣∣∣ = ∣∣∣∣∣{n
2
+ 2,

n
2
+ 3, · · · ,

n
2
+

(n
2
− 2

)}∣∣∣∣∣ = n
2
− 3.

Since the sum of other contributions of g− is equal to 0 excepting the above contributions.
As a result, it holds that

d(Pn) ≤
∣∣∣g−∣∣∣ = n

2
+

(n
2
− 3

)
= n − 3.

Case 2. If n is odd.
Let g : V(Pn)→ Z be an injective labeling. For 1 ≤ i ≤ n, we define g of Pn as

g (vi) =

− i−1
2 , if i is odd,

i
2 , if i is even.

In this case, we assume that v1v2 ∈ E(Pn), v1v3 < E(Pn), vn−5vn−2 < E(Pn), vn−4vn−3 < E(Pn), vn−3vn <

E(Pn), vn−2vn−1 < E(Pn) and vn−1vn < E(Pn). Note that all vertices of Pn satisfy v2mv2m+2 < E(Pn) and
v2m+1v2m+3 < E(Pn) for each 1 ≤ m ≤ n−7

2 .
Hence, according to Definition 3.1, it follows that

∣∣∣g′− (v1vi)
∣∣∣ = ∣∣∣∣∣∣

{
1, 2, 3, · · · ,

n − 1
2

}∣∣∣∣∣∣ = n − 1
2
,

∣∣∣g′− (vnvi)
∣∣∣ = ∣∣∣∣∣∣

{
n − 1

2
+ 1,

n − 1
2
+ 2, · · · ,

n − 1
2
+

(
n − 5

2

)}∣∣∣∣∣∣ = n − 5
2
.

The sum of other contributions of g− is equal to 0 excepting the above contributions corresponding
two contributing sets.

As a result, we have

d(Pn) ≤
∣∣∣g−∣∣∣ = n − 1

2
+

n − 5
2
= n − 3.

We illustrate difference index labelings g of P7 and P8, respectively (see Figure 7). □

Figure 7. Difference index labelings g of P7 and P8.
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4. Conclusions

In this article, we first obtain the properties of sum index labelings and difference index labelings.
We also improve the sharp lower bounds on sum and difference indices of generalized regular graphs.
In this regard, the sum indices and difference indices of the necklace graphs and the complements of
matchings, cycles and paths are determined. Finally, we compare the sum indices with the (integral)
sum numbers of several types of graphs and find that there are certain relationships in this section (see
Table 1).

According to the sum indices and difference indices of regular graphs in this paper, the values of
two invariants of a part of known regular graphs are listed in Table 2. Preliminary investigations on
regular graphs lead us to the following conjecture.

Conjecture 4.1. If G is d-regular, then d(G) = d.

Nowadays, the problems of the (integral) sum numbers have been studied comprehensively, while
the problems of the sum and difference indices of graphs constitute challenges for researchers in graph
labeling theory. Based on Table 1, we find that there exist certain relationships between the sum indices
and the (integral) sum numbers of graphs. Of course, the current manuscript defines a starting point
for the study of the sum and difference indices of regular graphs. However, a much deeper study is
required to determine these two invariants of more graph families including regular graphs. Thus it
would be interesting to find solutions to the questions below.

Table 1. Comparing sum index with (integral) sum number.

sum index sum number integral sum number
matchings 1 1 0
cycles 3 3(n = 4) 0
complements of cycles 2n − 7(n ≥ 6) 2n − 7(n ≥ 7) 2n − 7(n ≥ 7)
complements of matchings 2n − 5(n ≥ 4) 2n − 5(n ≥ 7) 2n − 5(n ≥ 7)
complete graphs 2n − 3 (n ≥ 2) 2n − 3(n ≥ 4) 2n − 3(n ≥ 4)

Problem 4.1. What are the specific relationships between the (integral) sum numbers and sum indices,
or in what graphs do these relationships exist referring to Table 1?

Problem 4.2. As we all know, the generalized Peterson graphs have been extensively investigated
as many nice structural and algorithmic properties. Determine the sum and difference indices of
generalized Peterson graphs, which are 3-regular.

Problem 4.3. The torus grid graph is the graph formed from the Cartesian product Cm × Cn of the
cycle graphs Cm and Cn. Try to determine the sum and difference indices of torus grid graphs, which
are 4-regular.
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Table 2. The sum index and difference index of regular graphs.

sum index difference index
matchings 1 1
cycles 3 2
necklace graphs 5 3
prism graphs 5 3
complements of cycles 2n − 7 n − 3
complements of matchings 2n − 5 n − 2
complete graphs 2n − 3 n − 1
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