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1. Introduction

The problem of concern here is the following Hopfield neural network (HNN) system with two
types of delays: discrete and distributed κ

′
i(t) = −ciκi(t) +

m∑
j=1

ai j f j(κ j(t)) +
m∑

j=1
bi j f j(κ j(t − τ)) +

m∑
j=1

di j

∫ ∞
0

k j(s) f j(κ j(t − s)) ds + Ii, t > 0,

κi(t) = ϕi(t), t ≤ 0,
(1.1)

for i = 1, 2, . . . ,m, where m is the number of existing units, κi are the state of the neuron number
i at the instant t, ci > 0 are the rates of the passive delay, ai j, bi j, di j denote the connection weight
matrices, Ii stand for the external inputs assumed constants, f j are the activation functions, k j are the
delay feedback kernels, τ > 0 is the discrete delay and ϕi describe the history of the states.

The activation functions in the discrete and distributed delays are in general different but we are
considering them here equal just for simplicity.

The continuous deterministic HNN is a recurrent artificial neural network that is used in many
applications to model the dynamics of systems with a large number of inputs and unknown parameters.
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The first model introduced in [8] had the form

κ′i(t) = −ciκi(t) +

m∑
j=1

ai j f j(κ j(t)), t > 0, i = 1, 2, . . . ,m.

Hopfield [8] introduced this continuous deterministic model to describe the time evolution of the
state of electronic devices with a large number of amplifiers in conjunction with feedback circuits made
up of wires, resistors and capacitors. Such circuits have integrative time delays due to capacitance.
Since then, HNN has been used to describe various systems that occur in engineering, biology and
economy [1–3, 7, 9–12, 15, 18, 20, 21, 23].

Many complex processes with delays can be modeled as Hopfield neural network (HNN) systems
with discrete and/or continuously distributed delays. Time retardation in electronic neural networks
occur on account of the finite switching speed of amplifiers and can lead to instabilities in the form of
oscillations [4–6, 13, 14, 17, 19, 22, 24–28].

Guo [6] analyzed the global asymptotic stability for (1.1) with piecewise continuous kernels.
The global and local stability of the equilibrium states of (1.1) has been investigated under various
conditions on the different coefficients, activation functions and delays [4–6, 13, 14, 17, 19, 22, 24–28].
In addition, there is an interest in determining the speed of convergence to the equilibrium states.
For this purpose, various exponential stability results have been established, see for example [19].
In all these papers, the main condition for exponential asymptotic stability is

∫ ∞
0

eβsK(s)ds < ∞

for some β > 0 in addition to the standard condition of the dominance of the damping on the other
coefficients [13, 16, 17, 19, 22, 24, 28].

Yin and Fu [25] studied the µ-stability issue for a class of NNs (1.1) subject to impulses with a
diagonal K and unbounded time-varying lags. They used a Lyapunov-Krasovskii functional to derive
some conditions in the form of linear matrix inequalities. The µ-stability, roughly means that the
states converge asymptotically to equilibrium at the rate 1/µ(t) in a certain norm. Cui et al. [4]
extended (1.1) to a reaction-diffusion cellular NN. The delays there were unbounded and time-varying
and the distributed delays were bounded. In both papers, the function µ(t) must satisfy the conditions

µ′(t)
µ(t)

≤ β1,
µ(t − τ)
µ(t)

≥ β2,

∫ ∞
0

k j(s)µ(t + s) ds

µ(t)
≤ β3, t > 0,

where β1, β2 and β3 are nonnegative scalars.
Zhang and Jin [26] established conditions for existence, uniqueness and global asymptotic stability

of the stationary state of HNN with fixed or distributed time delays. The results apply in case the
interconnection matrices are symmetric and nonsymmetric. The activation functions are continuous
and non-monotonic functions.

The most important issue in this field is the stability of the equilibrium. The first results have been
shown for simple HNNs with some specific activation functions like the Sigmoid function f (u)= 1

1+e−u/T ,
Hyperbolic tangent function f (u) = tanh(u/T ), Inverse tangent function f (u) = 2

π
tan−1(u/T ),

Threshold function f (u) =

{
−1, u < 0,
1, u > 0,

Gaussian radial basis function f (u) = exp{− ‖u − m‖2 /σ2}

and the Linear function f (u) = au + b. Because of the need in applications, these activation functions
have been extended to bounded, monotone and differentiable functions. In turn, these conditions
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have been weakened to a mere Lipschitz continuity condition. These conditions on the monotonicity,
boundedness and differentiability of the activation functions have been improved thereafter to simply a
global (or local) Lipschitz continuity condition. There are also a fairly large number of papers dealing
with different conditions on the different coefficients involved in the system. Indeed, for the parameters,
the LMI method, M-Matrix and other techniques are very efficient. They have been used and improved
in an impressive number of references that cannot fit in this limited size paper. Unfortunately, in spite
of the many appearing cases in the applications (as mentioned in the book of Kosko), this issue has not
received much attention. In this work, we want to fill this gap by establishing reasonable conditions on
the kernels ensuring exponential stability and other types of stability.

The existence and uniqueness of the equilibrium has been discussed under different conditions and
using different methods, such as fixed point theorems. Therefore, the well-posedness is guaranteed in
our case as we are assuming standard conditions for the (dominance conditions of the) parameters and
also on the activation functions (Lipschitz continuity), we obtain easily the existence and uniqueness
of a solution as our kernels remain of (dissipative) fading memory type.

Here, the focus will be on the kernels k j (t) in problem (1.1). We extend the class of kernels
satisfying ∫ ∞

0
k j (s) eβsds < ∞, j = 1, 2, ..., n for some β > 0,

to a much wider class for which we have exponential stability as well as stability with general decay.
Our result is proved under rather standard conditions on the other parameters and functions in the
system but is ready to be adopted for more general situations. Indeed, in the existing papers, it is either
kernels of exponential type or of subexponential type which are considered. In the present work, we
do not use these assumptions. Instead, we assume the following condition: let η j (t) be nonnegative
continuous functions satisfying

lim
t→∞

η (t) := lim
t→∞

min
1≤ j≤n

η j (t) = η̄

and
k j (t − s) ≥ η j (t)

∫ ∞

t
k j (σ − s) dσ, j = 1, 2, ..., n, 0 ≤ s ≤ t.

This new class of kernels is much wider than the existing one in the market. It contains the proper
exponentially decaying functions. Moreover, it contains polynomially decaying functions and many
more functions. Therefore, this improves earlier results and allows the treatment of more problems by
allowing a larger class of admissible kernels. As consequence, the rates of stability are general and not
necessarily exponential.

It is our objective here to derive sufficient conditions for stability with general rate, including as a
special case, the exponential stability. Our results are obtained using new suitably selected functionals
of Lyapunov-type in this theory and improve the existing results using completely different arguments.
In view of the previous results, we shall assume the existence of continuously differentiable solutions.

2. Preliminaries

In this part of the paper, we shall present our assumptions, definitions and useful lemmas.
We start with the presumptions:
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(B1) The delay kernel functions k j are piecewise continuous nonnegative functions such that κ j :=∫ ∞
0

k j(s) ds < ∞.

(B2) The functions fi are Lipschitz continuous on R with Li, i = 1, 2, . . . ,m as Lipschitz constants,
that is

| fi(κ) − fi(y)| ≤ Li|κ − y|, ∀κ, y ∈ R, i = 1, 2, . . . ,m.

(B3) The initial data ϕi(t), t ≤ 0 are continuous functions.

Definition 1. The point κ∗ = (κ∗1, . . . , κ
∗
m)T is called an equilibrium point of problem (1.1) if for

i=1, 2, . . . ,m,

ciκ
∗
i =

m∑
j=1

ai j f j(κ∗j) +

m∑
j=1

bi j f j(κ∗j) +

m∑
j=1

di j

∫ ∞

0
k j(s) f j(κ∗j) ds + Ii

=

m∑
j=1

[
ai j + bi j + di j

∫ ∞

0
k j(s) ds

]
f j(κ∗j) + Ii, t > 0.

Definition 2. The equilibrium point κ∗ is said to be globally µ-stable if there exists a constant A > 0
and a positive function µ(t) such that limt→∞ µ(t) = ∞ and

‖κ(t) − κ∗‖ ≤
A
µ(t)

, t > 0,

where ‖ · ‖ denotes any norm in Rm.

The existence of a unique equilibrium for this kind of problems has been shown for instance
in [26,27] when the functions f j are Lipschitz continuous. It has been proved also for ‘Non-Lipschitz’
continuous functions (see [5]).

These results apply for our case here. In fact, one can consult any result in Hopfield neural network
theory even without (discrete and distributed) delays, as delays do not affect the proofs. As a matter of
fact, they do not appear in the system satisfied by the equilibrium. However, there will be conditions
on their coefficients.

3. General stability

This part is devoted to the study the stability of the equilibrium state κ∗ for (1.1). If we let

$(t) = κ(t) − κ∗,

then it is clear that the stability of κ∗ is equivalent to the stability of the zero state for the problem
$′i(t) = −ci$i(t) +

m∑
j=1

ai jh j($ j(t)) +
m∑

j=1
bi jh j($ j(t − τ))

+
m∑

j=1
di j

∫ ∞
0

k j(s) h j($ j(t − s)) ds, t > 0, i = 1, 2, . . . ,m,

$i(t) = ψi(t) := ϕi(t) − κ∗i , t ≤ 0, i = 1, 2, . . . ,m,

(3.1)

where
h j($ j(t)) = f j($ j(t) + κ∗j) − f j(κ∗j), t ≥ 0. (3.2)
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(B4) The initial data ϕi(t) are such that ψi ∈ L2(−∞, 0), i = 1, 2, . . . ,m.

To investigate the stability of the system (1.1), we employ the ’energy’ functional

E(t) :=
m∑

i=1

$2
i (t), t ≥ 0. (3.3)

The first lemma is a straightforward consequence of (B2) and (3.2).

Lemma 1. Let assumption (B2) hold. Then

2|$i(t) h j($ j(t))| ≤ $2
i (t) + L2

j$
2
j(t), t > 0, i, j = 1, 2, . . . ,m

and
2|$i(t) h j($ j(t − τ))| ≤ $2

i (t) + L2
j$

2
j(t − τ), t > 0, i, j = 1, 2, . . . ,m.

Lemma 2. Let presumptions (B1)–(B3) hold. Then for t ≥ 0

E′(t) ≤
m∑

j=1

−2ci +

m∑
j=1

[
ai j + L2

i a ji + bi j + di j

]$2
i (t) +

m∑
j=1

λ1 j $
2
j(t − τ) +

m∑
j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds,

where

λ1 j =

 m∑
i=1

bi j

 L2
j , λ2 j =

 m∑
i=1

di j

 L2
jκ j, j = 1, 2, . . . ,m. (3.4)

Proof. The differentiation of E(t) in (3.3), along solutions of (3.1), yields for t ≥ 0

E′(t) = 2
m∑

i=1

−ci$
2
i (t) +

m∑
j=1

ai j $i(t) h j($ j(t))

+

m∑
j=1

bi j $i(t) h j($ j(t − τ)) +

m∑
j=1

di j $i(t)
∫ ∞

0
k j(s) h j($ j(t − s)) ds

 .
By Lemma 2 we can write for t ≥ 0

E′(t) ≤ −2
m∑

i=1

ci$
2
i (t) +

m∑
i, j=1

ai j[$2
i (t) + L2

j $
2
j(t)] +

m∑
i, j=1

bi j[$2
i (t) + L2

j $
2
j(t − τ)]

+

m∑
i, j=1

di j

$2
i (t) +

(∫ ∞

0
k j(s) L j

∣∣∣$ j(t − s)
∣∣∣ ds

)2 .
From Cauchy-Schwartz inequality we have the bound(∫ ∞

0
k j(s) L j $ j(t − s) ds

)2

≤

∫ ∞

0
k j(s) ds

∫ ∞

0
k j(s) L2

j $
2
j(t − s) ds

≤ L2
jκ j

∫ ∞

0
k j(s)$2

j(t − s) ds, t ≥ 0.
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Consequently, for t ≥ 0

E′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

ai j + L2
i

m∑
j=1

a ji +

m∑
j=1

bi j +

m∑
j=1

di j

$2
i (t)

+

m∑
i, j=1

bi j L2
j $

2
j(t − τ) +

m∑
i, j=1

di jL2
jκ j

∫ ∞

0
k j(s)$2

j(t − s) ds

=

m∑
i=1

−2ci +

m∑
j=1

ai j + L2
i

m∑
j=1

a ji +

m∑
j=1

bi j +

m∑
j=1

di j

$2
i (t)

+

m∑
j=1

 m∑
i=1

bi j

 L2
j $

2
j(t − τ) +

m∑
j=1

 m∑
i=1

di j

 L2
jκ j

∫ ∞

0
k j(s)$2

j(t − s) ds

=

m∑
i=1

−2ci +

m∑
j=1

ai j + L2
i

m∑
j=1

a ji +

m∑
j=1

bi j +

m∑
j=1

di j

$2
i (t)

+

m∑
j=1

λ1 j $
2
j(t − τ) +

m∑
j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds.

�

Theorem 1. Let assumptions (B1)–(B4) hold. If

m∑
j=1

[
ai j + bi j + di j + L2

i

(
a ji + b ji + κ2

i d ji

)]
< 2ci, i = 1, 2, . . . ,m,

then E(t) is uniformly bounded.

Proof. Consider the functionals

V1(t) :=
m∑

j=1

λ1 j

∫ t

t−τ
$2

j(s)ds, t ≥ 0 (3.5)

and

V2(t) : =

m∑
j=1

λ2 j

∫ t

−∞

(∫ ∞

t
k j(σ − s) dσ

)
$2

j(s) ds

=

m∑
j=1

λ2 j

∫ ∞

0
k j(s)

∫ t

t−s
$2

j(σ) dσ ds, t ≥ 0. (3.6)

Note that

V1(0) =

m∑
j=1

λ1 j

∫ 0

−τ

$2
j(s) ds =

m∑
j=1

λ1 j

∫ 0

−τ

ψ2
j(s) ds < ∞

and

V2(0) =

∞∑
j=1

λ2 j

∫ ∞

0
k j(s)

∫ 0

−s
ψ2

j(σ) dσ ds < ∞.
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Moreover,

V ′1(t) =

m∑
j=1

λ1 j

[
$2

j(t) −$
2
j(t − τ)

]
, t ≥ 0 (3.7)

and

V ′2(t) =

m∑
j=1

λ2 j

(∫ ∞

t
k j(σ − t) dσ

)
$2

j(t) −
m∑

j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds

=

m∑
j=1

λ2 j

(∫ ∞

0
k j(s) ds

)
$2

j(t) −
m∑

j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds

=

m∑
j=1

λ2 jκ j $
2
j(t) −

m∑
j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds, t ≥ 0. (3.8)

Let
E(t) = E(t) + V1(t) + V2(t), t ≥ 0. (3.9)

Then, E(0) < ∞ and

E′(t) = E′(t) + V ′1(t) + V ′2(t)

≤

m∑
i=1

−2ci +

m∑
j=1

ai j + L2
i

m∑
j=1

a ji +

m∑
j=1

bi j +

m∑
j=1

di j

$2
i (t)

+

m∑
j=1

λ1 j $
2
j(t − τ) +

m∑
j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds

+

m∑
j=1

λ1 j

[
$2

j(t) −$
2
j(t − τ)

]
+

m∑
j=1

λ2 jκ j $
2
j(t)

−

m∑
j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds

or for t ≥ 0,

E′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

(
ai j + L2

i a ji + bi j + di j

)$2
i (t) +

m∑
i=1

λ1i$
2
i (t) +

m∑
i=1

λ2iκi $
2
i (t).

This may be rewritten simply as

E′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

[
ai j + L2

i a ji + bi j + di j + L2
i b ji + L2

i κ
2
i d ji

]$2
i (t)

=

m∑
i=1

−2ci +

m∑
j=1

[
ai j + bi j + di j + L2

i

(
a ji + b ji + κ2

i d ji

)]$2
i (t), t ≥ 0. (3.10)

From the condition stated in the theorem and (3.10) we see that E′(t) ≤ 0, t ≥ 0. Therefore,

E(t) ≤ E(t) ≤ E(0), t ≥ 0.

The proof is complete. �
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We now specify our main condition on the kernels

(B5) There are nonnegative continuous functions η j(t) such that

lim
t→∞

η(t) := lim
t→∞

min
1≤ j≤m

η j(t) = η̄

and
k j(t − s) ≥ η j(t)

∫ ∞

t
k j(σ − s) dσ, j = 1, 2, . . . ,m, 0 ≤ s ≤ t.

Theorem 2. Let assumptions (B1)–(B5) hold and

2ci >

m∑
j=1

{
ai j + bi j + di j + L2

i

[
a ji + (1 + ε)b ji + 2κ2

i d ji

]}
, i = 1, 2, . . . ,m,

for some ε > 0. Then, if limt→∞ η(t) = η̄ = 0 we have

E(t) ≤ C1 e−C2
∫ t

0 η(s)ds, t ≥ 0

and
E(t) ≤ C3e−C4t, t ≥ 0

in case 0 < η̄ ≤ ∞, for some positive constants Ci, i = 1, 2, 3, 4.

Remark 1. If η(t) =
µ′(t)
µ(t) for some differentiable function µ(t), then we obtain

E(t) ≤
A
|µ(t)|σ

, t ≥ 0,

for some positive constants A and σ.

Proof Theorem 2. For 0 < δ < 1/2, consider the functional

Ẽ(t) := E(t) + V3(t) +
1

1 − δ
V2(t), t ≥ 0, (3.11)

where

V3(t) := e−βt
m∑

j=1

λ1 j

∫ t

t−τ
eβ(s+τ) $2

j(s) ds, t ≥ 0, β > 0,

λ1 j as in (3.4), and V2 as in (3.6). Here β is selected so small that eβτ ≤ 1 + ε (ε is in the statement of
the theorem).

By direct differentiation we have

V ′3(t) = −βV3(t) + eβτ
m∑

j=1

λ1 j $
2
j(t) −

m∑
j=1

λ1 j $
2
j(t − τ), t ≥ 0. (3.12)

Next, we estimate V ′2(t) in light of our new assumption (B5) on the kernels. Clearly, for t ≥ 0,

V ′2(t) =

m∑
j=1

λ2 jκ j $
2
j(t) −

m∑
j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds
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=

m∑
j=1

λ2 jκ j $
2
j(t) − δ

m∑
j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds

− (1 − δ)
m∑

j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds

≤

m∑
j=1

λ2 j κ j $
2
j(t) − δ

m∑
j=1

λ2 j η j(t)
∫ t

−∞

(∫ ∞

t
k j(σ − s) dσ

)
$2

j(s) ds

− (1 − δ)
m∑

j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds

≤

m∑
j=1

λ2 j κ j $
2
j(t) − δ η(t) V3(t) − (1 − δ)

m∑
j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds. (3.13)

Taking into account (3.11)–(3.13), the differentiation along solutions of (3.1) yields for t ≥ 0

Ẽ′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

(
ai j + L2

i a ji + bi j + di j

)$2
i (t)

+

m∑
j=1

λ1 j $
2
j(t − τ) +

m∑
j=1

λ2 j

∫ ∞

0
k j(s)$2

j(t − s) ds + eβτ
m∑

j=1

λ1 j $
2
j(t)

−βV3(t) −
m∑

j=1

λ1 j $
2
j(t − τ) +

1
1 − δ

 m∑
j=1

λ2 j κ j $
2
j(t) − δ η(t) V2(t)


−

m∑
j=1

λ2 j

∫ t

−∞

k j(t − s)$2
j(s) ds,

or

Ẽ′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

(
ai j + L2

i a ji + bi j + di j

)$2
i (t) +

m∑
j=1

[
eβτλ1 j +

λ2 j κ j

1 − δ

]
$2

j(t) − βV3(t) −
δ

1 − δ
η(t) V2(t).

In view of (3.4), we find for t ≥ 0

Ẽ′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

(
ai j + L2

i a ji + bi j + di j

)$2
i (t)

+

m∑
j=1

eβτ  m∑
i=1

bi j

 L2
j +

κ j

1 − δ

 m∑
i=1

di j

 L2
jκ j

 $2
j(t)

−βV3(t) −
δ

1 − δ
η(t) V2(t),

or

Ẽ′(t) ≤
m∑

i=1

−2ci +

m∑
j=1

[
ai j + bi j + di j + L2

i

(
a ji + eβτb ji +

κ2
i

1 − δ
d ji

)]$2
i (t) − βV3(t) −

δ

1 − δ
η(t) V2(t)
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≤ −αE(t) − βV3(t) −
δ

1 − δ
η(t) V2(t), t ≥ 0, (3.14)

where

α = min
1≤i≤m

2ci −

m∑
j=1

[
ai j + bi j + di j + L2

i

(
a ji + eβτb ji +

κ2
i

1 − δ
d ji

)] .
From the hypotheses we have α > 0.

We discuss two cases:
Case 1. limt→∞ η(t) = 0

Let t∗ > 0 be large enough so that

η(t) ≤
1
δ

min{α, β}, t ≥ t∗. (3.15)

Therefore

Ẽ′(t) ≤ −αE(t) − βV3(t) −
δ

1 − δ
η(t) V2(t)

≤ −δη(t)E(t) − δη(t) V3(t) −
δ

1 − δ
η(t) V2(t)

≤ −δη(t)Ẽ(t), t ≥ t∗.

This implies that

Ẽ(t) ≤ Ẽ(t∗) e−δ
∫ t

t∗ η(s)ds, t ≥ t∗.

By continuity and Theorem 1, we may derive a similar estimate on [0, t∗].
Case 2. 0 < η̄ ≤ ∞

In this case

∃ t∗ > 0 s.t. η(t) ≥
η̄

2
, ∀t ≥ t∗. (3.16)

In case η̄ = +∞, we consider any positive constant ξ, η(t) ≥ ξ.
In view of (3.14) and (3.16), we see that

Ẽ′(t) ≤ −αE(t) − βV3(t) −
δ

1 − δ
η̄

2
V2(t) ≤ −γẼ(t), t ≥ t∗,

where

γ = min
{
α, β,

δη̄

2

}
> 0.

Therefore,

Ẽ(t) ≤ Ẽ(t∗) e−γ(t−t∗), t ≥ t∗.

A continuity argument and Theorem 1 gives a similar estimates on [0, t∗]. The proof is complete. �
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4. Numerical illustration

In this section, we shall present numerical examples validating the efficiency of the above theoretical
results.

Example 1. Consider the following Hopfield neural network system, composed of three neurons

κ′i (t) = −ciκi (t)+
3∑

j=1

ai j f j

(
κ j(t)

)
+

3∑
j=1

bi j f j(κ j(t−τ))+
3∑

j=1

di j

∫ ∞

0
k j(s) f j(κ j(t−s))ds+Ii, t > 0, i = 1, 2, 3,

(4.1)
where the associated functions and parameters are selected as follows:

f1(x) =
1
8

(|x + 1| − |x − 1|), f2(x) =
1
4

tanh(x), f3(x) =
1
4

tanh(0.5x), ci = 2,

ki(t) =
1

16
e−
√

1+t, Ii = 0, i = 1, 2, 3, φ1(x) = 0.5, φ2(x) = −1, φ3(x) = 1, x ∈ [−1, 0],

a11 = 0.15, a12 = 0.12, a13 = 0.17, a21 = 0.16, a22 = 0.18, a23 = 0.2, a31 = 0.14,

a32 = 0.16, a33 = 0.12, b11 = 0.17, b12 = 0.15, b13 = 0.13, b21 = 0.18, b22 = 0.12,

b23 = 0.11, b31 = 0.13, b32 = 0.19, b33 = 0.16, d11 = 0.14, d12 = 0.2, d13 = 0.18,

d21 = 0.16, d22 = 0.17, d23 = 0.14, d31 = 0.15, d32 = 0.14, d33 = 0.2, τ = 1.

Through some simple calculations, we get L1 = L2 = L3 = 1
4 , κi = 1

4e , and we choose
ηi(t)= 1

4(1+
√

1+t)
, i = 1, 2, 3.

Hence, the assumptions (B1)–(B5) are met. By virtue of Theorem 2, then the solutions of the
system (4.1) decay to the stationary states. These can be depicted in Figure 1.

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

x1(t)
x2(t)
x3(t)

Figure 1. State trajectories of x1(t), x2(t) and x3(t).

AIMS Mathematics Volume 8, Issue 11, 26343–26356.



26354

Example 2. Consider the system (4.1) in which the related functions and parameters are chosen as

fi(x) =
1

16
tanh(x), ki(t) =

1
(1 + x)2 , ci = 5, Ii = 0, i = 1, 2, 3,

φ1(x) = 0.25, φ2(x) = 0.75, φ3(x) = −0.5, x ∈ [−2, 0],

a11 = 1, a12 = 0.25, a13 = 0.75, a21 = 0.5, a22 = 1, a23 = 0.4, a31 = 0.6,

a32 = 0.3, a33 = 1, b11 = 0.8, b12 = 0.25, b13 = 1, b21 = 0.75, b22 = 0.5,

b23 = 0.3, b31 = 0.6, b32 = 1, b33 = 0.25, d11 = 0.75, d12 = 1, d13 = 0.45,

d21 = 0.5, d22 = 0.8, d23 = 1, d31 = 0.5, d32 = 0.75, d33 = 0.25, τ = 2.

Via a simple calculation, we obtain L1 = L2 = L3 = 1
16 , κi = 1, ηi(t) = 1

2(1+t) , i = 1, 2, 3.
Therefore, as the hypotheses (B1)–(B5) of Theorem 2 are fulfilled, the solutions of the system (4.1)

decay to steady points. We can see these in Figure 2.

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1(t)
x2(t)
x3(t)

Figure 2. State curves of x1(t), x2(t) and x3(t).
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