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Abstract: Unless an appropriate dissipation mechanism is introduced in its evolution, a deterministic 

system generally does not tend to equilibrium. However, coarse-graining such a system implies a 

mesoscopic representation which is no longer deterministic. The mesoscopic system should be 

addressed by stochastic methods, but they lead to practically infeasible calculations. However, 

following the pioneering work of Kolmogorov, one finds that such mesoscopic systems can be 

approximated by Markov processes in relevant conditions, mainly, if the microscopic system is ergodic. 

So, the mesoscopic system tends to stationarity in specific situations, as expected from thermodynamics. 

Kolmogorov proved that in the stationary case, the instantaneous entropy of the mesoscopic process, 

conditioned by its past trajectory, tends to a finite limit at infinite times. Thus, one can define the 

Kolmogorov entropy. It can be shown that in certain situations, this property remains true even in the 

nonstationary case. We anticipated this important conclusion in a previous article, giving some 

elements of a justification, whereas it is precisely derived below in relevant conditions and in the case 

of a discrete system. It demonstrates that the Kolmogorov entropy is linked to basic aspects of time, 

such as its irreversibility. This extends the well-known conclusions of Boltzmann and of more recent 

researchers and gives a general insight to the fascinating relation between time and entropy. 
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1. Introduction 

Following the work of Kolmogorov (see [1] and references herein), the stochastic theory of 

coarse-grained deterministic, ergodic systems has been studied in [2]. In particular, it was shown that 

such mesoscopic systems can be approximated by Markov processes, which may explain why Markov 

models are so widely used in the literature. Here we present new remarks on such systems, in particular 

concerning their Kolmogorov entropy, which has been introduced for stationary processes in the work 

of this author [1]. In particular, we will show that the Kolmogorov entropy can be defined for a 

nonstationary process obeying simple properties which should be satisfied for generic, realistic 

systems. Here, we will focus on finite systems, which significantly simplifies the reasoning. 

Our definitions and notations are identical with those of [2]. Nevertheless, for the sake of clarity, 

we summarize them below in Section 2, as well as the known results. New outcomes are presented in 

Section 3, with simplified demonstrations. Conclusion and discussion are given in Section 4. Detailed 

derivations are postponed to Appendix A. A more complete and rigorous theory will be presented 

elsewhere (see Section 4). 

2. Material and methods 

2.1. Microscopic and mesoscopic descriptions of a deterministic system 

It is known [1] that a coarse-grained deterministic system S can be represented by a non-

Markovian stochastic process. One has to define this stochastic process on the space M of the 

observable mesoscopic states and during all the period of observation we will assume that this period 

begins at time t = 0, without assigning it a finite end.  

2.1.1. Microscopic, deterministic dynamical system 

For the sake of simplicity, we consider a finite microscopic dynamical system: The space X of 

microscopic states is finite and contains N microscopic states x, each of them corresponding to the 

ultimate possible description of the system, according to the usual conventions of statistical mechanics. 

Furthermore, time will be discretized: t = 0, 1, …k, …, the elementary time step   being taken as time unit. 

A probability measure (t) is defined on the finite microscopic space X at time t ≥ 0, including N 

microscopic states. The probability of a set A of microstates states at time t is (A,t). The system obeys 

a deterministic stationary process which transfers an initial microscopic state x into the microscopic 

state )(xt  after time t, where the evolution function t satisfies the standard property of such 

functions (see for instance the book by Arnold and Avez [1] and references therein). So, we assume 

that t is measure-preserving, i.e., for any measurable subspace A of X, )0,(),( AtA t−=  . From 

now on, we also assume that  is stationary: )0,(),( AtA  = . 

We adopt the current hypothesis that the microscopic dynamical system considered here is 

ergodic [1]. There is no measure-invariant subspace Y of the microscopic space X, except X itself and 

the empty space . It is well-known [1,3] that if the microscopic system is ergodic, the stationary 

measure is unique. 

In the absence of any microscopic information before time 0, it can be assumed that the initial 

microscopic probability distribution  is uniform in the whole space X: (x)  (x, 0) = 1/N, the uniform 

law being obviously stationary. So, in this article we suppose that the stationary law  is uniform, although 
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the following reasoning can in many cases be extended to more general stationary measures. 

2.1.2. Mesoscopic, coarse-grained system 

Because the possible observations are limited and because the measure accuracies are finite, these 

microscopic states are not directly observable. On the other hand, the limited accuracy of actual, 

available experiments allows one to define M observable mesostates i, constituting the mesospace M, 

in such a way that each microscopic state x belongs to one and only one mesostate i. On the other hand, 

a mesostate i corresponds to ni different microstates, with ni  1. Clearly, these are the usual 

conventions of classical statistical mechanics discussed in all textbooks.  

The initial mesoscopic stationary distribution of a mesostate i is proportional to the number ni of 

microstates included in the mesostate i: 

Mniip i /)()0,(0 ==   

where the upper index 0 denotes the stationary case, and the probability of i at time k is  

)0,()(),( 00 ipikip k == −         (1) 

for all k > 0.  

2.1.3. Evolution of the coarse-grained system: stationary case 

The stochastic process representing the coarse-grained states i0, i1, …ik , … at the respective times 

0, 1, …k,…. is defined by the probability )1,;...;1,;0,( 110
0 −− kiiip kk

 of any k-times trajectory, for 

all k > 0. The complete stationary probability law, for all k, is denoted p0. 

It is easily seen [2] that the probability of a (k+1)-times trajectory from time 0 is 

)...(),;...;1,;0,( 01110
0

1
iiikiiip

ktkkk
= −−+


.     (2) 

To simplify the notations, we will now omit the lower index k+1 in the probability 0
1+kp when it 

is possible without confusion, for instance when the variables are explicitly mentioned. 

With this convention, conditional probabilities can be defined and written in the usual elementary 

way. For instance, if 0)1,;...;1,;0,( 110
0 −− kiiip k  

)1,;...;1,;0,(

),;...;1,;0,(
)0,...;;1,,(

110
0

10
0

01
0

−
=−

−

−
kiiip

kiiip
ikikip

k

k
kk      

 

(3) 

If 0),;...;1,;0,()1,;...;1,;0,( 10
0

110
0 ==−− kiiipkiiip kk    it is well known that the conditional 

probability is not defined by (3), but this indetermination has no influence on the following calculations. 

2.1.4. Coarse-grained system: Nonstationary case  

The system can be prepared in order that the initial probability of any mesostate i obeys some 

arbitrary distribution p(i). Then, the microscopic dynamics of the system and the initial probability law 
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p(i) determine the law of the stochastic coarse-grained process over the space of mesostates M  (im), 

m= 1, …M. Since no available observation can distinguish two microscopic states inside the same 

mesostate i, it can be logically assumed that the microscopic initial distribution is piecewise uniform, 

being uniform in each mesostate i. Then, if the initial probability of i is p(i) (i), it can be shown [2] 

that the mesoscopic k-times law is  

)...(
)(

)(
)1,...;;1,;0,( 01111

0

0
110 iii

i

ip
kiiip kkkk =− −−+−− 


   (4) 

where  is again the stationary measure on X. This formula allows one to obtain all probabilities 

concerning finite mesoscopic trajectories, such as the probability that the system is in some mesostate 

ik at time k, as well as all relevant conditional probabilities.  

If, for instance, the microscopic system is prepared to be initially localized inside some initial 

mesostate i0, it will no stay concentrated in i0 at the next step (this is forbidden by ergodicity) but it 

will generally be distributed between several mesostates states i’1, i”1; …. Only in very specific cases, 

all the microscopic cases included in i0 at time 0, are transferred to the same mesostate i1 at time 1 and 

to a mesostate state i2 at time 2, etc. Since  is measure- preserving, (i0) =(i1) and the microscopic 

states are uniformly distributed inside i1 at time 1, then transferred to i2 at time 2, etc. In this special 

case, the mesoscopic trajectory i0, i1, i2, … is periodic, as well as the microscopic trajectories, because 

the system is supposed to be finite. We will discard such an exceptional situation, which presents no 

interest and is not realized in current phenomena. On the contrary, we will assume that the coarse-

graining is such that, after a relatively small number of steps, the microstates initially concentrated in 

some i0, are essentially distributed between all the mesostates of M. This is a usual hypothesis, adopted 

in most textbooks of statistical thermodynamics. It provides an intuitive justification of the memory 

erasing precisely defined in Section 3.4, Eq (12) and derived previously [2]. 

In these conditions, following Kolmogorov [1] and using intuitive extensions of his methods, we 

will present some remarks on the non-stationary case in Section 3, mainly concerning the entropy of 

these processes. 

2.2. Entropy of a process. Kolmogorov entropy of the mesoscopic stationary process 

2.2.1. The n-times entropy of the system 

We call n-times entropy Sn(p) of the process the Shannon entropy [2,5–8] S(pn) of the n-times 

trajectory (i)n = (i0, …, in-1) in the phase space 

)()1,...;;0,(ln)1,...;()( 101...,
;0,0

10
nnnnniin pSniipnippS i

n
−−−= −−

−
.  (5) 

So, among other interpretations [9], this quantity measures the uncertainty, or disorder contained 

in the n-times probability pn. Equivalently, according to Shannon [5], this is the information recovered 

after an experiment where an actual trajectory is observed, whereas before the experiment one only 

knew the probability of this trajectory. Clearly, this entropy vanishes if the trajectory is deterministic. 

It is well known that suppressing correlations between the different states increases the disorder 

in the stochastic system and increases its entropy. So, the maximum n-times entropy Sn occurs when 

all the states are statistically independent. In this very special case, the entropy of the n-times process is 
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==
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=
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where )(( 1 ktpsk = ) is the one-time entropy at time k (see below). 

In case the process is stationary, the one-time probability p1 is time invariant and the one-time 

entropy s1 as well, so that the maximum n-times entropy is 1snS n = . 

2.2.2. The instantaneous entropy at time n 

The new information obtained by observing the system in the mesoscopic state in at time n, 

knowing that it was in the respective states i0, …in−1 at the prior times 0, …n−1, will be called the 

(average) instantaneous entropy sn at time n [1] 

.))0,...;;1,,(()1,....;;0,(

0)0,...;;1,,(ln),....;;0,()()()(

0110...,

010...,1

10

0

ininpSniip

ininipniippSpSps
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−−=−=
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−+

•



−

 (7) 

Here,
  

)0,...;;1,,(ln)0,...;;1,,())0,...;;1,,(( 010101 ininipininip
i

ininpS nnnn
n

n −−−=− −−− •  (8) 

is the entropy of the conditional probability at time n, conditioned by the past trajectory. It generally 

differs from the usual 1-time entropy S(p(., n)), which is often used in physics [10,11] when one does 

not know the previous states of the system. This 1-time entropy is 

),(ln),())(.,( nipnipnpS ni n
n

−= .     (9) 

))(.,( npS  is a state function, as defined in thermodynamics. It is seen that 

0
),(

)0,...;;1,,(
ln),....;;0,()())(.,(

01
0...,0


−

=−
−


nip

ininip
niippsnpS

n

nn
nin

n
  (10) 

the equality holding only if the state of S at time n is independent of its prior trajectory. 

2.2.3. The stationary situation and Kolmogorov entropy 

The properties of S(pn) and sn(p) have been extensively studied by Kolmogorov and other authors 

in the case of the stationary process [1,2]. In particular, Kolmogorov [1] showed that if p is the 

stationary process p0, 00 )( nn sps  decreases with time n 

000
1 −+ nn ss . 

As a result, 0
ns  tends to a non-negative limit s when n → ∞ and 

)](,0[)()(and
)( 0

0
00 pspsps

n

pS
n

à
n → if n → ∞.   (11) 

With some simplification [1,2],s(p0) is the Kolmogorov entropy of the stationary process p0. 
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It may be noticed that since p0 is stationary from time 0, the state entropy S(p0(.,n)) is clearly a 

constant s0, whereas sn(p
0) decreases from s0 tos when n increases from 0 to infinity. 

2.2.4. Memory erasing in the stationary situation 

It has been shown recently [2] that the memory of the stationary mesoscopic distribution p0 can 

be approximately limited to the n last past events, n depending of the accuracy required for the 

approximation. More precisely, for any positive number , it is possible to find a positive integer n() 

such that for any integer k > n()  


−−−−

−−
−−

− )1...,0(0,...;;1,1,(0

)0,0;...;1,1,(0

ln)0,0...;;1,1,(00

kp
nknkikkikkip

ikkikkip
ikkikkip

ki
. 

(12)

 

Here 
)1...,0(0 −kp

A  denotes the average of A with respect to the k-times stationary probability 

)1,....;;0,( 10
0 −− kiip k  .This property implies [2] that if n is large enough, with overwhelming 

probability (in the space Mk  {i0, …,ik-1}) the absolute distance(1) between the complete conditional 

probability )0,...;,( 0
0 ikip k  and the truncated conditional probability ),...;,(0 nkikip nkk −−  is less 

than . 

Thus, 

)0,...;;1,()...,,(

)0,...;;1,(),..;;1,,(

)0,...;;1,()0,...;;1,,()0,...;;1,;,(
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  (13) 

where, because of the stationarity of p0, w is defined by 

)...,;(

)0,...;;1,,(),...;;1,,(

1
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(14) 

Equation (14) defines the transition probability w. 
(1)Note. The absolute distance [2] between two probabilities p and q on the same discrete space (j) is 

jjj
qpqpd −= 

2

1
),( .

 

It can be shown [2] that the following Pinsker inequality holds 

( )
j

j
jj q

p
pqpSqpd ln)(),(2

2
  

which implies (13). 
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2.2.5. Truncated memory, stationary approximation 

2.2.5.1. Definitions 

Because the memory of the process can be approximately limited to the first n past times, we can 

define an approximation p0 of the stationary process p0 which is a n-Markov process, as defined below. 

(1) n-Markov process 

We say that a process q is a n-Markov process if it satisfies the following property:  

For any integer N > n, one can define a function ),...;;1,1,( nNnNinNiNNiw −−−−  
of the partial 

trajectory )...,,( 1 NnNnN iii −−−  between times N-n and N, such that 

)0,...;;1,(),...;;1,;()0,...;;,( 0110 iNiqnNiNiNiwiNiq NnNNNN −−−= −−−    (15) 

or equivalently 

),...;;1,,()0,;...;1,,( 101 nNiNiNiwiNiNiq nNNNNN −−=− −−− .   (15’) 

Summing (15) on i0, … iN-n+1, one sees that, for N > n 

),...;;1,()...;;1,,(),...;;,( 11 nNiNiqnNiNiNiwnNiNiq nNNnNNNnNN −−−−=− −−−−−  

and consequently 

)0,;...;1,,(

),...;;1,,(),;...;1,,(

01

11

iNiNiq

nNiNiNiwnNiNiNiq

NN

nNNNnNNN

−=

−−=−−

−

−−−−
.  

(16) 

This is the characteristic property of a n-Markov process: the conditional probability of any state 

at time N>n, conditioned by its complete past trajectory from time 0, is identical to the conditional 

probability of this state, conditioned by its past trajectory during the n previous times only. 

Note that if q is stationary, formula (15) shows that w is invariant if time N is replaced by N+ h, 

where h is any positive integer, so w is independent of N 

)...,,()0,...;;1,,(),...;;1,,( 1011 nNNNNNnNNN iiiwininiwnNiNiNiw −−−−− −=−−   (17) 

It is seen that, by the approximate equality (13), the coarse-grained stationary distribution p0 of 

Section 2 is almost an n-Markov process. We now state this property more rigorously. 

(2) Truncated stationary process 

The truncated process p0 is defined from p0 by 

nkikipikip kk = for)0,...;;,()0,...;;,( 0
0

0
0

    (18) 

and for k > n, it is obtained by repeated applications of the following iterative formula simulating Eq (13) 

)0,...;;1,()...,,(

)0,...;;1,(),...;;1,,()0,...;1,;,(

01
0

01
0

1
0

01
0

ikipiiiw

ikipnkikikipikikip

knkkk

knkkkkk

−=

−−−=−

−−

−−−−
.  (19) 

All probabilities for fragmentary trajectories between time N-n and N are obtained by summing (19) 

on irrelevant states. The conditions of Kolmogorov theorem [3] are then satisfied and the n-Markov 

process p0 is defined by its probability law. 
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The fact thatp0 is an approximation of p0, as described in 3.4, was derived in [2]. 

2.2.5.2. Evolution of the truncated process 

Equation (19) can easily be generalized to (writing now times in decreasing order) 

)0,...;;,...;,(

)....,,...,()0,...;;,...;;1,(

01
0

1101
0

inkiip

iiiiwikinkip

nkk

nkkknkknk

−

=−+

−−

−−−+−+

x

  (20) 

with  

)...,,(,...),..,()....,...,,( 112111 nkkkknknknkkknk iiiwiiwiiiiw −−−−+−+−−−+ = .  (21) 

Summing (20) on i0, …ik--1, we obtain  

),...;;1,(

)....;1,...,(),...;;1,(

1
0

111
0

...,1

nkikip

ikiiiwkinkip

nkk

nkkknkiknk
nkk

−−

−=−+

−−

−−−+−+ 
−−

x

   (22) 

which is clearly a kind of master equation. It is written more easily in the following formalism of 

partial trajectories. 

2.2.5.3. Partial, n-steps trajectories and master equation 

We consider integers K ≥ 0 and we define the partial n-steps trajectories (again writing times in 

decreasing order) ),...,),( 11)1( KnKnnKK iiiI +−+=
  

at the n corresponding, decreasing times 

),1...,,1)1(( KnKnnKTK +−+= . 

Here, n is the integer determined by the accuracy needed for the approximation, according to 

formula (12). 

So, in abbreviated notations, we can write  

),;1,...;;1)1(,(),( 11)1( KniKnInKiTI KnKnnKKK +−+ +−+
 

and 

),...;;1,(),( 1
00

KinKipTIP KnKKK −+ −+ .     (23) 

Choosing k = Kn in (22) for some positive integer K, this equation takes the condensed form 

)1,1(
0

)1(
1

),(
0

−−−
−

= KTKIPKIKIW
KIKTKIP .    (24) 

Because of the stationarity of p0, ),,()( 11
0

1 −−−  KKKKKK TITIPIIW  is independent of TK, TK-1. 

So, for K ≥ 1, (24) is a generalized master equation [3,12] for the n-steps partial trajectories and the 

generalized transition rate )( 1−KK
IIW  can be explicitly computed from (21).  

At this step, Eq (24) essentially has a formal interest, since the solution ),(
0

KK TIP is known 

from (19). However, it will prove to be very useful in Section 3.1.2. 
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3. Results 

3.1. Kolmogorov entropy in the non-stationary situation 

3.1.1. Non stationary mesoscopic process 

Assuming that the microscopic probability at the initial time is piecewise uniform, we saw that 

the mesoscopic k-times law is given by (3) or 

)...(
)(

)(
)0,;1,...;;1,( 0111

0

0
011 1

iii
i

ip
iikip

ktkk =− −+−− −



.   (25) 

Thus, 

)0,;1,...;;1,()0,;1,...;;1,( 011
0

011 iikiipiikiip kkkk −=− −− .   (26) 

Many similar equalities can be found between conditional probabilities of the non-stationary law 

p and the similar conditional probabilities of the stationary law p0, provided that the conditioning 

trajectory includes the initial mesostate i0 at time 0. In fact, although the following notations may be 

heavy, one can easily deduce from (26) the following property: 

If A = {ih},h, = 1, 2, … k , is any set of k 1 mesostates, and if T = {th}, h = 1, 2, …k, is any set 

of k positive integer times th, then the conditional probability of the partial trajectory (A, T) = {ih,th}, 

conditioned by some partial trajectory at times not included in T, but including state i0 at time 0, is 

identical to the corresponding conditional probability calculated with the stationary law 0
kp .  

These very simple properties allow one to show [2] that the nonstationary process obeys an 

approximate generalized master equation which holds on the partial trajectories ),( KK TI of length n 

defined in 3.5.2. 

They have been evoked in previous papers [2,13]. New results will now be presented and justified. 

Detailed derivations are postponed to Appendix A. 

3.1.2. Nonstationary finite memory approximation 

Thanks to (12), we can write for k > n 

)0,;1,...;;1,(),...;;1,,(

)0,;1,...;;1,()0,;1,...;;1,,(

)0,;1,...;;1,()0,;1,...;;1,,()0,;1,...;;,(

0111
0

011011
0

01101101

iikipnkikikip

iikipiikikip

iikipiikikipiikip

knkkk

kkk

kkkk

−−−

−−=

−−=

−−−

−−

−−

. (27) 

Thus, summing on i0, …in− k−1 we obtain 

),...;;1,(),...;;1,,(),...;;,( 11
0 nkikipnkikikipnkikip nkknkkknkk −−−−− −−−−− . 

(28)
 

Comparing (28) and (29), it is seen that the memory of the non-stationary process p at time k is 

approximately limited to the first n past times k−1,… k− n, as for the memory of the stationary process 
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nkkknkkk

kknkkk

iiiwnkikikip

ikikipnkikikip
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−−−

=−−=

−−−
.   (29) 

Similar to the reasoning of paragraph 2.2.5.2, Eq (29) implies 

),...;;1,(

)....,,...,,(),...;;1,(

1

111
...,1

nkikip

iiiiwkinkip

nkk

nkkknkiknk
nkk

−−

−+

−−

−−−+−+ 
−−

x

. (30) 

Taking k = Kn for K ≥ 1 and using the condensed notations defined in 3.5.2, it can be concluded that, 

with a high probability  

),()(),( 111
1

−−−
−

 KKKKIKK TIPIIWTIP
K

.    (31) 

So, the non-stationary probability ),( KK TIP  approximately satisfies the master Eq (24). Assume that 

the (nM)x(nM) stochastic matrix ( ))( 1−= KK IIWW is regular. Then, the exact stationary solution 

P0 of Eq (31) is unique.  

From the theory of stochastic matrices [14] it is expected that, for any n-steps partial trajectory  

110 ....,, −= njjjJ  at the successive times 1)1(....,;1, −++ nKKnKnT   we have for any I0 

),,( 00 TITJP →P0(J) when K→ .       (32) 

This can be proved with relevant assumptions (see [2] and remarks below). Consequently, if K→ 

(again writing times in decreasing order) 

)(...,()0,:...:1,,...;;1)1(,( 0,10101 jjiniKnjnKjp nnn −−− →−−+  .  (33) 

Renumbering the times and summing on appropriate indexes, (33) implies that, for any positive 

integers h, k, m and for m < k 

),...;;,()0,...;;,,...;;,( 0 kihkiimikihkip khkmkhk +→+ ++   when k →.  (34) 

So, the non-stationary process is mixing [1,3], as well as the stationary process. 

The meaning of approximation 3.1.2 is further discussed in Appendix A. 

Remarks. The reasoning from Eq (31) to Eq (34) applies to the truncated approximation p  that can 

be defined from p as 
0

p is defined from the stationary distribution
0p  in Section 2.2.5.1. It is shown 

in [2] that in the notation of partial trajectories, ),( KK TIP satisfies (31). So, it results [2] from the 

matrix theory that if the matrix )( 1−KK IIW is regular, ),( KK TIP tends to the stationary solution of (31) 

for any initial partial trajectory I0 when K→ 

 )(  ),,( 0
00 KKK IP TITIP → for any I0 if K→.     (35) 

3.1.3. Instantaneous entropy of the non-stationary process 

We now present our main, new result: Under certain, reasonable conditions, the instantaneous 

entropy sn(p) tends to a finite limit s(p) when n→, thus defining the Kolmogorov entropy s(p) of the 
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mesoscopic non-stationary process p. So, with relevant assumptions the basic result established by 

Kolmogorov for the stationary situation p0 is extended to non-stationarity. The discussion of this 

assertion needs some detailed calculations which are discussed in Appendix A. The proof can be 

summarized as follows. 

With a given accuracy , the memory of the process can be neglected at times larger than n(), in 

the sense of Section 2.2.4. Then, it is probable that the instantaneous entropy (6) at time N= k + n() 

is, for any k> 0, 
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(36) 

Here, p(i0) is the initial, non-stationary probability of i0 and )0,0...;;,(. ikki   is the stationary 

probability of a trajectory at times k. …, 0. 

Considering that by (34), the stationary process is mixing [1,3], we have 
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Thus, if k and n are large enough, 
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where we used the stationarity of the measure . It follows from (38) and (11) that )( psN  and 

00 )( NN sps   have a common limit s when N → 

→=→ NspspsN if)()( 0
.       (39) 

So, in appropriate conditions the Kolmogorov entropy s is defined even for a non-stationary 

mesoscopic process. This is our main result: Its detailed justification is commented in Appendix A. 

4. Discussion and conclusions 

We have proved that with relevant hypothesis, even in the non-stationary situation, the 

instantaneous entropy of the mesoscopic coarse-grained process tends to a finite limit, depending only 

on its stationary measure . Thus, we have completed the analysis presented in [2], which essentially 

proved that the partial trajectories traveled during a mesoscopic time interval n can be approximated 

by a n-times Markov process if n is large enough. This was done with relatively simple methods, 

although the notations and the calculations may be somewhat heavy. A more general theory, using the 
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formalism of martingales, will be presented in a further publication (B. Gaveau, M. Moreau, Coarse-

graining a deterministic system: Martingale theory, unpublished work). A complete discussion of our 

approach, including a comparison with other points of view (see for instance [24] and references herein) 

should profitably be performed at the light of the forthcoming article. 

From the present results, the entropy introduced by Kolmogorov can suggest new remarks 

concerning time and its relations with physics and probabilities. This subject has been addressed in a 

vast literature and over the course of centuries innumerable philosophers tried to analyze time [14]. Of 

course, we do not intend to discuss or even to evoke all these works. We would only like to point out 

that the Kolmogorov entropy presents an innovative point of view on two basic aspects of time: Its 

irreversibility and its (apparently) regular progress. Since Boltzmann [16,17], time irreversibility (the 

arrow of time) is linked to the growth of entropy for isolated systems. This principle stems from 

classical thermodynamics [10,11,18], but it received a first analytical basis thanks to Boltzmann [16,17], 

who not only gave a theoretical definition of entropy but also proved, by his celebrated H theorem, that the 

one-time entropy of a non-equilibrium isolated system increases with time, within the collision model 

of low density gases. However, this is a very specific model. In spite of some possible extensions, it 

gives no assurance on the generality of this conclusion. More recently, the relation between time and 

irreversibility again attracted the attention of many scientists (see for instance [19–25]). In particular it 

was given an original form by I. Prigogine [20–23]. However, despite their interest, it seems that many 

of these works are restricted to special examples and can hardly represent a general approach.  

Things are clearer if, with Kolmogorov, one considers the entropy of a stochastic process. On the 

one hand, this entropy is directly associated with its time evolution, which is included in the very 

definition of stochastic processes [3]. Furthermore, it is based on the memory of the events. Not only 

does this point agree with current observation, but it also meets the opinion of philosophers who 

pointed out that subjective time is related to human memory (see for instance [16] and references 

therein). On the other hand, the trajectory entropy clearly increases with time in all circumstances, 

whereas the average, instantaneous entropy (conditioned by the past) does not necessarily increase 

with time: It is even non-increasing for a stationary trajectory, as proved by Kolmogorov [1].  

Eventually, the instantaneous entropy tends to a finite limit for a stationary process and in certain 

conditions for a non-stationary process as well, as shown in this article. This fact appears to be linked 

with the regular flow of time commonly experienced. In the Kolmogorov approach, the time scale of 

the process is related to the rate of information creation due to the possible observations, according to 

Shannon [5], or it arises from the rate of disorder production due to the stochastic evolution, according 

to Boltzmann. 

We think that these simple remarks, concerning a very old and complex problem, could deserve 

to be developed in the framework of Kolmogorov entropy. 
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Appendix A. On the derivation of the main result, formula (39) 

A.1. Memory erasing and instantaneous entropy of the non-stationary mesoscopic distribution  

Although the memory erasing expressed by formula (12) only holds in the stationary situation, it 

has important consequences for the instantaneous entropy sn of a nonstationary mesoscopic process, 

defined by (6). This is due to the fact that the nonstationary conditional probabilities are equal to the 

stationary conditional probabilities in the specific case considered here and described in Section 3.1.1. 

So, the instantaneous entropy sN at time N can be written by (6) 
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(A.1) 

Let N = k + n, n and k be positive integers. Assuming that the stationary process  is mixing in the 

sense defined by (32), it is found that if k is large enough, 
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where 0
ns is the instantaneous entropy of the stationary process at time n (see Eq (37)). So, if k and n→ 
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and s is the Kolmogorovb entropy (39) of the stationary process.  

On the other hand, it results from the memory erasing property (12) that, in )2(
Ns , the ratio  
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is (probably) very close to 1 if n is large enough. As a consequence, it can be proved, with relevant 

assumptions (see below) that  

→→ Ns N if0
)2(

.        (A.4) 

From (A.1-3), we can conclude with some additional hypotheses that  

→→ Nss N if .        (A.5) 

Then, the instantaneous entropy of a nonstationary process tends to the same limit s as the stationary 

process corresponding to the stationary measure . 

It should be pointed out that supplementary hypotheses are necessary to prove (A.5). In fact, the 

memory erasing relation (12), which is essential for the derivation, is most probably satisfied but with 

a very low probability it can fail to be verified. A sufficient condition for obtaining (A.5) is that the 

ratio  of (A.3) has finite upper and lower bounds, independent of n and N.  
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With this assumption, it is not difficult to derive the previous results, but the calculations are 

lengthy. Rather than detailing them we prefer to summarize and discuss the main hypotheses used in 

the reasoning.  

A.2. Complementary discussion 

It has been shown that the mesoscopic process approximately satisfies a generalized Markov 

process, whose probability tends to the stationary probability at infinite times. This fact does not 

necessarily imply that the mesoscopic probability has the same property. We gave arguments in this 

sense elsewhere [2,13].  

This is a general problem in modeling, when the evolution of some actual system is shown to 

obey approximate, theoretical equations: It is difficult to know whether their formal asymptotics still 

represent the natural system correctly. This point is overlooked in some physical publications. Even if 

mathematical conditions are found to ensure the relevance of the model at large times, it is difficult to check 

whether these conditions are verified in practice. The present study does not avoid this difficulty completely. 

Another basic point is that the stationary, mesoscopic probability   is supposed to be mixing 

(see (32)). This property seems to be a natural extension of the memory erasing, proved for the 

mesoscopic process. In fact, this assertion is not obvious, but it is true for a process with a finite n-

steps memory, or generalized Markov process. According to the previous discussion, this should be 

true also for the stationary probability , since we have shown that, with any accuracy ,   can be 

approximated by a process p0 with a finite memory of n(), steps. 

Eventually, the assumption that the ratio , defined by (A.3), has finite, nonzero upper and lower 

bounds seems reasonable because it just completes and reinforces the fact that  is almost everywhere 

close to 1. One can notice that the ratio   should only be considered if 

.0),...;;1,,( 1 −− −− nNiNiNi nNNN
  

The case 0),...;;1,,( 1 =−− −− nNiNiNi nNNN   implies 

0),...;;1,;,( 1 =−− −− nNiNiNi nNNN   and 0)0,...;;1,;,( 01 =−− iNiNi NN  . In this situation, the 

partial trajectory ),...;;0,( 0 Nii N  does not contribute to the entropy sN and it can be ignored for 

calculating  . Because the space M of mesostates i is finite and consists in M elements, the number of 

partial trajectories iN-n, …iN is M n and the upper and lower bounds of  are finite and independent of N. 

Their values can only be estimated in specific cases or for some academic models.  
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