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1. Introduction

In recent years, fractional calculus has attracted a large number of mathematicians and modelers.
In view of the growing interests in the subject, several definitions of fractional order differential
and integral operators have been proposed according to the physical aspects of the problem under
investigation. Some fractional order initial value problems and boundary value problems, involving
Riemann-Liouville, Liouville, Caputo and Hadamard type fractional differential equations, has
attracted the attention of many researchers, for instance, see [1–9].

In 2014, Abdeljawad [10] and Khalil [11] introduced and elaborated the concept of conformable
fractional differential and integral operators, which were used in many interesting problems related to
the solvability of nonlinear equations and systems. This is the field where advances are continuously
taking place.

In order to present our problem, in this paper, we need first to mention some important research
results published in the field of fractional differential systems. In [12], Tahereh Bashiri et al. considered
a non cooperative system with the fractional order p ∈ (0, 1) and investigated the existence of solutions.
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In [13], Varsha Daftardar-Gejji proposed a fractional differential system and analyzed the existence
of positive solutions of the system in detail. In [14], Liu considered a cooperative system with the
fractional order α, β ∈ (0, 1). In [15], Ahmed et al. obtained the existence and uniqueness results for a
nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary
condition.

In [16], Ahmed et al. introduced and analyzed an impulsive hybrid system of conformable fractional
differential equations with boundary conditions, described by

T tk
α x(t) = f (t, x(t)),

∆x(tk) = S k(x(tk)), ∆x
′

(tk) = S ∗k(x(tk)),
x(0) = 0, x(T ) = 0,

where Tα denotes the conformable fractional derivative of order α ∈ (1, 2].
In [12], the fractional order of the two equations is the same and the perturbation term is also

the same. In [14], the perturbation is a simple type. In [16], the authors studied discrete problems.
Compared with the study in this article, we will consider a continuous problem with an integro-
differential hybrid perturbation and the different order of fractional derivatives.

Due to the importance and academic value of the topic of fractional differential equations and
systems, the importance of this subject in the modeling of so many phenomena, and the studies
published in this field, we choose to study such models. As we know, there are few studies on the
subject of conformable fractional systems. Motivated by the studies cited above, we will study a new
type of fractional differential system, called the conformable fractional differential system, and a new
type of hybrid perturbation (integro-differential term).

In this paper, motivated by all the aforementioned work on fractional differential equations and
conformable fractional differential systems, we introduce and analyze a hybrid system of conformable
fractional integro-differential system with boundary conditions, which is given by

Tα

u (t) −
m∑

i=1

I pi fi(t, u(t), v(t))

 = h (t, u (t) , v (t)) ,

T β

v (t) −
m∑

i=1

Iqigi(t, u(t), v(t))

 = k (t, u (t) , v (t)) , (1.1)

u(0) = u(T ) = 0, v(0) = v(T ) = 0.

Here, Tα denotes the conformable fractional derivative of order α ∈ (1, 2], T β is the conformable
fractional derivative of order β ∈ (1, 2], I pi is the conformable fractional integral of order pi, Iqi is the
conformable fractional integral of order qi, and h, k ∈ C([0,T ]×R×R,R) and fi, gi ∈ C([0,T ]×R,R).

The organization of this work is as follows. Section 2 contains some preliminary facts. In Section 3,
we present the solution for the boundary value problem of hybrid fractional integro-differential
system (1.1) involving the conformable fractional derivative, and then prove our main existence results.
In Section 4, we prove the existence and uniqueness of solutions to the system. Finally, we illustrate
the obtained results by an example.

2. Preliminaries

Now, we give some basic concepts of conformable fractional calculus (see [10] and [11]).
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Definition 2.1. [10,11] For α ∈ (0, 1]. The conformable fractional derivative of a function f :
[a,∞)→ R of order α is defined by

Tα
a f (t) = lim

ε→0

f (t + ε(t + a)1−α) − f (t)
ε

, (2.1)

for all t > a. If Tα
a f (t) exists on (a, b), then Tα

a f (a) = lim
t→a

Tα
a f (t).

Definition 2.2. [10,11] Let α ∈ (n, n + 1]. The conformable fractional derivative of a function f :
[a,∞)→ R of order α, where f (n)(t) exists, is defined by

Tα
a f (t) = Tα−n

a f (n)(t). (2.2)

Definition 2.3. [10,11] Let α ∈ (n, n + 1]. The conformable fractional integral of a function f :
[a,∞)→ R of order α is defined by

Iαa f (t) =
1
n!

∫ t

a
(t − s)n(s − a)α−n−1 f (s)ds. (2.3)

Lemma 2.1. [10,11] Let α ∈ (n, n + 1]. If f (t) is a continuous function on [a,∞), then Tα
a Iαa f (t) = f (t)

for all t > a.

Lemma 2.2. [10] Let α ∈ (n, n + 1]. Then Tα
a (t − a)k = 0 for all t ∈ [a, b] and k = 1, 2, ..., n.

Lemma 2.3. [10] Let α ∈ (n, n + 1]. If Tα
a f (t) is a continuous function on [a,∞), then

Iαa Tα
a f (t) = f (t) −

n∑
k=0

f (k)(a)(t − a)k

k!
, (2.4)

for all t > a.

Lemma 2.4 (Krasnoselskii fixed point theorem). [17] Let E be a non-empty, bounded, closed and
convex subset of a Banach space X, and A, B : E 7→ E satisfy the following assumptions:

(1) Ax + By ∈ E, for every x, y ∈ X,
(2) A is a contraction,
(3) B is compact and continuous.

Then, there exists z ∈ X such that Az + Bz = z.

Lemma 2.5 (Banach fixed point theorem). [18] Let X be a non-empty complete metric space, and
T : X 7→ X be a contraction mapping. Then, there exists a unique point x ∈ X such that T x = x.

Now we define a solution to the system (1.1).

Definition 2.4. The pair of functions u, v ∈ C(J,R) with their conformable fractional derivatives of
order α and β existing on J is a solution of (1.1) if it satisfies (1.1).
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3. Existence results

In this section, we study the existence of solutions to the system (1.1). By Lemma 3.1, we transform
the system (1.1) into a fixed point problem.

Lemma 3.1. Let ϕ, φ ∈ C(0,T ) and u, v ∈ C(J,R) be continuous real valued functions. Then the
solution of the system

Tα

u (t) −
m∑

i=1

I pi fi(t, u(t), v(t))

 = ϕ (t) ,

T β

v (t) −
m∑

i=1

Iqigi(t, u(t), v(t))

 = φ (t) , (3.1)

u(0) = u(T ) = 0, v(0) = v(T ) = 0,

is given by

u(t) =

∫ t

0
(t − s)sα−2ϕ(s)ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u(s), v(s))ds

−
1
T

∫ T

0
(T − s)sα−2ϕ(s)ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u(s), v(s))ds

 t, (3.2)

v(t) =

∫ t

0
(t − s)sβ−2φ(s)ds +

m∑
i=1

∫ t

0
(t − s)sqi−2gi(s, u(s), v(s))ds

−
1
T

∫ T

0
(T − s)sβ−2φ(s)ds +

m∑
i=1

∫ T

0
(T − s)sqi−2gi(s, u(s), v(s))ds

 t. (3.3)

Proof. Applying the conformable fractional integrals Iα and Iβ on the both sides of equations of
system (3.1) respectively and using Lemma 2.3, we get that the general solution of the system (3.1) for
t ∈ J is

u(t) = Iαϕ(t) + C1 + C2t +

m∑
i=1

I pi fi(t, u(t), v(t)), (3.4)

v(t) = Iβφ(t) + C3 + C4t +

m∑
i=1

Iqigi(t, u(t), v(t)). (3.5)

where C1,C2,C3 and C4 are unknown constants. Using the conditions u(0) = 0 and v(0) = 0 gives
C1 = 0 and C3 = 0.

Now the Eqs (3.4) and (3.5) have the form

u(t) = Iαϕ(t) + C2t +

m∑
i=1

I pi fi(t, u(t), v(t)),

v(t) = Iβφ(t) + C4t +

m∑
i=1

Iqigi(t, u(t), v(t)).
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Using the conditions u(T ) = 0 and v(T ) = 0 we obtain

C2 = − 1
T

(∫ T

0
(T − s)sα−2ϕ(s)ds +

∑m
i=1

∫ T

0
(T − s)spi−2gi(s, u(s), v(s))ds

)
,

C4 = − 1
T

(∫ T

0
(T − s)sβ−2φ(s)ds +

∑m
i=1

∫ T

0
(T − s)sqi−2gi(s, u(s), v(s))ds

)
.

Using the values of C1,C2,C3 and C4 in (3.4) and (3.5), we get the solution. The converse follows from
direct computation. This completes the proof. �

Our first result concerns the study of existence of solution for problem (1.1) using the Krasnoselskii
fixed-point theorem. For this, we will need some assumptions about the functions fi, gi, h and k.

Denote by X = (C([0,T ] × R) ×C([0,T ] × R),R), the Banach space endowed with the norm

‖(u, v)‖ = ‖u‖ + ‖v‖ = sup
t∈[0,T ]

|u(t)| + sup
t∈[0,T ]

|v(t)| ,

for (u, v) ∈ X.
(H1) The functions fi, gi : J ×R×R −→ R and h, k : J ×R×R −→ R are continuous and there exist

nonnegative functions ηi, σi, i = 1, ..,m, µ, and λ such that

| fi(t, u(t), v(t))| ≤ ηi(t),
|gi(t, u(t), v(t))| ≤ σi(t),
|h(t, u(t), v(t))| ≤ µ(t),
|k(t, u(t), v(t))| ≤ λ(t).

(H2) There exist positive constants Ck, k = 1, .., 4, Li j, j = 1, 2, Mi,Ni, i = 1, 2, ..,m such that

|h(t, u1, v1) − h(t, u2, v2)| 6 C1 ‖u1 − u2‖ + C2 ‖v1 − v2‖ ,

|k(t, u1, v1) − k(t, u2, v2)| 6 C3 ‖u1 − u2‖ + C4 ‖v1 − v2‖ ,

| fi(t, u1, v1) − fi(t, u2, v2)| 6 Li1 ‖u1 − u2‖ + Li2 ‖v1 − v2‖ ,

|gi(t, u1, v1) − gi(t, u2, v2)| 6 Ni ‖u1 − u2‖ + Mi ‖v1 − v2‖ .

Theorem 3.1. Assume that the assumptions (H1) and (H2) hold. If TαC
α(α − 1)

+

m∑
i=1

T pi Li

pi(pi − 1)

 < 1

and  T βN
β(β − 1)

+

m∑
i=1

T qi Mi

qi(qi − 1)

 < 1,

then the fractional integro-differential system (1.1) has at least one solution in X on J.
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Proof. We define an operator Π : X 7−→ X associated with the system (1.1) by

Π(u, v)(t) = (Π1(u, v)(t),Π2(u, v)(t)) ,

where

Π1(u, v)(t) =

∫ t

0
(t − s)sα−2h(s, u(s), v(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u(s), v(s))ds

−
t
T

∫ T

0
(T − s)sα−2h(s, u(s), v(s))ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u(s), v(s))ds

 ,
Π2(u, v)(t) =

∫ t

0
(t − s)sβ−2k(s, u(s), v(s))ds +

m∑
i=1

∫ t

0
(t − s)sqi−2gi(s, u(s), v(s))ds,

−
t
T

∫ T

0
(T − s)sβ−2k(s, u(s), v(s))ds +

m∑
i=1

∫ T

0
(T − s)sqi−2gi(s, u(s), v(s))ds

 .
First, we will transform problem (1.1) into a fixed point problem Πx = x, where Π is the operator

defined above. So, before starting the proof, we decompose Πi into a sum of two operators Ai and Bi,
i = 1, 2 where

A1(u, v)(t) =

∫ t

0
(t − s)sα−2h(s, u(s), v(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u(s), v(s))ds,

A2(u, v)(t) = −
t
T

∫ T

0
(T − s)sα−2h(s, u(s), v(s)ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u(s), v(s))ds

 ,
and

B1(u, v)(t) =

∫ t

0
(t − s)sβ−2k(s, u(s), v(s))ds +

m∑
i=1

∫ t

0
(t − s)sqi−2gi(s, u(s), v(s))ds,

B2(u, v)(t) = −
t
T

∫ T

0
(T − s)sβ−2k(s, u(s), v(s))ds +

m∑
i=1

∫ T

0
(T − s)sqi−2gi(s, u(s), v(s))ds

 .
Observe that

Π1(u, v) = A1(u, v) + A2(u, v),
Π2(u, v) = B1(u, v) + B2(u, v).

Now, we show that the operators A1, A2, B1 and B2 satisfy all conditions of Lemma 2.4 in a series
of steps.

Step 1. We define the set Ω = {(u, v) ∈ X : ‖(u, v)‖X ≤ r}, where r is a positive real constant
satisfying the condition

r > max

 2 ‖µ‖Tα

α(α − 1)
+

m∑
i=1

2 ‖ηi‖T pi

pi(pi − 1)
;

2 ‖λ‖T β

β(β − 1)
+

m∑
i=1

2 ‖σi‖T qi

qi(qi − 1)

 . (3.6)
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First, we show that A1(u, v) + A2(u, v) ∈ Ω and B1(u, v) + B2(u, v) ∈ Ω. So for (u, v) ∈ Ω and t ∈ J,
we have

|A1(u, v)(t) + A2(u, v)(t)|

≤

∫ t

0
(t − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ t

0
(t − s)spi−2 | fi(s, u(s), v(s))| ds

+
t
T

∫ T

0
(T − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ T

0
(T − s)spi−2 | fi(s, u(s), v(s))| ds


≤

∫ t

0
(t − s)sα−2µ(s)ds +

m∑
i=1

∫ t

0
(t − s)spi−2ηi(s)ds

+
t
T

∫ T

0
(T − s)sα−2µ(s)ds +

m∑
i=1

∫ T

0
(T − s)spi−2ηi(s)ds


≤ ‖µ‖

(∫ t

0
(t − s)sα−2ds +

t
T

∫ T

0
(T − s)sα−2ds

)
+ ‖ηi‖

 m∑
i=1

∫ t

0
(t − s)spi−2ds +

t
T

m∑
i=1

∫ T

0
(T − s)spi−2


≤ ‖µ‖

(
tα

α(α − 1)
+

tTα

Tα(α − 1)

)
+

m∑
i=1

‖ηi‖

(
tpi

pi(pi − 1)
+

tT pi

T pi(pi − 1)

)
≤ ‖µ‖

2Tα

α(α − 1)
+

m∑
i=1

‖ηi‖
2T pi

pi(pi − 1)
≤ r.

That implies that ‖A1(u, v)(t) + A2(u, v)(t)‖X ≤ r, which means that A1(u, v)(t) + A2(u, v) ∈ Ω.

Analogously, we obtain

|B1(u, v)(t) + B2(u, v)(t)|

≤ ‖λ‖
2T β

β(β − 1)
+

m∑
i=1

‖σi‖
2T qi

qi(qi − 1)
≤ r.

That means that B1(u, v)(t) + B2(u, v) ∈ Ω.

Step 2. We want to show that A2 and B2 are contractions on Ω, for (u1, v1), (u2, v2) ∈ Ω and t ∈ J.
Using the assumption (H1), we have

|A2(u1, v1)(t) − A2(u2, v2)(t)|

=

∣∣∣∣∣ − t
T

∫ T

0
(T − s)sα−2h(s, u1(s), v1(s))ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u1(s), v1(s))ds


+

t
T

∫ T

0
(T − s)sα−2h(s, u2(s), v2(s))ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u2(s), v2(s))ds

 ∣∣∣∣∣
AIMS Mathematics Volume 8, Issue 11, 26260–26274.
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≤
t
T

∫ T

0
(T − s)sα−2 |h(s, u1(s), v1(s)) − h(s, u2(s), v2(s))| ds

+
t
T

m∑
i=1

∫ T

0
(T − s)spi−2 | fi(s, u1(s), v1(s)) − fi(s, u2(s), v2(s))| ds

≤
t
T

[ ∫ T

0
(T − s)sα−2 [C1(u1(s) − u2(s)) + C2(v1(s) − v2(s))] ds

+

m∑
i=1

∫ T

0
(T − s)spi−2 [L1i(u1(s) − u2(s)) + L2i(v1(s) − v2(s))] ds

]
≤

t
T

(Tα(C1 ‖u1 − u2‖ + C2 ‖v1 − v2‖)
α(α − 1)

)
+

m∑
i=1

T pi(L1i ‖u1 − u2‖ + L2i ‖v1 − v2‖

pi(pi − 1)


≤

TαC
α(α − 1)

‖u1 − u2, v1 − v2‖ +

m∑
i=1

T pi Li

pi(pi − 1)
‖u1 − u2, v1 − v2‖

≤

 TαC
α(α − 1)

+

m∑
i=1

T pi Li

pi(pi − 1)

 ‖u1 − u2, v1 − v2‖ .

Analogously, we obtain

|B2(u1, v1)(t) − B2(u2, v2)(t)| ≤

 T βN
β(β − 1)

+

m∑
i=1

T qi Mi

qi(qi − 1)

 ‖u1 − u2, v1 − v2‖ .

Hence, the operators A2 and B2 are contractions on Ω.
Step 3. Now, we prove that A1 and B1 are completely continuous on Ω. We need to show that the

sets (A1Ω) and (B1Ω) are uniformly bounded, the sets (A1Ω) and (B1Ω) are equicontinuous, and the
operators A1 : Ω 7−→ Ω and B1 : Ω 7−→ Ω are continuous.

For (u, v) ∈ Ω and t ∈ J, we have

|A1(u, v)(t)| =

∣∣∣∣∣∣∣
∫ t

0
(t − s)sα−2h(s, u(s), v(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u(s), v(s))ds

∣∣∣∣∣∣∣
≤

∫ t

0
(t − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ t

0
(t − s)spi−2 | fi(s, u(s), v(s))| ds

≤

∫ t

0
(t − s)sα−2µ(s)ds +

m∑
i=1

∫ t

0
(t − s)spi−2ηi(s)ds

≤ ‖µ‖
tα

α(α − 1)
+

m∑
i=1

‖ηi‖ tpi

pi(pi − 1)

≤ ‖µ‖
Tα

α(α − 1)
+

m∑
i=1

‖ηi‖T pi

pi(pi − 1)
.

Then the set (A1Ω) is uniformly bounded. Analogously, we obtain

|B1(u, v)(t)| ≤ ‖λ‖
T β

β(β − 1)
+

m∑
i=1

‖σi‖T qi

qi(qi − 1)
,
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so the set (B1Ω) is uniformly bounded.
Now, we show that (A1Ω) and (B1Ω) are equicontinuous. Let t1, t2 ∈ J with t1 < t2, we have for any

(u, v) ∈ Ω,

|A1(u, v)(t2) − A1(u, v)(t1)|

=

∣∣∣∣∣ ∫ t2

0
(t2 − s)sα−2h(s, u(s), v(s))ds +

m∑
i=1

∫ t2

0
(t2 − s)spi−2 fi(s, u(s), v(s))ds

−

∫ t1

0
(t1 − s)sα−2h(s, u(s), v(s))ds −

m∑
i=1

∫ t1

0
(t1 − s)spi−2 fi(s, u(s), v(s))ds

∣∣∣∣∣
≤

∫ t1

0
(t2 − s)sα−2 |h(s, u(s), v(s))| ds +

∫ t2

t1
(t2 − s)sα−2 |h(s, u(s), v(s))| ds

−

∫ t1

0
(t1 − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ t1

0
(t2 − s)spi−2 | fi(s, u(s), v(s))| ds

+

m∑
i=1

∫ t2

t1
(t2 − s)spi−2 | fi(s, u(s), v(s))| ds −

m∑
i=1

∫ t1

0
(t1 − s)spi−2 | fi(s, u(s), v(s))| ds

≤

∫ t2

t1
(t2 − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ t2

t1
(t2 − s)spi−2 | fi(s, u(s), v(s))| ds

≤

∫ t2

t1
(t2 − s)sα−2µ(s)ds +

m∑
i=1

∫ t2

t1
(t2 − s)spi−2ηi(s)ds

≤ ‖µ‖

(
tα2 − tα1
α(α − 1)

)
+

m∑
i=1

‖ηi‖

(
tpi
2 − tpi

1

pi(pi − 1)

)
.

Analogously,

|B1(u, v)(t2) − B1(u, v)(t1)| ≤ ‖λ‖

 tβ2 − tβ1
β(β − 1)

 +

m∑
i=1

‖σi‖

(
tqi
2 − tqi

1

qi(qi − 1)

)
.

As t1 7−→ t2, the right hand side of the above inequalities tend to zero. Therefore, it follows that (A1Ω)
and (B1Ω) are equicontinuous.

Finally, we show that the operators A1 and B1 are continuous in X. Let (un, vn) be a sequence in Ω

converging to a point (u, v) ∈ Ω. Then, by Lebesgue dominated convergence theorem, for all t ∈ J, we
have

lim
n7−→∞

A1(un, vn)(t)

= lim
n7−→∞

∫ t

0
(t − s)sα−2h(s, un(s), vn(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, un(s), vn(s))ds


=

∫ t

0
(t − s)sα−2 lim

n7−→∞
h(s, un(s), vn(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 lim

n7−→∞
fi(s, un(s), vn(s))ds

=

∫ t

0
(t − s)sα−2h(s, u(s), v(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u(s), v(s))ds = A1(u, v)(t).
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A similar proof works for the operator B1.
Consequently, A1 and B1 are continuous. Therefore, A1 and B1 are also relatively compact on Ω.

Using the Arzilà-Ascoli theorem, we conclude that A1 and B1 are compact on Ω. Now, all conditions
of the Krasnoselskiiś fixed point theorem are satisfied, so the operator Π has a fixed point in Ω. Finally,
we deduce that the system (1.1) has at least one solution in X on J. �

4. Existence and uniqueness results

In this section, we study the existence and uniqueness of solution of the system (1.1). Our result is
based on the Banach fixed point theorem.

Theorem 4.1. Assume that the hypothesis (H1) and (H2) are true. If

2

 CTα

α(α − 1)
+

m∑
i=1

LT pi

pi(pi − 1)

 < 1

and

2

 CT β

β(β − 1)
+

m∑
i=1

MT qi

qi(qi − 1)

 < 1,

then, the fractional integro-differential system (1.1) has a unique solution in X on J.

Proof. We define an operator Π : X 7−→ X associated with the system (1.1) by

Π(u, v)(t) = (Π1(u, v)(t),Π2(u, v)(t)) ,

given in the proof of Theorem 3.1.
Now, we show that the operator Π has a fixed point in Bρ, which represents a unique solution of

system (1.1). So, the proof is given in two steps.
Step 1. First, we define the set Bρ by

Bρ = {(u, v) ∈ X; ‖(u, v)‖X ≤ ρ} ,

where the positive real constant ρ is chosen so that

ρ > 2
(
‖µ‖Tα

α(α − 1)
+
‖λ‖T β

β(β − 1)

)
+ 2

m∑
i=1

(
‖ηi‖T pi

pi(pi − 1)
+
‖σi‖T qi

qi(qi − 1)

)
.

We will show that ΠiBρ ⊂ Bρ, i = 1, 2. For each t ∈ J and (u, v) ∈ Bρ,

|Π1(u, v)(t)|

≤

∫ t

0
(t − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ t

0
(t − s)spi−2 | fi(s, u(s), v(s))| ds

+
t
T

∫ T

0
(T − s)sα−2 |h(s, u(s), v(s))| ds +

m∑
i=1

∫ T

0
(T − s)spi−2 | fi(s, u(s), v(s))| ds
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≤

∫ t

0
(t − s)sα−2µ(s)ds +

m∑
i=1

∫ t

0
(t − s)spi−2ηi(s)ds

+
t
T

∫ T

0
(T − s)sα−2µ(s)ds +

m∑
i=1

∫ T

0
(T − s)spi−2ηi(s)ds


≤ ‖µ‖

∫ t

0
(t − s)sα−2ds +

m∑
i=1

‖ηi‖

∫ t

0
(t − s)spi−2ds

+
t
T

‖µ‖∫ T

0
(T − s)sα−2ds +

m∑
i=1

‖ηi‖

∫ T

0
(T − s)spi−2ds


≤ ‖µ‖

tα + Tα

α(α − 1)
+

m∑
i=1

‖ηi‖
tpi + T pi

pi(pi − 1)

≤ ‖µ‖
2Tα

α(α − 1)
+

m∑
i=1

‖ηi‖
2T pi

pi(pi − 1)
.

This implies

‖Π1(u, v)(t)‖ ≤ ‖µ‖
2Tα

α(α − 1)
+

m∑
i=1

‖ηi‖
2T pi

pi(pi − 1)
≤ ρ.

Therefore, Π1Bρ ⊂ Bρ. Analogously, we obtain

‖Π2(u, v)(t)‖ ≤ ‖λ‖
2T β

β(β − 1)
+

m∑
i=1

‖σi‖
2T qi

qi(qi − 1)
≤ ρ,

so Π2Bρ ⊂ Bρ.

For any (u, v) ∈ Bρ, we have

‖Π(u, v)(t)‖ = ‖Π1(u, v)(t)‖ + ‖Π2(u, v)(t)‖

≤ ‖µ‖
2Tα

α(α − 1)
+

m∑
i=1

‖ηi‖
2T pi

pi(pi − 1)
+ ‖λ‖

2T β

β(β − 1)
+

m∑
i=1

‖σi‖
2T qi

qi(qi − 1)

≤ 2
(
‖µ‖Tα

α(α − 1)
+
‖λ‖T β

β(β − 1)

)
+ 2

m∑
i=1

(
‖ηi‖T pi

pi(pi − 1)
+
‖σi‖T qi

qi(qi − 1)

)
≤ ρ,

which shows that Π maps Bρ into itself.
Step 2. We will show that the operator Π : Bρ 7→ Bρ is a contraction. Let (u1, v1), (u2, v2) ∈ X and

t ∈ J. By assumption (H2), we obtain

‖Π1(u1, v2)(t) − Π1(u2, v2)(t)‖

=

∣∣∣∣∣ ∫ t

0
(t − s)sα−2h(s, u1(s), v1(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u1(s), v1(s))ds
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−
t
T

∫ T

0
(T − s)sα−2h(s, u1(s), v1(s))ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u1(s), v1(s))ds


−

∫ t

0
(t − s)sα−2h(s, u2(s), v2(s))ds +

m∑
i=1

∫ t

0
(t − s)spi−2 fi(s, u2(s), v2(s))ds

+
t
T

∫ T

0
(T − s)sα−2h(s, u2(s), v2(s))ds +

m∑
i=1

∫ T

0
(T − s)spi−2 fi(s, u2(s), v2(s))ds

 ∣∣∣∣∣
≤

∫ t

0
(t − s)sα−2 |h(s, u1(s), v1(s)) − h(s, u2(s), v2(s))| ds

+

m∑
i=1

∫ t

0
(t − s)spi−2 | fi(s, u1(s), v1(s)) − fi(s, u2(s), v2(s))| ds

+
t
T

[ ∫ T

0
(T − s)sα−2 |h(s, u1(s), v1(s)) − h(s, u2(s), v2(s))| ds

+

m∑
i=1

∫ T

0
(T − s)spi−2 | fi(s, u1(s), v1(s)) − fi(s, u2(s), v2(s))| ds

]
≤

∫ t

0
(t − s)sα−2 [C1(u1(s) − u2(s)) + C2(v1(s) − v2(s))] ds

+

m∑
i=1

∫ t

0
(t − s)spi−2 [L1i(u1(s) − u2(s)) + L2i(v1(s) − v2(s))] ds

+
t
T

[ ∫ T

0
(T − s)sα−2 [C1(u1(s) − u2(s)) + C2(v1(s) − v2(s))] ds

+

m∑
i=1

∫ T

0
(T − s)spi−2 [L1i(u1(s) − u2(s)) + L2i(v1(s) − v2(s))] ds

]
≤

C1 ‖u1 − u2‖ + C2 ‖v1 − v2‖

α(α − 1)
tα +

m∑
i=1

L1i ‖u1 − u2‖ + L2i ‖v1 − v2‖

pi(pi − 1)
tpi

+
C1 ‖u1 − u2‖ + C2 ‖v1 − v2‖

α(α − 1)
Tα +

m∑
i=1

L1i ‖u1 − u2‖ + L2i ‖v1 − v2‖

pi(pi − 1)
T pi

≤
2CTα

α(α − 1)
(‖u1 − u2‖ + ‖v1 − v2‖) + 2

m∑
i=1

LT pi

pi(pi − 1)
(‖u1 − u2‖ + ‖v1 − v2‖)

≤ 2

 CTα

α(α − 1)
+

m∑
i=1

LT pi

pi(pi − 1)

 ‖(u1 − u2, v1 − v2)‖ .

This implies that Π1 is a contraction.

Analogously, we can prove that Π2 is a contraction. Then, by the Banach fixed point theorem, there
exists a unique point (u, v) ∈ X, such that Π(u, v) = (u, v). It is the unique solution of our system (1.1),
and then the proof of the theorem is completed. �
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5. Example

Consider the following Hybrid fractional integro-differential system involving conformable
fractional derivative operators

T
3
2

u (t) −
2∑

i=1

I pi fi(t, u(t), v(t))

 =
1 + t2 + sin(u(t)) + cos(v(t))

8(1 + t)
,

T
5
3

v (t) −
2∑

i=1

Iqigi(t, u(t), v(t))

 =
t3 + t + cos(u(t)) + sin(v(t))

(t + 1)(t2 + 1)
, (5.1)

u(0) = u(T ) = 0, v(0) = v(T ) = 0.

The problem (5.1) is a particular case of (1.1) with α = 3
2 , β = 5

3 , and

fi(t, u(t), v(t)) =
t(|u(t)| + |u(t)|)

8i
,

gi(t, u(t), v(t)) =
it(cos(u(t)) + |v(t)|)

50
.

Clearly, fi, gi, i = 1, 2, ..,m, h, and k are continuous functions and satisfy condition (H1) with ηi(t) =
t
4i , σi(t) = it

25 , µ(t) = 1+t2
8(1+t) and λ(t) = t3+t

(1+t)(1+t2) .
Also

| fi(t, u1, v1) − fi(t, u2, v2)| ≤
t
8i
|u1 − u2 + v1 − v2|

≤
T
8i
‖u1 − u2, v1 − v2‖ ,

|gi(t, u1, v1) − gi(t, u2, v2)| ≤
it
50
|cos(u1) − cos(u2) + sin(v1) − sin(v2)|

≤
iT
50
‖u1 − u2, v1 − v2‖ ,

and

|k(t, u1, v1) − k(t, u2, v2)| ≤
1

(t + 1)(t2 + 1)
‖u1 − u2, v1 − v2‖ .

Taking the value of T = 1 we get TαC
α(α − 1)

+

m∑
i=1

T pi Li

pi(pi − 1)

 = 0.37500000 < 1, T βN
β(β − 1)

+

m∑
i=1

T qi Mi

qi(qi − 1)

 = 0.42161904 < 1,

where C = 1
8 , L1 = 1

4 , L2 = 1
8 , N = 1

2 and M1 = 1
25 ,M2 = 2

25 and the values of pi and qi are chosen as
pi = 3

i . This gives p1 = 3, p2 = 3
2 , and qi = 2i+3

2i we get q1 = 5
2 , q2 = 7

4 .
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Since the assumptions (H1) and (H2) hold, according to Theorem 3.1 the problem (5.1) has at least
one solution. To see if the solution is unique, note that assumptions (H1) and (H2) hold, from the first
part of the existence result. Also, the conditions of Theorem 3.2

2

 TαC
α(α − 1)

+

m∑
i=1

T pi Li

pi(pi − 1)

 = 0.75000000 < 1,

2

 T βN
β(β − 1)

+

m∑
i=1

T qi Mi

qi(qi − 1)

 = 0.84323808 < 1,

are satisfied. Therefore, from Theorem 3.2, the problem (5.1) has a unique solution.

6. Conclusions

In this work, we consider the existence and uniqueness of solutions for the boundary value problem
of hybrid fractional integro-differential systems involving the conformable fractional derivative. By
transforming the problem into a Volttera integral equation and using the Krasnoselskii fixed point
theorem, we get the results about the existence of solutions for the boundary value problem (1.1) under
some conditions. Then, using the Banach fixed point theorem, we get the existence and uniqueness of
the solution for the boundary value problem, after transforming the problem into a fixed point problem.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11971032,
62073114).

Conflict of interest

The authors declare that there are no competing interests.

References

1. S. H. Liang, J. H. Zhang, Existence of multiple positive solutions for m-point fractional
boundary value problems on an infinite interval, Math. Comput. Model., 54 (2011), 1334–1346.
https://doi.org/10.1016/j.mcm.2011.04.004

2. Z. B. Bai, W. C. Sun, Existence and multiplicity of positive solutions for singular
fractional boundary value problems, Comput. Math. Appl., 63 (2012), 1369–1381.
https://doi.org/10.1016/j.camwa.2011.12.078

3. R. P. Agarwal, D. O‘Regan, S. Stanek, Positive solutions for mixed problems of singular fractional
differential equations, Math. Nachr., 285 (2012), 27–41. https://doi.org/10.1002/mana.201000043

AIMS Mathematics Volume 8, Issue 11, 26260–26274.

http://dx.doi.org/https://doi.org/10.1016/j.mcm.2011.04.004
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2011.12.078
http://dx.doi.org/https://doi.org/10.1002/mana.201000043


26274

4. J. R. Graef, L. Kong, Existence of positive solutions to a higher order singular boundary
value problem with fractional q-derivatives, Fract. Calc. Appl. Anal., 16 (2013), 695–708.
https://doi.org/10.2478/s13540-013-0044-5

5. D. O’Regan, S, Stanek, Fractional boundary value problems with singularities in space variables,
Nonlinear Dynam., 71 (2013), 641–652. https://doi.org/10.1007/s11071-012-0443-x

6. P. Thiramanus, S. K. Ntouyas, J. Tariboon, Existence and uniqueness results for Hadamard-type
fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl.
Anal., 2014 (2014), 902054. https://doi.org/10.1155/2014/902054

7. J. Tariboon, S. K. Ntouyas, W. Sudsutad, Fractional integral problems for fractional differential
equations via Caputo derivative, Adv. Differ. Equ., 181 (2014), 181. https://doi.org/10.1186/1687-
1847-2014-181

8. B. Ahmad, S. K. Ntouyas, Nonlocal fractional boundary value problems with slit-strips boundary
conditions, Fract. Calc. Appl. Anal., 18 (2015), 261–280. https://doi.org/10.1515/fca-2015-0017

9. J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations
with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18 (2015), 361–386.
https://doi.org/10.1515/fca-2015-0024 .

10. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
https://doi.org/10.1016/j.cam.2014.10.016

11. R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J.
Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002

12. T. Bashiri, S. M. Vaezpour, C. Park, A coupled fixed point theorem and application
to fractional hybrid differential problems, Fixed Point Theory Appl., 2016 (2016), 23.
https://doi.org/10.1186/s13663-016-0511-x

13. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional
differential equations, Sci. World J., 2014 (2014), 426438. https://doi.org/10.1155/2014/426438

14. S. Li, H. Yin, L. Li, The solution of cooperative fractional hybrid differential system, Appl. Math.
Lett., 91 (2019), 48–54. https://doi.org/10.1016/j.aml.2018.11.008

15. A. Yassine, J. Fahd, A. Thabet, On generalized fractional operators and a Gronwall type inequality
with applications, Filomat, 31 (2017), 5457–5473. https://doi.org/10.2298/FIL1717457A

16. B. Ahmad, M. Alghanmi, A. Alsaedi, R. P. Agarwal, On an impulsive hybrid system of
conformable fractional differential equations with boundary conditions, Int. J. Syst. Sci., 51 (2020),
958–970. https://doi.org/10.1080/00207721.2020.1746437

17. B. C. Dhage, S. K. Ntouyas, Existence results for boundary value problems for fractional
hybrid differential inclusions, Topol. Method Nonlinear. Anal., 44 (2014), 229–238.
https://doi.org/10.12775/TMNA.2014.044

18. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Elsevier Science, 2006.

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 11, 26260–26274.

http://dx.doi.org/https://doi.org/10.2478/s13540-013-0044-5
http://dx.doi.org/https://doi.org/10.1007/s11071-012-0443-x
http://dx.doi.org/https://doi.org/10.1155/2014/902054
http://dx.doi.org/https://doi.org/10.1186/1687-1847-2014-181
http://dx.doi.org/https://doi.org/10.1186/1687-1847-2014-181
http://dx.doi.org/https://doi.org/10.1515/fca-2015-0017
http://dx.doi.org/https://doi.org/10.1515/fca-2015-0024
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.10.016
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/https://doi.org/10.1186/s13663-016-0511-x
http://dx.doi.org/https://doi.org/10.1155/2014/426438
http://dx.doi.org/https://doi.org/10.1016/j.aml.2018.11.008
http://dx.doi.org/https://doi.org/10.2298/FIL1717457A
http://dx.doi.org/https://doi.org/10.1080/00207721.2020.1746437
http://dx.doi.org/https://doi.org/10.12775/TMNA.2014.044
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence results
	Existence and uniqueness results
	Example
	Conclusions

