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1. Introduction

In recent years, fractional calculus has attracted a large number of mathematicians and modelers.
In view of the growing interests in the subject, several definitions of fractional order differential
and integral operators have been proposed according to the physical aspects of the problem under
investigation. Some fractional order initial value problems and boundary value problems, involving
Riemann-Liouville, Liouville, Caputo and Hadamard type fractional differential equations, has
attracted the attention of many researchers, for instance, see [1-9].

In 2014, Abdeljawad [10] and Khalil [11] introduced and elaborated the concept of conformable
fractional differential and integral operators, which were used in many interesting problems related to
the solvability of nonlinear equations and systems. This is the field where advances are continuously
taking place.

In order to present our problem, in this paper, we need first to mention some important research
results published in the field of fractional differential systems. In [12], Tahereh Bashiri et al. considered
anon cooperative system with the fractional order p € (0, 1) and investigated the existence of solutions.
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In [13], Varsha Daftardar-Gejji proposed a fractional differential system and analyzed the existence
of positive solutions of the system in detail. In [14], Liu considered a cooperative system with the
fractional order a, 8 € (0, 1). In [15], Ahmed et al. obtained the existence and uniqueness results for a
nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary
condition.

In [16], Ahmed et al. introduced and analyzed an impulsive hybrid system of conformable fractional
differential equations with boundary conditions, described by

Tax(t) = f(, x(1)),
Ax(1) = Si(x(t),  AX (1) = S;(x(%),
x(0)=0, x(T)=0,

where T, denotes the conformable fractional derivative of order a € (1, 2].

In [12], the fractional order of the two equations is the same and the perturbation term is also
the same. In [14], the perturbation is a simple type. In [16], the authors studied discrete problems.
Compared with the study in this article, we will consider a continuous problem with an integro-
differential hybrid perturbation and the different order of fractional derivatives.

Due to the importance and academic value of the topic of fractional differential equations and
systems, the importance of this subject in the modeling of so many phenomena, and the studies
published in this field, we choose to study such models. As we know, there are few studies on the
subject of conformable fractional systems. Motivated by the studies cited above, we will study a new
type of fractional differential system, called the conformable fractional differential system, and a new
type of hybrid perturbation (integro-differential term).

In this paper, motivated by all the aforementioned work on fractional differential equations and
conformable fractional differential systems, we introduce and analyze a hybrid system of conformable
fractional integro-differential system with boundary conditions, which is given by

T (u (0= 3 1" £t u(t), v(r))) = h(tu(t),v(®),
i=1

T? (v () - Z 19 gi(t, u(t), v(t))] =k(tu(),v(), (1.1)
i=1
u(0) =u(T) =0,v(0) =v(T) =0.
Here, T* denotes the conformable fractional derivative of order @ € (1,2], T? is the conformable
fractional derivative of order 5 € (1, 2], I”" is the conformable fractional integral of order p;, 1% is the
conformable fractional integral of order ¢;, and h, k € C([0, T] X R XR,R) and f;, g; € C([0, T] X R, R).
The organization of this work is as follows. Section 2 contains some preliminary facts. In Section 3,
we present the solution for the boundary value problem of hybrid fractional integro-differential
system (1.1) involving the conformable fractional derivative, and then prove our main existence results.
In Section 4, we prove the existence and uniqueness of solutions to the system. Finally, we illustrate
the obtained results by an example.

2. Preliminaries
Now, we give some basic concepts of conformable fractional calculus (see [10] and [11]).
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Definition 2.1. [10,11] For a« € (0,1]. The conformable fractional derivative of a function f :
[a, ) — R of order « is defined by

ft+et+a)'™) - f)

€

TS f(1) = lir% 2.1)
forallt > a. If TS f(¢) exists on (a,b), then T{ f(a) = ltim TS f(@).

Definition 2.2. [10,11] Let @ € (n,n + 1]. The conformable fractional derivative of a function f :
[a, ) — R of order a, where f"(t) exists, is defined by

TS (1) = T2 f). (2.2)

Definition 2.3. [10,11] Let « € (n,n + 1]. The conformable fractional integral of a function f :
[a, ) — R of order « is defined by

1 !
150 = [ = -ar s 2.3)
Lemma 2.1. [10,11] Let a € (n,n+ 1]. If f(t) is a continuous function on [a, 00), then TSI f(t) = f(t)
forallt > a.
Lemma 2.2. [10] Let & € (n,n + 1]. Then T (t - a) =0forallteca,blandk = 1,2, ...,n.

Lemma 2.3. [10] Let a € (n,n + 1]. If T{ f(t) is a continuous function on [a, o), then

o k) — 1k
BT = oy -y O

k=0

(2.4)

forallt > a.

Lemma 2.4 (Krasnoselskii fixed point theorem). [17] Let E be a non-empty, bounded, closed and
convex subset of a Banach space X, and A, B : E — E satisfy the following assumptions:

(1) Ax+ By € E, for every x,y € X,
(2) A is a contraction,
(3) Bis compact and continuous.

Then, there exists z € X such that Az + Bz = z.

Lemma 2.5 (Banach fixed point theorem). [18] Let X be a non-empty complete metric space, and
T : X — X be a contraction mapping. Then, there exists a unique point x € X such that Tx = x.

Now we define a solution to the system (1.1).

Definition 2.4. The pair of functions u,v € C(J,R) with their conformable fractional derivatives of
order a and B existing on J is a solution of (1.1) if it satisfies (1.1).
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3. Existence results

In this section, we study the existence of solutions to the system (1.1). By Lemma 3.1, we transform
the system (1.1) into a fixed point problem.

Lemma 3.1. Let ¢, ¢ € C(0,T) and u,v € C(J,R) be continuous real valued functions. Then the
solution of the system

T (u (0= D 1P fitt,u(w), v(r))) = ¢,
i=1

T* (v (- Z 1gi(t, u(t),V(t))] =¢(1), (3.1)
i=1
u(0)=u(T)=0,v0) =wT) =0,
is given by
u(t) = f(t — 5)s*2p(s)ds + Z f (t = 8)sP 2 fi(s, u(s), v(s))ds
0 ='Jo
1 f T(T — 5)s*2p(s)ds + Zm: f T(T — $)sP2 fi(s, u(s), v(s))ds | t (3.2)
T'|Jo ’ i=1 Y0 o , , '
V() = f(t - s)sﬁ_ng(s)ds + Z f (t- s)s‘If_zgi(s, u(s), v(s))ds
0 —' Jo

|
T

T m T
f (T - 5)s*2p(s)ds + Z f (T — 5)s7 2 gi(s, u(s), v(s))ds} t. (3.3)
0 =1 YO

Proof. Applying the conformable fractional integrals I* and I? on the both sides of equations of
system (3.1) respectively and using Lemma 2.3, we get that the general solution of the system (3.1) for
tejis

u(t) = 1%(t) + C; + Cot + Z 17 fi(t, u(t), v(t)), (3.4
i=1

v(t) = Iﬁ¢(t) + Cs5+ Cyt + Z I17gi(t, u(t), v(1)). 3.5
i=1

where C;, C,, C5 and Cy4 are unknown constants. Using the conditions #(0) = 0 and v(0) = 0 gives
C] :OandC3 =0.
Now the Eqgs (3.4) and (3.5) have the form

u(t) = 1"g(6) + Cat + ) 1" fit, u(r), v(1)),
i=1

v(t) = IP(t) + Cat + > 19 gi(t, u(r), v(1)).
i=1
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Using the conditions u(7) = 0 and v(T') = 0 we obtain

Co = =4 (T = )5 2gs)ds + T2, [ (T = )57 2g,(5,u(s), v(5))ds).

Co = —4(' @ =99 29()ds + 1, [T = 5152805, u(s), v(9)ds ).

Using the values of Cy, C,, C3 and C4 in (3.4) and (3.5), we get the solution. The converse follows from
direct computation. This completes the proof. O

Our first result concerns the study of existence of solution for problem (1.1) using the Krasnoselskii
fixed-point theorem. For this, we will need some assumptions about the functions f;, g;, & and k.
Denote by X = (C([0,T] x R) x C([0, T] x R), R), the Banach space endowed with the norm

|G, I = [lull + VIl = sup |u()] + sup (D),
t€[0,T] t€[0,T]
for (u,v) € X.
(Hy) The functions f;,g; : JXRXR — Rand i,k : J XRXR — R are continuous and there exist
nonnegative functions n;, 0, i = 1,..,m, u, and A such that

|fi(t, u(@®), vl < n:(0),
gi(t, u(), (D)l < o(2),
|h(t, u@®), (D)l < p@),
|k(t, u(t), v(t))] < A®).

(H,) There exist positive constants Cy, k = 1,..,4, L;;, j = 1,2, M;, N;, i = 1,2, ..,m such that

ij>
|h(t, uy,vi) — h(t,uz, v2)l < Cylluy — us|| + Co|lvy — vall,
|k(2, ui, vi) — k(t, uz, v2)| < Cs |luy — ua| + Cy |lvy — vall,
|fi(t, w1, vi) = fi(t,up, vo)l < Ly |lug — ual| + Lip [[vi — ol
lgi(t, ur, vi) — gi(t, ur, vo)l < Nilluy — usl| + M |lvy — vaoll.
Theorem 3.1. Assume that the assumptions (H,) and (H,) hold. If
T°C N TP
- Z |«
ale—-1) ZHppi-1

and

TPN N T9M,
+ — | < l,
BB - 1) P qi(qi = 1)

then the fractional integro-differential system (1.1) has at least one solution in X on J.
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Proof. We define an operator I1 : X — X associated with the system (1.1) by

H(u, v)(1) = (T (u, v)(@), s (e, v)(D)) ,

where
I (u,v)(@) = f (t—s)s“‘zh(s,u(s),v(s))dﬁz f (t = $)s" 7 fils, u(s), v(s))d's
0 =1 YO
_L f T(T — $)s"2h(s, u(s), v(s))ds + Zm: f T(T — $)s" 2 (s, u(s) v(s))a’s}
T 0 b b l:1 0 1 2 b b
L (u,v)(1) = f (t—S)SB‘Zk(s,u(S),V(S))dHZ f (t — 5)sT2gi(s, u(s), v(s))ds,

T m T
f (T - s)sB_zk(s, u(s), v(s))ds + Z f (T - s)sq"_Zgi(s, u(s), v(s))a’s] .
0 =' Jo

t
T
First, we will transform problem (1.1) into a fixed point problem IIx = x, where II is the operator

defined above. So, before starting the proof, we decompose II; into a sum of two operators A; and B;,
i =1,2 where

MA@ = | (= )5 s, uls), v(s)ds + )| f (t = $)s" 72 fi(s, u(s), v(s))ds,
0 ‘o1 Y0
¢ T 1 m T
A v)(t) = —= f (T = )s"2h(s, u(s), W(s)ds + ) f (T—s)s”i_zﬁ(s,u(s),v(s))ds],
T'Jo i=1 Y0
and
Bi(u,v)(1) = f (t = )5 2k(s, u(s), v(s))ds + ) f (t = $)s72gi(s, u(s), v(s))ds,
0 =1 YO
¢ T 1 m T
By(u,v)(t) = —= f (T—s)sﬁ_zk(s,u(s),v(s))ds+z f (T—s)sq"_zgl-(s,u(s),v(s))ds}.
T'1Jo i=1 Y0
Observe that

IT;(u,v) = A1(u,v) + Ar(u, v),
IL,(u,v) = Bi(u,v) + B(u, v).

Now, we show that the operators Ay, A, By and B, satisfy all conditions of Lemma 2.4 in a series

of steps.
Step 1. We define the set Q = {(u,v) € X : ||(4,v)|lxy < r}, where r is a positive real constant
satisfying the condition

m

2 T 2 Mn TP 2 T8 2|l T4
> max J 2T Z il 77 2NANT Z loll 7% | (3.6)
ala—-1) Sppi-D'BB-1) & qlgi—1)
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First, we show that A;(u,v) + A(u,v) € Q and B;(u,v) + By(u,v) € Q. So for (u,v) € Qand t € J,
we have

A1 (u, v)(1) + Ao (ut, v)(0)]

f (t = )52 |h(s, u(s), (sl ds + ) | f (t = $)s" 2| fi(s, u(s), v(s))| ds
0 =1 YO0

IA

T m_ AT
i1 [ f (T = )5" 2 (s, u(s), v(s))lds + ) f (T = $)s" 2| fi(s, u(s), v(s))| ds
T'{Jo i=1 Y0
! ~ - d m ft ~ -2 i d
j(;(r 8)s* 7 u(s) s+; | (t = $)s" ni(s)ds
T m_ AT
f (T = 5)s* 2u(s)ds + Z f (T - s)sp"zm(s)ds}
0 = Jo

t T
(|l | (f (t—5)s*2ds + if (T - S)sa—lds)
0 T Jo
m ‘ m T
+ || (; f(; (t—s)s"*ds + % ;‘[0 (T - S)sp,-—z)

I tT” & tPi (TP
I * + > Imill *
a1 Tal@-1) & \ppi=1) " Tpipi—1)

2T S 277
e # lll ——
a@w=1) & pipi—1)

< r

IA

t
+_
T

IA

IA

IA

That implies that ||A;(u, v)(¥) + Ay(u,v)(?)|lly < r, which means that A;(u, v)(t) + Ax(u,v) € Q.
Analogously, we obtain
1By (u, v)(2) + Ba(u, v)(D)|

275 2T
< 4l + ) ol ————=
BB - 1) ; qi(qi = 1)

< r

That means that B (u, v)(t) + B>(u,v) € Q.
Step 2. We want to show that A, and B, are contractions on Q, for (u,v;), (up,v,) € Qand t € J.
Using the assumption (H;), we have

|As(uy, vi)(t) — As(uz, v2)(0)

T m_ AT
= ' _L f (T = )5"h(s, ur(5), vi()ds + )| f (T = $)s" 2 fi(s, ul(s),vl(s))ds]
T'{Jo i=1 Y0
e m_ AT
+= f (T — $)s* 2h(s, uy(5), v2(s5))ds + Z f (T — $)sP 2 fi(s, uy(s), vz(s))ds]
T'{Jo i=1 Y0
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T
< % f (T = 5)s* 2 |h(s, ur(s), vi(s)) = h(s, ur(s), va(s))] ds
0

m T
=5 f (T = )s" 2 |fi(s, u1(5), 1 (5)) = (5, ua(s), va(s))] s
i=1 Y0

T
%[ f (T - )% [C1(ur(s) — ur(5)) + Ca(v1(5) — va(s)] ds
0

m T
+y f (T = )5" 2 [Luui(5) = x(s)) + Loi(v1(s) = va(s)] ds]
i=1 Y0

<

t
< —

T

T°C

<

ala—1)
<

al@—1) pipi = 1)

T(C |luy — uol| + Ca |lvy — N TP (Ly; lluy — ua| + Ly lvy —
( (Cillur = us| 2 [[vi V2||))+Z (Laillur — usl| 2i Vi V2||]

i=1

& TP
lley — w2, vy — ol + ——— |luys — uz, vy — 2|
Zl.zl pipi— 1)

m

T°C TPiL;
£y — = v =Wl
[“(“ -1 Z pi(pi — 1)] llur = w2, vi = ol

i=1

Analogously, we obtain

TN N T9M,
|B> (11, vi)(#) — Ba(ua, v2)(0)| < [ Z )”ul —uy,vi — ol

+
BB-1) 4 qilgi—1)

Hence, the operators A, and B, are contractions on €.
Step 3. Now, we prove that A; and B; are completely continuous on Q. We need to show that the
sets (A;Q) and (B;Q) are uniformly bounded, the sets (A;Q) and (B,Q) are equicontinuous, and the
operators A; : Q +— Qand By : Q — Q are continuous.
For (u,v) € Q and r € J, we have

A1 (u, V)]

IA

IA

f (t = )5 2h(s, u(s), v())ds + ) f (t — $)s" 72 fi(s, u(s), v(s))ds
0 =1 Y0

f (t = )52 |h(s, u(s), (sl ds + ) | f (t = $)s" 72| fi(s, u(s), v(s))| ds
0 -1 YO0

t _ s 4 m ft B pi_Zi J
L(t 8)s“ T u(s) s+; O(I $)sP T ni(s)d s

m

! Izl

lall +

a@—1 ;pxpi—l)
T &l T

il by

ala—1) pi(pi— 1)

i=1

Then the set (A;Q2) is uniformly bounded. Analogously, we obtain

AIMS Mathematics
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By (u, )] < AUl qi(gi = 1)’
1B, (O < Al s + £ gi(gi — 1)
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so the set (BQ) is uniformly bounded.
Now, we show that (A;Q) and (B;(2) are equicontinuous. Let #;,1, € J with #; < ,, we have for any
(u,v) € Q,

A1 (u, v)(12) = Ay, v)(1)]

(6= 55" (s, u(s), v(s)ds + ) f (1 — )52 fi(s, u(s). v(s))ds
i=1 YO0

- f 1(t1 — §)s%2h(s, u(s), v(s))ds — Z fl(tl - s)s”"_zf,-(s, u(s), v(s))ds
0 = Jo

IA

f l(tz—S)S"‘2 |h(s, u(s), v(s)lds + f z(tz—S)so“2 |h(s, u(s), v(s)lds
0 I
- =95 s aeids + ) @ - 952 s uts) o) ds

+Z f (rz—s)sf’f‘Z|ﬁ<s,u<s),v<s>)|ds—Z f (11 = )57 | fi(s, u(s), v(s))| ds

IA

f (t — )" |h(s, u(s), v(s)) ds + Zf (t — 8)s" 2| fils, u(s), v(s)| ds
f (ty — $)s*2u(s)ds + Zf (ty — $)s"ni(s)ds

ta _ trx th _ tPi
< ||u||( 5 1)) Z IImII(p o 1))

Analogously,

. ., 0 lﬂ l/s tqz_t%
1)) = By 0] < | 25— Zn ,||( y 1_1))

As t; — 1, the right hand side of the above inequalities tend to zero. Therefore, it follows that m
and (B;Q) are equicontinuous.

Finally, we show that the operators A; and B, are continuous in X. Let (u,,v,) be a sequence in Q
converging to a point (u, v) € Q. Then, by Lebesgue dominated convergence theorem, for all € J, we
have

IA

lim Al(una Vn)(t)

n—oo

lim ( f (t = 85" 2h(s, y(5), vo(s)ds + f (t = )8" 7 fi(s, un(s), v(8))dss
0 =1 Y0

f (t = 5)s* 72 lim A(s, u,(s), va(s))ds + Z f (t = 5)sP2 Him £i(s, tn(S), va(s))ds
0 n—oo 1:1 0 n—oo

f (t — $)sY2h(s, u(s), v(s))ds + Z f (t- s)s”"_zfi(s, u(s), v(s)ds = A (u, v)(t).
0 = Jo

AIMS Mathematics Volume 8, Issue 11, 26260-26274.
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A similar proof works for the operator B;.

Consequently, A; and B are continuous. Therefore, A; and B, are also relatively compact on Q.
Using the Arzila-Ascoli theorem, we conclude that A; and B; are compact on . Now, all conditions
of the Krasnoselskiis$ fixed point theorem are satisfied, so the operator I1 has a fixed point in 2. Finally,
we deduce that the system (1.1) has at least one solution in X on J. |

4. Existence and uniqueness results

In this section, we study the existence and uniqueness of solution of the system (1.1). Our result is
based on the Banach fixed point theorem.
Theorem 4.1. Assume that the hypothesis (H,) and (H,) are true. If

CT” = LTP
a(a—l) Z (p,—l)

=1

and

B i qi
) CcT N Z MT
BB - 1) P qi(qi = 1)

then, the fractional integro-differential system (1.1) has a unique solution in X on J.

<1,

Proof. We define an operator I1 : X — X associated with the system (1.1) by

H(u, v)(1) = (T (u, v)(@0), s (e, v)(D)) ,

given in the proof of Theorem 3.1.

Now, we show that the operator IT has a fixed point in B, which represents a unique solution of
system (1.1). So, the proof is given in two steps.

Step 1. First, we define the set B, by

B, = {(u,v) € X;[l(u, v)llx < p},

where the positive real constant p is chosen so that

« B m . i . i
2( |l T N || T )+2Z( |l T N llol| T4 _
al@—-1) pB-1) pipi— 1) qiqgi—1)

We will show that II,B, C B,,i = 1,2. For each t € J and (u,v) € B,,
ITT; (s, (D)

f (t = )57 |h(s, u(s), (sl ds + | f (t = $)s" 72| fi(s, u(s), v(s))| ds
0 =1 YO0

t
+_
T

T m. AT
f (T — $)s%2|h(s, u(s), v(s))| ds + Z f (T — 5)s772 |fi(s, u(s), v(s))| ds]
0 = Jo

AIMS Mathematics Volume 8, Issue 11, 26260-26274.
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IA

w-oruots s 3 [ o
fo( $)s" () S+; 0( $)sP 7 mi(s)ds

T m T
f(T—s)sw—Zﬂ(s)ds+Zf (T_S)Spi—zm(s)ds}
0 i=1 Y0
il f (t—$)s"2ds+ ) I f (t - 5)sP2ds

0 i=1 0
T m -

+7 il f (T—S)S”‘deZIImII fo (T—s)s”"‘zds}

tpl TPi
= S+ Z Il ————

t
+_
T

IA

IA

i=1 l( Pi— 1)
2Tl71
<l ——— Znn,n
This implies
MOl < Il ——— Znn,n <p.

7 <

Therefore, 11, B, C B,,. Analogously, we obtain

L@, VYD < ||/1||

Zn - _1)_p,

soII,B, C B,.
For any (u,v) € B,, we have

[ILL(, V)@ IITT; Cu, V)(t)ll + IIHz(u V)(t)ll

2qu
<l —=— lemll — Mz +Z|| il
i=1 l l

2( lell T° II/lllTﬁ ) Z( Il 77 lloll T
al@-1) BB-1 \pipi = 1) T a@-D
< p,

which shows that IT maps B,, into itself.

|

Step 2. We will show that the operator Il : B, — B, is a contraction. Let (u,vy), (u2,v,) € X and

t € J. By assumption (H;), we obtain

Ly (a1, v2)(1) = I (ua, v2) (O

(t — $)s*2h(s, u1(s), vi(s))ds + Z f (t- s)s”"_zfi(s, ui(s),vi(s))ds
0 = Jo
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IA

IA

IA

IA

IA

T m T
d f (T = )s"2h(s, wi (), vi())ds + ) f (T = 9)s"72 fi(s, w1 (s), vl(s))ds]
T'{Jo i=1 Y0

- f (t — $)sY72h(s, un(s), va($))ds + Z f (t- s)s”f_zf,-(s, ur(s), vo(s))ds
0 ' Jo

t
+_
T

T m T
f (T = )s"2h(s, us(s), va())ds + ) f (T = $)s"72 fi(s, ua(s), vz(s))ds]
0 i=1 V0
f (t = $)s"72 |h(s, ur(5), vi(8)) = h(s,uz(s), va(s))] ds
0
+ Z f (t = )" fi(s,ur(9),v1(9)) = fi(s, ua(s), va(s))| ds
—1 Y0
T
+%[ f (T = $)s"72 [h(s, ur(5), vi(5)) = h(s, uz(s), va(s))] ds
0
m T
+ Z f (T = 9)s" 2 fi(s,ur(5), vi($)) = fi(s, uz(s), va(s)l ds
f (t = )" [Cr (1 (5) = () + Co(vi(8) = va(s)] ds
+ Z f (t = $)s" 7 [Li(ur(5) = ux(s)) + Loi(v1 () = va(s))] ds
i=1 Y0
T
+%[ j; (T = 9)s" 2 [Ci(ur(s) — ua(s)) + Co(v1(s) = va(s))] ds

m T
+ Z fo (T = $)s" 7 [Li(ur(5) = ux(s)) + Loi(v1 () = va(s))] ds

m

Cilluy —uoll + Co vy — V2|| Z Ly llur — uoll + Lo |y — V2||t,,l
a(@— 1) 1 pipi— 1)
+C1 lu; — us|| + Ca |lvy — V2||T(, N Z Liilluy — sl + Lo; |lvy — V2||T,,,.
ala—1) — pipi—1)
2CT”
a@—D (ler = sl + [[vi = wal) + 22 ) (1 = s + [[vi = w2l
CT” & LTP
+ ——— | l(uy —uz, vi = W)l
a(a— 1) Zl pipi— 1)

This implies that I1; is a contraction.

Analogously, we can prove that I1, is a contraction. Then, by the Banach fixed point theorem, there
exists a unique point (u,v) € X, such that I1(u, v) = (u, v). It is the unique solution of our system (1.1),
and then the proof of the theorem is completed. O
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5. Example

Consider the following Hybrid fractional integro-differential system involving conformable
fractional derivative operators

1 + 2% + sin(u(?)) + cos(v(?))
8(1+1)

2

T3 (u (D)= D 1" filt,u(o), v(r))) = ,
i=1

£+t + cos(u(?)) + sin(v(¢))

t+ D)2+ 1) ’ SR

2
T (v (0= Y Fgi(t, u(r), v(t))] =
i=1
u0)=u(T)=0, v0)=wT)=0.
The problem (5.1) is a particular case of (1.1) with @ = %, B = %, and

H(|u(®)| + |u(@)))
8i ’
it(cos(u(r)) + [v(1)])
50 '

Clearly, f;, gi,i = 1,2, ..,m, h, and k are continuous functions and satisfy condition (H,) with n;(¢) =
b 0i0) = 35, 1(D) = S and A() = E

fit, u(@®), v(1)

gi(t, M(t), V(t))

8(1+1) (+)(1+£2) "
Also
t
|fit,ur,vi) = filt,us, )| < 3 lup — uy + vy — vy
< = lluy —uz,vi = vall,
8i
it ) .
lgi(t,ur,vi) — gi(t,uz, v2)| < 30 lcos(u1) — cos(uy) + sin(vy) — sin(v,)|
< 2y ||
s o |lUp — Uz, Vi — V2fl,
50
and
1
k(2 uy,vi) — k(t,up, o)l < —————Ilug —up,vi — v2l|.

T+ D(E+1)

Taking the value of T = 1 we get

m

T°C TPL,;
— 4+ ) —= =0.37500000 < 1,
(a/(a/ - 1) ; pi(pi — 1))

TEN = T9M;
+ )y —— 1 1=042161904 < 1,
(,3(,3— 1) ; qi(qi = 1)]

where C = §, Ly = 1,1, = 3, N = 1 and M, = 5=, M, =  and the values of p; and g; are chosen as
pi = 2. This gives p; =3, p, = 3,and ¢; = %2 we get g, = 3, ¢» = .
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Since the assumptions (H;) and (H,) hold, according to Theorem 3.1 the problem (5.1) has at least
one solution. To see if the solution is unique, note that assumptions (H;) and (H,) hold, from the first
part of the existence result. Also, the conditions of Theorem 3.2

m

T°C TPL,
2 + = 0.75000000 < 1,
{a(a -1 Z pipi — 1))

TEN N T9M,;
2 +
BB—-1) Halgi-1)

are satisfied. Therefore, from Theorem 3.2, the problem (5.1) has a unique solution.

) = 0.84323808 < 1,

6. Conclusions

In this work, we consider the existence and uniqueness of solutions for the boundary value problem
of hybrid fractional integro-differential systems involving the conformable fractional derivative. By
transforming the problem into a Volttera integral equation and using the Krasnoselskii fixed point
theorem, we get the results about the existence of solutions for the boundary value problem (1.1) under
some conditions. Then, using the Banach fixed point theorem, we get the existence and uniqueness of
the solution for the boundary value problem, after transforming the problem into a fixed point problem.
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