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Abstract: A new decision-making method based on interval Pythagorean triangular fuzzy numbers is 

proposed for fuzzy information decision-making problems, taking the advantages of interval 

Pythagorean fuzzy numbers and triangular fuzzy numbers into account. The VIse Kriterijumski 

Optimizacioni Racun (VIKOR) group decision-making method is based on the Weighted Ordered 

Weighted Average (WOWA) operator of interval Pythagorean triangular fuzzy numbers (IVPTFWOWA). 

First, this article provides the definition of the IVPTFWOWA operator and proves its degeneracy, 

idempotence, monotonicity, and boundedness. Second, the decision steps of the VIKOR decision 

method using the IVPTFWOWA operator are presented. Finally, the scientificity and effectiveness of 

the proposed method were verified through case studies and comparative discussions. The research 

results indicate that the following: (1) the IVPTFWOWA operator combines interval Pythagorean 

fuzzy numbers and triangular fuzzy numbers, complementing the shortcomings of the two fuzzy 

numbers, and can characterize fuzzy information on continuous geometry, thereby reducing decision 

errors caused by inaccurate and fuzzy information; (2) the VIKOR decision-making method based on 

the IVPTFWOWA operator applies comprehensive weights, fully considering the positional weights 

of the scheme attributes and the weights of raters, and fully utilizing the attribute features of 

decision-makers and cases; and (3) compared to other methods, there is a significant gap between the 

decision results obtained using this method, making it easier to identify the optimal solution. 
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1. Introduction 

The accurate characterization and aggregation of group decision-making information is crucial 

for decision results; however, accurate decision-making information is often difficult to obtain in 

real-world decision-making. For multi-attribute group decision-making problems in fuzzy 

information environments, the ability to characterize fuzzy information and aggregate decision 

evaluation values is important. At present, scholars internationally have conducted extensive research 

on this type of problem, with fruitful results. The proposal of the Weighted Average (WA) operator, 

the Ordered Weighted Average (OWA) operator, the Weighted Ordered Weighted Average (WOWA) 

operator, the Generalized Ordered Weighted Average (GWOWA) operator, and the fusion operator 

basically solve the problem of aggregation of evaluation values in group decision-making process. In 

response to the difficulty of characterizing fuzzy information, Zadeh [1] first proposed the concept of 

fuzzy sets in 1965; since then, scholars at home and abroad have started a wave of research on fuzzy 

sets. On the basis of fuzzy sets, scholars have gradually focused their attention on fuzzy evaluation 

and extended intuitionistic fuzzy sets [2,3], interval Pythagorean fuzzy sets [4], and triangular fuzzy 

sets [12–18]. The fusion research of various fuzzy numbers and aggregation operators has also been 

a hot topic in the field of fuzzy mathematics in recent years. Many international scholars have 

proposed the study of aggregation operators based on intuitionistic fuzzy, Pythagorean fuzzy, interval 

Pythagorean fuzzy, triangular fuzzy, and other backgrounds, such as applying WA operators [5], 

OWA operators [6], WOWA operators [7], GWOWA operators [8], etc. to fuzzy environments, as 

well as multi decision models in the context of the recurrent fuzzy information environment [9,10] 

and multi criteria decision-making based on hesitant fuzzy language entropy [11]. 

Considering that triangular fuzzy numbers have advantages that other forms of data do not have, 

some scholars have begun to study the combination of triangular fuzzy sets and various operators. 

For example, Jianming Zhang et al. [12–14] studied the ternary decision method of regret theory for 

triangular fuzzy numbers; Linjia Jiang et al. [15] studied the aggregation model of triangular 

intuitionistic fuzzy sets; Xiaoyan Su et al. [16] studied interval Python triangular fuzzy ensemble 

operators; Meijuan Li [17], Chunquan Li [18], and others have also conducted research on the fuzzy 

research and application of triangular fuzzy operators. 

There are many research methods used for evaluation. For example, S. K. Sahoo et al. [19] 

studied multiple criteria decision-making (MCDM) methods. M. J. Ranjan et al. [20] studied 

probabilistic linguistic q-rung orthopair fuzzy archimedean aggregation operators for group 

decision-making. Yingxue Du et al. [21] studied the Pythagorean triangular fuzzy VIse Kriterijumski 

Optimizacioni Racun (VIKOR) decision; Gou et al. [22] studied the probabilistic, two-level language 

terminology set and its application to improve the design of the VIKOR method. B. F. Yildirim et al. [23] 

evaluated the satisfaction level of citizens in municipality services by using the picture fuzzy VIKOR 

method. Through the research of these scholars, it can be found that the VIKOR method can 

simultaneously consider maximizing group utility and minimizing individual regret, combined with 

the subjective preferences of decision-makers, thus possessing high ranking stability and credibility. 

The VIKOR method proposes a compromise solution with advantages based on the Technique for 

Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Compared with these methods, 

the VIKOR method not only has the concepts of positive and negative ideal values of the former, but 

also has a compromise solution that negotiates the interests of individuals and groups, making it 

more suitable for solving multi criteria decision-making problems with conflicts of interest. 
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It can be seen that the existing research focuses more on the aggregation of fuzzy environments 

and operators, while there is relatively little research on the combination of interval Python fuzzy and 

triangular fuzzy numbers. However, interval Python triangular fuzzy numbers have advantages that 

other forms of data do not have. They can not only break through the boundaries of membership and 

non-membership, but also describe decision information on continuous sets. Therefore, considering 

the characteristics that triangular fuzzy numbers can describe decision information on continuous 

sets, this paper combines interval Pythagorean fuzzy and triangular fuzzy numbers, and reconstructs 

interval Pythagorean triangular fuzzy numbers. As a cushion, a new method for MCDM under 

interval fuzzy conditions is reconstructed by integrating interval Pythagorean triangular fuzzy 

numbers and WOWA operators. This method has the following advantages: first, it can minimize the 

decision-making errors caused by the lack of information; second, we can fully derive the attribute 

advantages and scoring attribute characteristics of each scorer, then fully consider the location 

weight of the scheme attribute and the weight of the scorers; and third, compared with other methods, 

the decision results obtained by using this method have a large gap, which makes it easier to identify 

the optimal scheme. 

2. Relevant definitions 

In order to solve and accurately describe the attribute evaluated problem under uncertain 

information environment, researchers have proposed the notion of fuzzy sets. After the introduction 

and in-depth study of fuzzy concepts, experts and scholars gradually proposed intuitive fuzzy sets 

and hesitant fuzzy sets. This paper reconstructs the weighted ordered and weighted average operator 

of interval triangular fuzzy numbers by fusing triangular fuzzy and interval fuzzy numbers after 

integrating previous research results. 

2.1. The notion of interval Pythagorean fuzzy sets 

Definition 1. [7] If X is a domain, then the definable interval Pythagorean fuzzy set is 
~ ~ ~

, ( ( ), ( )), ( ( ), ( ))a a a aP x P x x P v x v x x X     
  
 

. a
  and a

  are the lower and higher limits of 

membership degree of interval Pythagorean fuzzy sets, respectively, and av , +

av  are the lower and 

higher limits of non-membership, respectively. 
~

P  conforms to 2 20 ( ) ( ) 1a av    . Then, the 

hesitation degree for 
~

P  is 2 + 2 2 2( ) ( ), ( ) 1 ( ) ( ) , 1 ( ) ( )a a a a a a ax x x v v                  
. 

Definition 2. [7] Scoring function and precision function. We defined the scoring function of 
~ ~ ~

+( ( ), ( )), ( ( ), ( ))a a a aP x x P v x v x     
  
 

 as  
~

2 2 2 + 21
( ) ( ) ( ) +( ) ( )

2
a a a aS v v       , and the accuracy function 

of 
~ ~ ~

+( , ), ( , )a a a aP P v v     
  
 

 as  
~

2 2 2 + 21
( ) ( ) +( ) +( ) +( )

2
a a a aH v v     ,  

~

( ) -1,1S    and  
~

( ) 0,1H   . 

Definition 3. [7] Algorithm. For 
~ ~ ~

+( ( ), ( )), ( ( ), ( )) ( 1,2)i ai ai ai aiP x x P v x v x i     
  
 

, which must satisfy the 

following algorithm: 

1) 
2 2 2 2

~ ~
1 2 1 2 1 2

1 2
+ +2 2 2 2
1 21 2 1 2

( ) ( ) ( ) ( ) , ,
,

( ) ( ) ( ) ( )

a a a a a a

a aa a a a

v v

v v

   
 

   

     

   

     
     
         

. 
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2) 
2 2 2 2

~ ~
1 2 1 21 2

1 2
+ 2 + 2 + 2 + 2

1 2 1 2 1 2

( ) ( ) ( ) ( ) ,,
,

( ) ( ) ( ) ( )

a a a aa a

a a a a a a

v v v v

v v v v

 
 

 

    

 

    
     
         

. 

3)  
~

2 2 +1 (1 ( ) ) , 1 (1 ( ) ) , ( ) ,( )a a a av v                 
. 

4)  
~

2 + 2( ) , ( ) , 1 (1 ( ) ) , 1 (1 ( ) )a a a av v


                
. 

Definition 4. [7] Distance definition. For 
~ ~ ~

+( , ), ( , )i ai ai ai aiP P v v     
  
 

, whose Hamming distance 

~ ~

1 2( , )d    can be defined as follows: 

 
~ ~

+ +
1 2 1 2 1 2 1 2 1 2

1
( , )

4
a a a a a a a ad v v v v                  . 

2.2. The notion of interval Pythagorean triangular fuzzy numbers 

On the basis of interval triangular fuzzy numbers proposed by experts and scholars, some 

researchers have already started to explore interval Pythagorean triangular fuzzy numbers by 

integrating interval concepts and triangular fuzzy numbers. 

Definition 5. [19] If 
~

( , , );[ , ],[ , ]a a a aa v v        , define 
~

a  as an interval Pythagorean triangular 

fuzzy number on R, so record it as IVPTFN. a
  and a

  represent the lower and higher limits of 

the maximum membership degree of 
~

a , respectively, and av  and av  represent the lower and 

higher limits of the minimum membership degree of 
~

a , respectively, where 0 [ , ] 1a a    , 

0 [ , ] 1a av v    and 2 20 ( ) ( ) 1a av    . 

Definition 6. [19] For 
~

( , , );[ , ],[ , ]a a a aa v v        , 
 2 2 2 2

~ ( ) ( ) +( ) ( )+2 +
( )

4 2

a a a av v
S a

   
    

   is its 

score function, and 
 2 2 2 2

~ ( ) +( ) +( ) +( )+2 +
( )

4 2

a a a av v
H a

   
   

   is its exact function. 

Definition 7. [19] For two interval Pythagorean triangular fuzzy numbers 
~

( , , );[ , ],[ , ]
i i i ii i i i a a a aa v v        , the algorithm is as follows: 

1) 

1 2 1 2 1 2 1 2 1 2 1 2

~ ~ 1 2 1 2 1 2

1 2
2 2 2 2 2 2 2 2

( + , + , + );

[ ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ],[ , ]a a a a a a a a a a a a

a a
v v v v

     

                  
 

   
. 

2) 

1 2 1 2 1 2 1 2 1 2 1 2

~ ~ 1 2 1 2 1 2

1 2
2 2 2 2 2 2 2 2

( , , );

[ , ],[ ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ]a a a a a a a a a a a a

a a
v v v v v v v v

     

              
 

   
. 

3) 
~

2 2( , , ); 1 (1 ( ) ) , 1 (1 ( ) ) , ( ) ,( )a a a aa v v                     
. 

4) 
~

2 2( , , ); ( ) , ( ) , 1 (1 ( ) ) , 1 (1 ( ) )a a a aa v v


                     
. 

Definition 8. [19] For two interval Pythagorean triangular fuzzy numbers 
~

( , , );[ , ],[ , ] ( 1,2)
i i i ii i i i a a a aa a a a u u v v i     , the Hamming distance 

~ ~

1 2( , )d a a  is defined as follows: 
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1 2 1 2

1 2 1 2

1 1 1 2 2 2 1 1 1 2 2 2+ +

~ ~

1 2

1 1 1 2 2 2 1 1 1 2 2 2

+2 + +2 + +2 + +2 +

4 4 4 4
1

( , )
4 +2 + +2 + +2 + +2 +

4 4 4 4

a a a a

a a a a

d a a

v v v v

           
   

           

 

   

 
   
 
 
 
    
 
 

. 

2.3. The notion of WOWA operator 

Many years ago, academia has put forward the concept of the weighted average operator (WA), 

and studied a series of evaluated value aggregation operators, including the weighted ordered 

weighted average operator (WOWA). With the rise of the grey decision theory and the interval fuzzy 

theory, there is more and more research on the integration of the aggregation operator and interval 

fuzzy theory. 

Definition 9. [10] There is a group of data 
1 2 3( , , ,..., )n    , where 

1 2 3( , , ,..., )T

n      and 

1 2 3( , , ,..., )T

n      are the general weight and position weight of data, respectively, and  0,1i  , 

 0,1i  , 
1

1
n

i

i




 , and 
1

1
n

i

i




 . Suppose there is a mapping WOWA: nR R , 

1 2 3 ( )

1

( , , ,..., )
n

n i i

i

WOWA w     


 , where (1) (2) (3) ( )( , , ,..., )n        is simply the movement of 

1 2 3( , , ,..., )n     in a position, and any i j , ( ) ( )i j    is satisfied; 
1 2 3( , , ,..., )T

nw w w w w  is the 

comprehensive weight vector of WOWA and satisfies 
( ) ( )( ) ( )i j j

j i j i

w      

 

   .  

3. WOWA operator based on IVPTF 

According to the fuzzy uncertainty characteristics of decision information, this study proposes a 

new operator, abbreviated as the IVPTFWOWA operator. The definition and property proof of the 

IVPTFWOWA operator are given below. 

Definition 10. There are interval Pythagorean triangular fuzzy numbers
~

( , , );[ , ],[ , ]a a a aa v v        , 

where 1 2 3( , , ,..., )T

n      and 1 2 3( , , ,..., )T

n      are the general weight and position weight of 

IVPTF, respectively. ( 1,2,3,..., )iw i n  is the comprehensive weight of 
~

ia , which satisfies  0,1iw  , 

1

1
n

i

i

w


  and
( ) ( )( ) ( )i j j

j i j i

w      

 

   , and   is the monotone increasing function passing 

through the point ( , )j

j i

i

n




  and the point (0,0). If 
~ ~ ~ ~

(1) (2) (3) ( )( , , ,..., )na a a a     is the position exchange 

of 
~ ~ ~ ~

1 2 3( , , ,..., )na a a a and satisfies any i j , then 
~ ~

( ) ( )i ja a  . Then, the IVPTFWOWA operator of 
~

ia  

can be defined as follows: 

( ) ( ) ( ) ( )

~ ~ ~ ~ ~ ~ ~ ~

1 2 3 1 (1) 2 (2) 3 (3) ( )

( ) ( ) ( )

1 1 1

2 2

1 1 1 1

( , , ,..., ) ...

( , , );

1 (1 ( ) ) , 1 (1 ( ) ) , ( ) , ( )i i i i

i i i i

n n n

n n n

i i i i i i

i i i

n n n n
w w w w

a a a a

i i i i

IVPTFWOWA a a a a w a w a w a w a

w w w

v v
   

   

    

 

  

   

   

    


 

    
  

  

  
 
 
 



. 
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Theorem 1. Through a proof, it can be found that the new aggregation operator (IVPTFWOWA 

operator) formed by the fusion of interval Pythagorean triangular fuzzy numbers and WOWA 

operators is an evolutionary operator of IVPTFWA operators, while possessing the monotonicity, 

idempotence, and boundedness of aggregation operators. (The proof process can be found in Appendix I). 

4. VIKOR decision steps based on IVPTFWOWA operator 

VIKOR and TOPSIS decision-making methods are widely used. This paper attempts to 

integrate the IVPTFWOWA operator and the VIKOR method to meet the decision-making problem. 

The steps of the VIKOR decision-based method on the IVPTFWOWA operator are given below. 

Suppose there is a multi-attribute group decision making problem with interval Pythagorean 

triangular fuzzy numbers. Let the decision-maker set be  1 2 3, , ,..., nK K K K K , the scheme set be 

 1 2 3, , ,..., nM M M M M , scheme attribute set be  1 2 3, , ,..., nC C C C C , and the position weight be 

1 2 3( , , ,..., )T

n     . Multiple decision-makers evaluate and score each scheme according to the 

attribute of the scheme, and obtain an evaluated matrix of the decision-makers as follows: 

~ ~ ~

11 12 1

~ ~ ~

21 22 2

~ ~ ~

1 2

...

...
( )

... ... ... ...

...

n

n

m m mn

a a a

a a a
N k

a a a

 
 
 
 
 
 
 
 

, 

where 
~

( , , );[ , ],[ , ]
ij ij ij ijij ij ij ij a a a aa a a a u u v v     represents the evaluated value of the attribute i  of the 

scheme j  by a decision-maker. 

The attribute of the scheme may either be the benefit type or the cost type. First, we need to 

normalize the decision matrices given by the scorers. According to the standardized fuzzy evaluation 

value and the weight of the scorer, we can use the IVPTFWOWA operator proposed in this article to 

fuse the evaluation scores given by multiple scorers into a comprehensive evaluation value matrix. 

Therefore, according to the new IVPTFWOWA operator step, the weight of the scorer is first 

determined. At this point, this article selects the VIKOR means to resolve the weight of the scorer, 

and defines the weight set of the decision-maker as  1 2 3, , ,..., n     , where 
1

1
n

i

i




 .The detailed 

decision-making process diagram is shown in Figure 1. 

The decision-making steps are as follows. 

Step 1: Standardize matrices. In this paper, the Pythagorean triangular fuzzy number 

normalization method [24] is used to standardize the decision matrix. The normalized 

decision-makers evaluated value matrices is marked as ( )D k . 

(1) When the scheme attribute is the benefit type, set 
~

+ + +
( , , );[ , ],[ , ]

ij ij ij ij

ij ij ij

ij a a a a

j j j

a v v
  

 
  

    , 

where  
+

1
maxj ij

i m
a a

 
 . 
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(2) If the scheme attribute is the cost type, set 
~
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Step 2: Resolve the weight of each scorer. First, according to the normalized decision-maker 

evaluated value matrices, define the positive ideal value matrices and negative ideal value matrices. 

The relative distance index of the interval Pythagorean triangular fuzzy evaluated value is 

determined according to the Hamming distance. Then, use the interval fuzzy entropy to determine 

the weight of each scorer. 

(1) Calculate the positive ideal and bilateral negative ideal matrices of the evaluation values of 

each scorer. 
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(2) Calculate the Hamming distance.  
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(3) Determine the relative distance index. According to the Hamming distance, the relative 

distance index of the interval Pythagorean triangular fuzzy is calculated. 



26244 

AIMS Mathematics  Volume 8, Issue 11, 26237–26259. 

~ ~ ~ ~

~ ~ ~ ~ ~ ~

( , ) ( , )

( , ) ( , ) ( , )

ij ij ij ij

ij ij ij ij ij ij

k e k f

k

ij k k e k f

d a a d a a
r

d a a d a a d a a





 

. 

(4) Determine the scorers weight. The weights of scorers are calculated by using the obtained 

relative distance index and the interval Pythagorean triangular fuzzy entropy method. 
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Initial data

Normative Decision Matrix

Defining positive ideal matrix
Define bilateral negative 

ideal matrix

Hamming distance, closeness, weight

Determine comprehensive weights

Aggregate comprehensive decision matrix

Positive ideal matrix Negative ideal matrix

Hamming distance, closeness, weight

Determine group utility value, individual 

regret value, and compromise value

Determine the optimal solution

 

Figure 1. VIKOR group decision flow chart based on IVPTFWOWA operator. 

Step 3: Calculate the comprehensive weight.  

( ) ( )( ) ( )i j j

j i j i

w p p   
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   .
 

Step 4: Assemble the comprehensive matrices. According to the comprehensive weight obtained 

in the second step, the IVPTFWOWA operator is used to assemble the evaluated value matrices of 

multiple scorers into a single comprehensive evaluated value matrix. 
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Step 5: Calculate the weight of each attribute. After aggregating into a single comprehensive 

evaluated value matrix, the VIKOR method and the interval triangular fuzzy entropy method are 

used again to calculate the scheme attribute weight. 

(1) According to the comprehensive evaluated value matrices, find the ideal solution of the 

comprehensive evaluated value matrices. 

Positive ideal solution: 
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(2) Calculate the relative distance index. The relative distance index of the interval Pythagorean 

triangular fuzzy is calculated. 
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(3) Determine the scheme attribute weight. The obtained relative distance index and interval 

Pythagorean triangular fuzzy entropy method are used to resolve the attribute weight of the project. 
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Step 6: According to the attribute weight and the relative distance index calculated in Step 5, 

calculate the following values: 

(1) The formula for calculating the group utility value is as follows: 
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(2) The formula for calculating the individual regret value is as follows: 

~ ~

~ ~

( , )
( ) max

( , )

ij j

j j

i j
j

d a a
R M r

d a a



 

 
 

  
 
 

. 

(3) The formula for calculating the compromise value is as follows: 



26246 

AIMS Mathematics  Volume 8, Issue 11, 26237–26259. 

 

   

 

   

( ) max ( ) ( ) max ( )
( ) (1 )

min ( ) max ( ) min ( ) max ( )

i i i i
i i

i

i i i i
i ii i

S M S M R M R M
Q M

S M S M R M R M
 

 
  

 
, 

where   is the coefficient of decision-making mechanism. When 0.5  , it expresses that the 

scheme is based on the decision-making mechanism to maximize the group utility. When 0.5  , it 

expresses that the scheme is based on the decision-making mechanism of minimizing individual 

regret. When =0.5 , it expresses that the scheme is a decision-making mechanism that has reached a 

consensus through consultation. 

Step 7: Determine the optimal plan. According to the VIKOR decision-making method, the 

smaller the value in Step 6, the better the scheme. Assume that (1) (2) (3) ( )( , , ,..., )nM M M M  is the 

sequence of schemes  1 2 3, , ,..., nM M M M M  from smallest to largest. If Scheme (1)M  is the 

optimal scheme, the following conditions shall be met simultaneously: (a) (1) (2) 1
( ) ( )

-1
Q M Q M

n
   

and (b) (1)( )S M and (1)( )R M , with at least one of them at the minimum value. 

5. Example study 

There are many cases where the interval hesitation fuzzy method is applied to decision models, 

such as medical decision-making [25,26], performance evaluation [27], etc. This article applies the 

VIKOR group decision-making model based on the WOWA operator of interval Pythagorean 

triangular fuzzy numbers to the emergency decision-making of urban network public opinion. 

Emergency decisions can be made for such events using the methods proposed in this article. 

For example, the emergency response plan of a city's network public opinion is evaluated and 

analyzed. It is assumed that there are four sets of emergency plans for urban network public opinion 

emergencies (A1, A2, A3, A4), and through investigation and research, four attributes for evaluating 

this network public opinion emergency are determined, namely, rescue capability (B1), Internet 

users' satisfaction (B2), flexibility (B3), and time validity (B4). It is assumed that the attribute 

location weight is (0.3, 0.2, 0.2, 0.3). In this assessment, three decision-makers (C1, C2, C3) 

evaluated the urban network public opinion emergencies. In order to effectively solve the shortage 

and lack of basic information for decision-making, the assessment value adopts the interval 

Pythagorean triangular fuzzy numbers. The evaluated value matrices of the final three scorers are 

shown in Table 1 (standardized). 

Table 1. Evaluated value matrices of three scorers. 

  B1 B2 B3 B4 

C1 

A1 
<(0.6,0.7,0.9); 

[0.7,0.9],[0.2,0.4]> 

<(0.5,0.7,0.8); 

[0.7,0.8],[0.3,0.4]> 

<(0.6,0.7,0.8); 

[0.6,0.7],[0.1,0.2]> 

<(0.5,0.7,0.8); 

[0.6,0.8],[0.1,0.3]> 

A2 
<(0.7,0.8,0.9); 

[0.7,0.8],[0.3,0.4]> 

<(0.6,0.8,0.9); 

[0.7,0.9],[0.2,0.3]> 

<(0.7,0.8,0.9); 

[0.7,0.9],[0.1,0.2]> 

<(0.6,0.8,0.9); 

[0.8,0.9],[0.1,0.3]> 

A3 
<(0.5,0.6,0.7); 

[0.6,0.8],[0.2,0.3]> 

<(0.5,0.7,0.9); 

[0.7,0.9],[0.3,0.4]> 

<(0.5,0.8,0.9); 

[0.7,0.8],[0.2,0.3]> 

<(0.5,0.6,0.8); 

[0.6,0.8],[0.2,0.3]> 

A4 
<(0.6,0.7,0.9); 

[0.7,0.9],[0.2,0.4]> 

<(0.5,0.7,0.9); 

[0.7,0.8],[0.2,0.4]> 

<(0.5,0.6,0.9); 

[0.7,0.8],[0.1,0.3]> 

<(0.6,0.7,0.9); 

[0.7,0.8],[0.1,0.3]> 

                                                                           Continued on next page 
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  B1 B2 B3 B4 

C2 

A1 
<(0.6,0.7,0.8); 

[0.8,0.9],[0.2,0.3]> 

<(0.5,0.6,0.7); 

[0.6,0.7],[0.1,0.2]> 

<(0.6,0.8,0.9); 

[0.7,0.8],[0.2,0.3]> 

<(0.6,0.7,0.9); 

[0.6,0.8],[0.2,0.4]> 

A2 
<(0.5,0.7,0.9); 

[0.7,0.8],[0.1,0.2]> 

<(0.7,0.8,0.9); 

[0.6,0.7],[0.2,0.3]> 

<(0.6,0.7,0.8); 

[0.7,0.8],[0.2,0.4]> 

<(0.5,0.7,0.8); 

[0.7,0.9],[0.2,0.3]> 

A3 
<(0.7,0.8,0.9); 

[0.7,0.8],[0.1,0.3]> 

<(0.6,0.8,0.9); 

[0.6,0.7],[0.1,0.2]> 

<(0.6,0.7,0.8); 

[0.6,0.7],[0.2,0.3]> 

<(0.6,0.7,0.9); 

[0.6,0.7],[0.2,0.3]> 

A4 
<(0.6,0.7,0.9); 

[0.7,0.8],[0.2,0.4]> 

<(0.5,0.7,0.9); 

[0.6,0.8],[0.2,0.3]> 

<(0.6,0.8,0.9); 

[0.7,0.8],[0.2,0.4]> 

<(0.5,0.6,0.9); 

[0.7,0.8],[0.2,0.3]> 

C3 

A1 
<(0.6,0.7,0.8); 

[0.6,0.7],[0.2,0.3]> 

<(0.7,0.8,0.9); 

[0.6,0.7],[0.2,0.3]> 

<(0.5,0.7,0.8); 

[0.7,0.8],[0.2,0.4]> 

<(0.5,0.6,0.8); 

[0.7,0.8],[0.2,0.4]> 

A2 
<(0.5,0.7,0.8); 

[0.6,0.8],[0.2,0.3]> 

<(0.6,0.7,0.9); 

[0.7,0.8],[0.2,0.4]> 

<(0.7,0.8,0.9); 

[0.6,0.8],[0.2,0.3]> 

<(0.6,0.8,0.9); 

[0.6,0.8],[0.2,0.3]> 

A3 
<(0.7,0.8,0.9); 

[0.7,0.8],[0.2,0.4]> 

<(0.6,0.7,0.8); 

[0.6,0.8],[0.2,0.3]> 

<(0.6,0.7,0.9); 

[0.6,0.7],[0.1,0.3]> 

<(0.6,0.8,0.9); 

[0.7,0.8],[0.1,0.3]> 

A4 
<(0.6,0.7,0.8); 

[0.7,0.8],[0.2,0.3]> 

<(0.6,0.8,0.9); 

[0.6,0.7],[0.2,0.4]> 

<(0.6,0.7,0.9); 

[0.6,0.7],[0.2,0.3]> 

<(0.7,0.8,0.9); 

[0.6,0.7],[0.2,0.3]> 

5.1. Decision-making process 

According to the VIKOR decision steps based on IVPTFWOWA operator, we first need to 

judge the attribute type of the decision-making scheme for standardization. The attributes of the 

example given in this paper are rescue ability, Internet users' satisfaction, flexibility and time validity, 

which are all benefit indicators and have been standardized. Therefore, the weight can be directly 

calculated. The detailed decision-making steps and processes of this example are given below (four 

decimal places are reserved for all calculation results). 

Step 1: Determine the attribute weight of the scores k

jw . Since the numerical examples given in 

this paper have been normalized, the normalization process will not be repeated here. The weights of 

each expert for each attribute are directly calculated. 

(1) The score of each evaluated interval Pythagorean triangular fuzzy value is obtained by the 

interval Pythagorean triangular fuzzy numbers scoring function (Definition 6), and the ideal matrices 

are resolved. (See Appendix Table II for specific results) 

(2) The Hamming distance is determined according to Hamming distance calculation model 

(Definition 8) proposed in this paper. (See Appendix Table II for specific results) 

(3) Calculate the relative distance index of the Pythagorean triangular fuzzy evaluated value of 

each interval according to Hamming distance. (See Appendix Table II for specific results) 

(4) Calculate the attribute weight of the decision-makers. Here, the relative distance index and 

interval Pythagorean triangular fuzzy entropy method are used to resolve the attribute weight of each 

scorer. The results are shown in Table 2. 

Step 2: Determine the comprehensive weight. In this paper, the IVPTFWOWA aggregation 

operator is studied. The determination of the comprehensive weight is based on the comprehensive 

calculation of the location weight and the decision-maker attribute weight. Therefore, in this example, 

the comprehensive weight should be obtained based on the decision maker's attribute weight result 

obtained in the first step and the position weight given in advance. 
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(1) According to the position weight vector (0.3, 0.2, 0.2, 0.3) of the scheme attribute given in 

advance in this paper and Definition 12, the following can be obtained: 
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. 

(2) According to the relationship between the attribute weight and the position weight function 

of each decision, the comprehensive weight can be resolved (Table 3). 

Step 3: Aggregation of comprehensive decision matrices. After determining the comprehensive 

weight, the IVPTFWOWA aggregation operator (Definition 10) can aggregate the evaluated interval 

Pythagorean triangular fuzzy value matrices into a comprehensive evaluated value matrix. The interval 

Pythagorean triangular fuzzy evaluated value matrices after aggregation are shown in Table 4 below. 

Table 2. Attribute weights of each scores. 

  B1 B2 B3 B4
 

k

jw  
C1 0.3319  0.3320  0.3315  0.3329 

C2 0.3356  0.3339  0.3320  0.3347 

C3 0.3325  0.3341  0.3364  0.3324 

Table 3. Comprehensive weight matrices. 

  B1 B2 B3 B4
 

k

jw  
C1 0.3685  0.3673  0.3619  0.3678 

C2 0.2655  0.2671  0.2656  0.2663 

C3 0.3660  0.3656  0.3652  0.3659 

Table 4. Comprehensive evaluated value matrices. 

 B1 B2 B3 B4 

A1 

<(0.6000,0.7000,0.8266); 

[0.7159,0.8528],[0.2000,0.

3238]> 

<(0.5534,0.6901,0.7901); 

[0.6413,0.7425],[0.1802,

0.2875]> 

<(0.5734,0.7369,0.8369); 

[0.6678,0.7689],[0.1553,

0.2792]> 

<(0.5366,0.6734,0.8366); 

[0.6305,0.8000],[0.1550,

0.3598]> 

A2 

<(0.5531,0.7266,0.8634); 

[0.6677,0.8000],[0.1725,0.

2789]> 

<(0.6366,0.7733,0.9000); 

[0.6677,0.8226],[0.2000,

0.3240]> 

<(0.6635,0.7635,0.8635); 

[0.6770,0.8460],[0.1548,

0.2869]> 

<(0.5734,0.7734,0.8734); 

[0.7159,0.8717],[0.1550,

0.3000]> 

A3 

<(0.6268,0.7268,0.8268); 

[0.6677,0.8000],[0.1549,0.

3238]> 

<(0.5633,0.7267,0.8634); 

[0.6413,0.8292],[0.1929,

0.2992]> 

<(0.5631,0.7369,0.8635); 

[0.6414,0.7427],[0.1664,

0.3000]> 

<(0.5734,0.7107,0.8734); 

[0.6413,0.7688],[0.1550,

0.3000]> 

A4 

<(0.6000,0.7000,0.8734); 

[0.7000,0.8459],[0.2000,0.

3706]> 

<(0.5366,0.7366,0.9000); 

[0.6413,0.7688],[0.2000,

0.3704]> 

<(0.5734,0.7104,0.9000); 

[0.6678,0.7689],[0.1664,

0.3336]> 

<(0.6100,0.7100,0.9000); 

[0.6677,0.7688],[0.1550,

0.3000]> 

Step 4: Determine the scheme attribute weight. After the above calculation, the interval 

Pythagorean triangular fuzzy evaluated value matrices of multiple scorers have been aggregated into 

a single comprehensive evaluated value matrix.  

(1) According to the comprehensive evaluated interval Pythagorean triangular fuzzy value 
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matrix and the interval Pythagorean triangular fuzzy numbers scoring function (Definition 6), the 

score of each evaluated interval Pythagorean triangular fuzzy value is calcualted. (See Appendix 

Table III for specific results) 

(2) According to Definition 8, the Hamming distance in the comprehensive interval Pythagorean 

triangular fuzzy evaluation value matrix is calculated. (See Appendix Table III for specific results) 

(3) Calculate the relative distance index of the evaluated Pythagorean triangular fuzzy value of 

each evaluated interval in the comprehensive value matrices according to Hamming distance. (See 

Appendix Table III for specific results) 

(4) Determine the scheme attribute weight. The obtained relative distance index and the interval 

Pythagorean triangular fuzzy entropy method are used to determine the attribute weight of the 

scheme. The calculation results are shown in Table 5. 

Table 5. Scheme attribute weights. 

 

 

B1 B2 B3 B4
 

jw  0.2489  0.2511  0.2492  0.2509 

Step 5: According to the VIKOR decision-making method, three values of each scheme are 

calculated in turn (here the decision-making mechanism coefficient is taken as 0.5). The calculation 

results are shown in Table 6. 

Table 6. Calculation results.  

 A1 A2 A3 A4
 

Group Utility 

Value 
0.7324  0.1766  0.6982  0.5848 

Individual 

Regret Value 
0.2511 0.1766 0.2492 0.2258 

Compromise 

Value 
1 0 0.9567 0.6977 

Step 6: Decide the best plan. According to the VIKOR decision-making method, the smaller the 

group utility value, individual regret value and compromise value, the better the scheme is. 

According to the group unity value, the priority of schemes is A2>A4>A3>A1, indicating that 

scheme A2 is the best. According to the individual regret value, the priority of the scheme is 

A2>A4>A3>A1, indicating that scheme A2 is the best. Arranged according to the compromise value, 

the priority of the scheme is A2>A4>A3>A1, indicating that scheme A2 is the best. To sum up, the 

scheme A2 for each group has the lowest median value and meet the judgment conditions of the 

VIKOR compromise scheme (a. (1) (2) 1
( ) ( )=0.6977

3
Q A Q A  ; b. (1)( )S A  and (1)( )R A are the minimum 

values). Therefore, it can be determined that scheme A2 is a compromise scheme. 

5.2. Decision results and comparison 

According to the calculation and analysis in the previous section of this paper, it can be 

basically determined that scheme A2 is a compromise scheme. The group utility value, individual 
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regret value and compromise value are 0.1766, 0.1766 and 0, respectively, and are all the minimum 

values of each scheme. 

To illustrate the accuracy of the results and the effectiveness and scientificity of the methods, 

we will adjust the coefficient of the decision-making mechanism and the comparative analysis. 

(1) Adjustment of coefficient of decision-making mechanism. The above research is based on 

the calculated results when we set the decision-making mechanism coefficient to 0.5. In order to 

verify this, if the adjustment coefficient changes our calculation results, we set the coefficient to 

different values, and the results are as follows. 

We know that different mechanism coefficients have a certain impact on the compromise value 

(obtained from A3 and A4 columns); however, the compromise value of the A2 scheme in Table 7 is 

always 0, and the A2 scheme is always a compromise scheme. The reason for this phenomenon is that 

in the previous analysis, the group utility value and the maximum and minimum individual regret 

values are the same, that is, the maximum group utility value and individual regret value are both A1 

schemes. The minimum value of group utility value and individual regret value are A2 schemes. 

Table 7. Table of compromise values and compromise schemes under different 

decision-making mechanism coefficients. 

Decision 

mechanism 

coefficient 

Compromise value 
Compromise 

proposal A1 A2 A3 A4 

0.1 1 0 0.9714 0.6683 A2 

0.2 1 0 0.9677 0.6757 A2 

0.3 1 0 0.9640 0.6830 A2 

0.4 1 0 0.9604 0.6903 A2 

0.5 1 0 0.9567 0.6977 A2 

0.6 1 0 0.9530 0.7050 A2 

0.7 1 0 0.9494 0.7124 A2 

0.8 1 0 0.9457 0.7197 A2 

0.9 1 0 0.9421 0.7270 A2 

(2) A comparative study of decision-making methods. Although the method has obtained a 

compromise scheme, it cannot explain the accuracy and effectiveness of this method at present. Therefore, 

this paper selects the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) 

decision-making method [28] and our team's previous research achievement [8] to analyze the 

calculation example of this paper again for comparison with the results of this paper. 

When literature methods are used, the scores of each scheme can be calculated as (0.1653, 

0.1849, 0.1713, 0.1667), and it can be found that A2>A3>A4>A1. The results show that the best 

scheme is also the A2 scheme. 

When our team's previous research is used, it can be calculated that the relative closeness of 

each scheme is (0.4691, 0.4883, 0.4704, 0.4811), and the ranking of each scheme is A2>A4>A3>A1. 

The results show that the best scheme is the A2 scheme, and the ranking of its complete scheme is 

completely consistent with that of the method proposed in this paper. 

Through the comparative study of the above methods, the VIKOR decision-making method 

based on the IVPTFWOWA operator, which is a new method developed in this paper, has several 
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obvious advantages: 

(1) The decision results obtained by using the VIKOR decision method of the IVPTFWOWA 

operator are consistent with those of the decision methods proposed by other scholars, which fully 

demonstrates the accuracy, effectiveness and scientificity of the new methods and operators proposed 

in this paper. 

(2) No matter if the interval Pythagorean fuzzy geometric weighted Bonferroni average operator 

is used, or if the interval Pythagorean fuzzy WA operator is used, the difference between the good 

and bad results of the scheme is small, and it is difficult for the final decision-maker to choose the 

best scheme. However, the gap between the decision results obtained by the VIKOR decision method 

of the IVPTFWOWA operator is obviously large, which is more convenient for decision-makers to 

quickly and accurately determine the optimal scheme.  

6. Conclusions 

In this paper, we studied the IVPTFWOWA operator, defined the Hamming distance formula of 

the IVPTFWOWA operator, and proved the basic properties of the IVPTFWOWA operator, such as 

idempotence, monotony and boundedness. At the same time, this study reconstructed a new decision 

theory based on the IVPTFWOWA operator, and gave the decision-making steps of the compromise 

method. Finally, the method was validated by randomly set numerical examples, and the results were 

compared using other methods. To sum up, the method has the three advantages: first, the new 

operator studied is based on the background of information fuzziness, which can minimize the 

decision-making error caused by lack of information; second, the method in this paper can be used to 

give different weights to decision-makers. Instead, the weights of each attribute of each score can be 

resolved by their own evaluated values, making full use of their own attribute advantages; third, this 

paper applies the comprehensive weight, fully considers the location weight of the scheme attribute 

and the weight of the decision-maker, and maximizes the use of the attribute characteristics of the 

decision-maker and the case; finally, compared with other methods, the decision results obtained by 

using this method have a large gap, which makes it easier to identify the optimal scheme. 

This paper studies and proposes the IVPTFWOWA operator. This operator not only extends the 

use of fuzzy numbers from discrete sets to continuous sets, but also uses the evaluated information of 

decision makers more accurately and effectively. However, there are still some limitations in the 

research process of this paper. For example, the weight of each attribute cannot be indirectly 

calculated using this method. In this paper, the effect of the introduction of artificial variables on the 

model is not considered. In the follow-up research, we will continue to study the concept fusion of 

triangular fuzzy numbers and other fuzzy sets, construct integration operators, and find more stable 

decision information aggregation operators. Next, we will consider whether the introduction of 

artificial variables will affect the stability and applicability of the model. 
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Appendix 

Appendix I: Property Proof Process of IVPTFWOWA Operator 

Theorem 1. (Integration Invariance) If 
~

( , , );[ , ],[ , ] ( 1,2,3,..., )
i i i ii i i i a a a aa v v i n          is an IVPTF, the 

number after IVPTFWOWA operator integration should still be IVPTF. 

It is proved that 
~

( , , );[ , ],[ , ]
i i i ii i i i a a a aa v v        , 

~ ~ ~ ~

(1) (2) (3) ( )( , , ,..., )na a a a     is the position 

exchange of 
~ ~ ~ ~

1 2 3( , , ,..., )na a a a , and 
iw  is the position weight of 

~

ia . It can be seen from definition 9 

that: 

( ) ( ) ( ) ( )

~
2 2

( ) ( ) ( ) ( )( , , ); 1 (1 ( ) ) ,1 (1 ( ) ) , ( ) , ( )i i i i

i i i i

w w w w

i i i i i i i i a a a aw a w w w v v
                    

   
 

( ) ( ) ( ) ( )

( ) ( )

~
2 2

( ) ( ) ( ) ( )
1 1

( ) ( ) ( )

1 1 1

2 2

1

( , , ); 1 (1 ( ) ) ,1 (1 ( ) ) , ( ) , ( )

( , , );

1 (1 ( ) ) , 1 (1 ( ) )

i i i i

i i i i

i i

i i

n n
w w w w

i i i i i i i i a a a a
i i

n n n

i i i i i i

i i i

n
w w

a a

i i

w a w w w v v

w w w

   

 
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  

    

  

 

   

 

  

 

 

         
   



   

  

 ( ) ( )

1 1 1

~ ~ ~ ~

1 2 3

, ( ) , ( )

( , , ,..., )

i i

i i

n n n
w w

a a

i i

n

v v

IVPTFWOWA a a a a

 

 

 

   
   

   



  

 

Theorem 2. (Degeneracy) It is known that 
~

( , , );[ , ],[ , ]
i i i ii i i i a a a aa v v         is an IVPTF. When the 

weight is 
1

i
n

  , the IVPTFWOWA operator will degenerate to the IVPTFWA operator. 

Proof: when the position weight is 
1

i
n

  , the comprehensive weight is 
1

iw
n

 . 
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( ) ( ) ( ) ( )

~ ~ ~ ~ ~ ~ ~ ~

1 2 3 1 (1) 2 (2) 3 (3) ( )
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1 1 1

2 2

1 1 1 1
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Theorem 3. (Idempotence) If the interval Pythagorean triangular fuzzy numbers 
~ ~

( , , );[ , ],[ , ] =
i i i ii i i i a a a aa v v a         is assumed, then 

~ ~ ~ ~ ~

1 2 3( , , ,..., )=nIVPTFWOWA a a a a a . 

Proof: When 
~ ~

( , , );[ , ],[ , ] =
i i i ii i i i a a a aa v v a        , 

~ ~ ~ ~ ~ ~ ~ ~
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Theorem 4. (Monotonicity) For i , if 
~ ~

Ai Bia a  is satisfied, then 
~ ~ ~ ~ ~ ~ ~ ~

1 2 3 1 2 3( , , ,..., ) ( , , ,..., )A A A An B B B BnIVPTFWOWA a a a a IVPTFWOWA a a a a  holds. 

Proof: 
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( ) ( ) ( ) ( )

~ ~ ~ ~
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Similarly: 
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Because there is i , 
~ ~

Ai Bia a , then there must be 
~ ~

( ) ( )Ai Bia a  . so 
~ ~

( ) ( )
1 1

n n

Ai Ai Bi Bi
i i

w a w a 
 
   . 

To sum up, 
~ ~ ~ ~ ~ ~ ~ ~

1 2 3 1 2 3( , , ,..., ) ( , , ,..., )A A A An B B B BnIVPTFWOWA a a a a IVPTFWOWA a a a a  can be obtained. 

Theorem 5. (Boundedness) If 
~

a  is an interval Pythagorean triangular fuzzy numbers and there are 
~ ~

= minA ia a , 
~ ~

= maxB ia a , then there must be 
~ ~ ~ ~ ~ ~

1 2 3( , , ,..., )A n Ba IVPTFWOWA a a a a a  . 

proof: according to the idempotence property: 
~ ~ ~ ~ ~

= ( , , ,..., )A A A A Aa IVPTFWOWA a a a a , 
~ ~ ~ ~ ~

= ( , , ,..., )B B B B Ba IVPTFWOWA a a a a . 

In addition, there is 
~ ~

= minA ia a , 
~ ~

= maxB ia a , that is, 
~ ~ ~

A i Ba a a  . 

It can be seen from the monotonicity: 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1 2 3( , , ,..., ) ( , , ,..., ) ( , , ,..., )A A A A n B B B BIVPTFWOWA a a a a IVPTFWOWA a a a a IVPTFWOWA a a a a  . 

That is, 
~ ~ ~ ~ ~ ~

1 2 3( , , ,..., )A n Ba IVPTFWOWA a a a a a  . 
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Appendix II: Positive Ideal Matrices, Bilateral Negative Ideal Matrices, Hamming Distance and Relative Distance Index of the Original 

Evaluated Value Matrices 

  B1 B2 B3 B4
 

L
 

A1
 <(0.6000,0.7000,0.8333); 

[0.7143,0.8579],[0.2000,0.3302]> 

<(0.5667,0.7000,0.8000) 

;[0.6377,0.7389],[0.1817,0.2884]> 

<(0.5667,0.7333,0.8333); 

[0.6707,0.7718],[0.1587,0.2884]> 

<(0.5333,0.6667,0.8333); 

[0.6377,0.8000],[0.1587,0.3634]> 

A2
 <(0.5667,0.7333,0.8667) 

;[0.6707,0.8000],[0.1817,0.2884]> 

<(0.6333,0.7667,0.9000); 

[0.6707,0.8205],[0.2000,0.3302]> 

<(0.6667,0.7667,0.8667); 

[0.6707,0.8421],[0.1587,0.2884]> 

<(0.5667,0.7667,0.8667); 

[0.7143,0.8746],[0.1587,0.3000]> 

A3 
<(0.6333,0.7333,0.8333); 

[0.6707,0.8000],[0.1587,0.3302]> 

<(0.5667,0.7333,0.8667); 

[0.6377,0.8205],[0.1817,0.2884]> 

<(0.5667,0.7333,0.8667); 

[0.6377,0.7389],[0.1587,0.3000]> 

<(0.5667,0.7000,0.8667); 

[0.6377,07718], [0.1587,0.3000]> 

A4
 <(0.6000,0.7000,0.8667); 

[0.7000,0.8421],[0.2000,0.3634]> 

<(0.5333,0.7333,0.9000); 

[0.6377,0.7718],[0.2000,0.3634]> 

<(0.5667,0.7000,0.9000); 

[0.6707,0.7718],[0.1587,0.3302]> 

<(0.6000,0.7000,0.9000); 

[0.6707,0.7718], [0.1587,0.3000]> 

eL
 

A1
 

<(0.6,0.7,0.8);[0.8,0.9],[0.2,0.3]> <(0.5,0.7,0.8);[0.7,0.8],[0.3,0.4]> <(0.6,0.8,0.9);[0.7,0.8],[0.2,0.3]> <(0.5,0.7,0.8);[0.6,0.8],[0.1,0.3]> 

A2
 

<(0.5,0.7,0.9);[0.7,0.8],[0.1,0.2]> <(0.6,0.8,0.9);[0.7,0.9],[0.2,0.3]> <(0.7,0.8,0.9);[0.7,0.9],[0.1,0.2]> <(0.6,0.8,0.9);[0.8,0.9],[0.1,0.3]> 

A3 <(0.7,0.8,0.9);[0.7,0.8],[0.1,0.3]> <(0.5,0.7,0.9);[0.7,0.9],[0.3,0.4]> <(0.5,0.8,0.9);[0. 7,0.8],[0.2,0.3]> <(0.6,0.8,0.9);[0.7,0.8],[0.1,0.3]> 

A4
 

<(0.6,0.7,0.9);[0.7,0.9],[0.2,0.4]> <(0.5,0.7,0.9);[0.7,0.8],[0.2,0.4]> <(0.6,0.8,0.9);[0.7,0.8],[0.2,0.4]> <(0.6,0.7,0.9);[0.7,0.8],[0.1,0.3]> 

fL  

A1
 

<(0.6,0.7,0.8);[0.6,0.7],[0.2,0.3]> <(0.5,0.6,0.7);[0.6,0.7],[0.1,0.2]> <(0.6,0.7,0.8);[0.6,0.7],[0.1,0.2]> <(0.6,0.7,0.9);[0.6,0.8],[0.2,0.4]> 

A2
 

<(0.5,0.7,0.8);[0.6,0.8],[0.2,0.3]> <(0.7,0.8,0.9);[0.6,0.7],[0.2,0.3]> <(0. 6,0.7,0.8);[0.7,0.8],[0.2,0.4]> <(0.6,0.8,0.9);[0.6,0.8],[0.2,0.3]> 

A3 <(0.5,0.6,0.7);[0.6,0.8],[0.2,0.3]> <(0.6,0.7,0.8);[0.6,0.8],[0.2,0.3]> <(0.6,0.7,0.8);[0.6,0.7],[0.2,0.3]> <(0.6,0.7,0.9);[0.6,0.7],[0.2,0.3]> 

A4
 

<(0.6,0.7,0.9);[0.7,0.8],[0.2,0.4]> <(0.6,0.8,0.9);[0.6,0.7],[0.2,0.4]> <(0.6,0.7,0.9);[0.6,0.7],[0.2,0.3]> <(0.7,0.8,0.9);[0.6,0.7],[0.2,0.3]> 

Hamming 

Distance 

~ ~

( , )
ij ij

k

d a a


 

~ ~

( , )
ij ij

k e

d a a
 

~ ~

( , )
ij ij

k f

d a a
 

  A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

C1 

B1 0.0265 0.0882 0.0761 0.0215 0.0400 0.1250 0.1150 0.0000 0.0838 0.1194 0.0000 0.0181 

B2 0.0519 0.0298 0.0530 0.0124 0.0000 0.0000 0.0000 0.0000 0.1313 0.0531 0.0700 0.0219 

B3 0.0586 0.0558 0.0424 0.0373 0.01075 0.0000 0.0000 0.0981 0.0000 0.1025 0.0600 0.0338 

B4 0.0270 0.0473 0.0402 0.0211 0.0000 0.0000 0.0950 0.0000 0.0588 0.0775 0.0294 0.0394 

                                                                                  Continued on next page 
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Hamming 

Distance 

~ ~

( , )
ij ij

k

d a a


 

~ ~

( , )
ij ij

k e

d a a
 

~ ~

( , )
ij ij

k f

d a a
 

  A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

C2 

B1 0.0255 0.0386 0.0400 0.0151 0.0000 0.0000 0.0000 0.0181 0.0700 0.0581 0.1150 0.0000 

B2 0.0793 0.0308 0.0409 0.0253 0.1313 0.0531 0.0925 0.0350 0.0000 0.0000 0.0450 0.0444 

B3 0.0489 0.0467 0.0301 0.0608 0.0000 0.1025 0.0600 0.0000 0.1075 0.0000 0.0000 0.0806 

B4 0.0318 0.0339 0.0234 0.0271 0.0588 0.0813 0.0756 0.0481 0.0000 0.0175 0.0000 0.0350 

  A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

C3 

B1 0.0573 0.0328 0.0607 0.0272 0.0700 0.0581 0.0400 0.0488 0.0000 0.0000 0.1350 0.0306 

B2 0.0407 0.0252 0.0216 0.0191 0.0250 0.0550 0.0700 0.0219 0.1200 0.0281 0.0000 0.0000 

B3 0.0265 0.0242 0.0245 0.0354 0.0519 0.0800 0.0669 0.0806 0.0744 0.0375 0.0269 0.0000 

B4 0.0174 0.0352 0.0548 0.0185 0.0444 0.0775 0.0000 0.0394 0.0356 0.0000 0.0756 0.0000 

Relative 

Distance Index 

1

ijr
 

2

ijr
 

3

ijr
 

  A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

B1 0.8239 0.7348 0.6019 0.4572 0.7331 0.6007 0.7419 0.5450 0.5499 0.6393 0.7424 0.7445 

B2 0.7165 0.6410 0.5692 0.6381 0.6233 0.6332 0.7709 0.7582 0.3379 0.3140 0.2705 0.3305 

B3 0.6473 0.6477 0.5862 0.7795 0.6872 0.6868 0.6659 0.5700 0.8267 0.8290 0.7927 0.6947 

B4 0.6853 0.6208 0.7556 0.6515 0.6490 0.7443 0.7640 0.7544 0.8214 0.6879 0.5800 0.6799 

 

 

 



26257 

AIMS Mathematics     Volume 8, Issue 11, 26237–26259. 

Appendix III: Positive Ideal Solution, Bilateral Negative Ideal Solution, Hamming Distance and Relative Distance Index of 

Comprehensive Evaluated Value Matrices 

  B1 B2 B3 B4
 

L
  

<(0.5950,0.7133,0.8476); 

[0.6887,0.8266],[0.1808,0.3226]> 

<(0.5725,0.7317,0.8634) 

;[0.6481,0.7944],[0.1931,0.3187]> 

<(0.5934,0.7369,0.8660); 

[0.6638,0.7861],[0.1606,0.2992]> 

<(0.5733,0.7167,0.8708); 

[0.6660,0.8083],[0.1550,0.3140]> 

eL
  

<(0.6000,0.7000,0.8734); 

[0.7000,0.8459],[0.2000,0.3706]> 

<(0.6366,0.7733,0.9000); 

[0.6677,0.8226],[0.2000,0.3240]> 

<(0.6635,0.7635,0.8635); 

[0.6770,0.8460],[0.1548,0.2869]> 

<(0.5734,0.7734,0.8734); 

[0.7159,0.8717],[0.1550,0.3000]> 

fL
  

<(0.5531,0.7266,0.8634); 

[0.6677,0.8000],[0.1725,0.2789]> 

<(0.5534,0.6901,0.7901); 

[0.6413,0.7425],[0.1802,0.2875]> 

<(0.5631,0.7369,0.8635); 

[0.6414,0.7427],[0.1664,0.3000]> 

<(0.5366,0.6734,0.8366); 

[0.6305,0.8000],[0.1550,0.3598]> 

Hamming 

Distance 

~ ~

( , )
ij ij

d a a


 

~ ~

( , )
ij ij

e

d a a
 

~ ~

( , )
ij ij

f

d a a
 

  A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

B1 0.0089 0.0178 0.0103 0.0181 0.0120 0.0359 0.0264 0.0000 0.0255 0.0000 0.0151 0.0359 

B2 0.0389 0.0340 0.0115 0.01590 0.0730 0.0000 0.0349 0.0379 0.0000 0.0730 0.0381 0.0450 

B3 0.0128 0.0251 0.0161 0.0121 0.0377 0.0000 0.0408 0.0369 0.0143 0.0408 0.0000 0.0150 

B4 0.0282 0.0333 0.0153 0.0091 0.0615 0.0000 0.0479 0.0358 0.0000 0.0615 0.0183 0.0281 

Relative 

Distance Index 
ijr

 

  A1 A2 A3 A4 

B1 0.8071 0.6681 0.8008 0.6652 

B2 0.6520 0.6820 0.8639 0.8387 

B3 0.8024 0.6190 0.7171 0.8114 

B4 0.6857 0.6486 0.8126 0.8754 
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