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1. Introduction and preliminaries

Frank [1] gave a definition of an n x n matrix (which is called Frank matrix [2, 3]) as follows:

[ n n-1 0O ... 0 0]
n-1 n-1 n-2 00
F - nTZ nt2 n?2 O 0 . (1.1)
2 2
| 1 1 1 o 11

The element in the i-th row and the j-th column of Frank matrix is given by the following rule:

n+1-max(i,j), i>j-2,
fij=

0, otherwise.

The Frank matrix has often been used as test matrices for eigenprograms. This is because F, has
well-conditioned and poorly conditioned eigenvalues [3,4]. On the other hand, Frank matrix is a
special max matrix. There are many max matrix studies in the literature. One of them was considered
by Kili¢ and Arikan in [5]. They dealt with the generalized versions of the classical max and min
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matrices and gave many linear algebraic results for them. In [6], Kizilates and Terzioglu defined
r-min and r-max matrices. They also obtained determinants, inverses, norms and factorizations of
these matrices. Liu et al. [7] studied the determinants, inverses and eigenvalues of two symmetric
matrices with Fibonacci numbers as elements. In [8], Wang et al. examined determinants, inverses
and eigenvalues of symmetric matrices with Pell and Pell-Lucas numbers. They gave also the general
formulas of the solution of the linear equations with the Pell-min and Pell-Lucas-min symmetric matrix
as the coeflicient matrix, respectively. Meng et al. [9] showed that there is an intimate relationship
between Toeplitz matrix, tridiagonal Toeplitz matrix, the Fibonacci number, the Lucas number, and
the Golden Ratio. They introduced also skew Loeplitz and skew Foeplitz matrices and derived their
determinants and inverses by construction. In [10], Meng et al. investigated the exact determinants and
the inverses of nxn (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices. In [11], the authors examined the
analytical determinants and inverses of nxn weighted Loeplitz and weighted Foeplitz matrices. They
introduced also the nxn weighted Loeplitz and weighted Foeplitz matrices and obtained the analytical
determinants and inverses of them by constructing the transformation matrices. Recently, in [12], the
authors defined a generalization of Frank matrix given in (1.1) which corresponds to the real n-tuple
a=(ay,ay,..,a,) as follows:

[ a, a,; O 0 0 O]
ay—1 Ap-1 Qp 0 0 0
Fa _ Cln._z an‘_g Cln‘_z Cln._3 0 0
ay ay ay ay v dy Ay

| 41 a; aj a - ap ap

Here, the (i, j)-th entry of the above matrix is

Apt1-max(i,j)» [> j_ 2,
(fa)ij = (1.2)

0, otherwise.

Mersin et al. obtained various results based on the above definition.
Let Q = (g;;) be any m x n matrix. Then the Euclidean norm of the matrix Q is defined by

m n

10 = \| 2 2 laiil

i=1 j=1

and the spectral norm of the matrix Q is defined by

|2, = | /max1; (0" Q),

where A; (Q*Q) is eigenvalue of Q*Q and Q* is conjugate transpose of Q.
The following relation between Euclidean norm and spectral norm is well known:

L
Jn

Now we give the following useful lemma that we will use later in this paper related to norm equality.

121z <@l <lQlg- (1.3)
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Lemma 1.1. [13] Let P = (p;;) and Q = (g;;) be any m x n matrices. Then

|PoQl, <ri(P)ci(Q),

ri(P) = g&;ﬁ\ ‘ ;|pij| and c¢1(Q) = ?gf‘sxn\‘ ;|Qij| .

In the literature, the norm properties of various matrices, whose entries are the elements of well-
known sequences, have been examined by many researchers. For more information related to this
topic, see [14-26] and references therein.

where

In the light of the above-mentioned studies, we examine a min matrix and obtain some of its linear
algebraic properties. Then, we give an example to illustrate the results obtained.

2. Main results

In this part of the paper, we investigate the LU-decomposition, determinant, inverse, permanent, and
norm properties of the matrix which is the min version of (1.2). In addition, we obtain a recurrence
relation that satisfies the characteristic polynomial of this matrix.

Let S = {s1,2,...,5,} be a finite multiset of real numbers and the (i, j)-th entry of the n x n matrix
S, be as follows:

Sn+1-min(i,j)» > j_ 2,

S,'j =
0, otherwise.
Thus S, can be written as

[ 5, s, 0O - 0 017

Sy Sy—t Sp—1 - 0 0

Sy Spel Spea . b E

S,=| """ " o S, 2.1

Sn Sp-1 Sp—2 0 S22 &,

| Sn Sp-1 Sp—2 0 8§20 S

It is not difficult to see that S, can be factored as follows:

S, = MIQT, (2.2)
where
[1 0 0 0] (0 0 1]
11 0 0 00 10
M-=|: . ’ I~: o
11 1 0 0 1 00
11 11 1 0 0
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and

[s1-5, 0 0 0 0 0]

$2 S— 83 0 0 0 0

0 53 53 — 84 0 0 0

Q= : 0 0 0

0 0 0 Sn—2 — Sp-1 0 0

0 0 0 Sp_1 Sp-1—8, 0O
| O 0 0 0 S Sn |

Now, we firstly give the determinant of S ,.

Theorem 2.1. The determinant of the matrix S, is given by
det(Sn) =S H (Sifl - Sl') .
i=2
Proof. If we take determinant of both sides of (2.2), we have
det(S,) = det (MIQI) = det (M) det (T) det () det (7).

Since det (M) = 1 and det (7) = ¥1, we obtain

det (S,) =8, (s1—952) (52—=53) (53 =54) ... (81— 8) = 8 Ij (sii1—8i) -

Theorem 2.2. For 1 < i, j <n, the LU-decomposition of S, is given by as follows:

1, ifi>},
L,’j =
0, otherwise,
and
Sns l‘fl = .] = 1’

Sn—i+1 ~ Sn—i+2» lfl = J * 15

Sn—i+1s #j = 1 + i’

0, otherwise.

Proof. In the case j = 1, since min (i, 1) = 1, we have

n
Si1 = ZLikUkl = Sn = Sptl-min(ij)-
i1
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In the case j > 2, we have

0
: j—2 times
0
s=[1 1 100 -~ 0] Z }
i times (n—1i) times 0
: n— jtimes
0

where a = s,_jp and b = s,,_j.1 — Sy ji2.

e If i < j—2, we can see that

e Ifi=j—-1, we obtain

e Ifi> j, then we have

S,‘j:O.

Sij = Sn+2-j = Sn+1-i = Sp+1-min(i,j)-

Sij = Sn+1-j = Sp+1-min(i,j)-

Thus the proof is completed. O
Now we compute the permanent of S ,,.
Theorem 2.3. The permanent of the matrix S, is given by
n
per(S,) = s, H (si1+57)-
i=2
Proof. By using [27, Lemma 3.2(7)], we obtain step by step the followings:
[s, s, 0 O]
Sy Sp—1 0 O
per(S,) = per|: P
Sn Sn-1 S22
| Sn Sn-1 52 Sl-nxn
[ Sy Sp 0 0 ]
Sn Sn-1 0 0
= per : : :
Sn Sn-1 S3 S53
| (s1+82) 80 (S1+82) 81 - (s1+52)83 (51+52) 8] (- 1)x(n-1)
[ S S 0 T
Sn Sn_1 0
= per : : :
Sn Sn-1 S4
| (s1+52) (s2+53) 8, (s1+852) (52+53) w1 - (S1+52) (524 53) 83 (n-2)x(1-2)
AIMS Mathematics Volume 8, Issue 11, 26199-26212.
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Sn Sn

= per

n—1

n—1
Sn Hz (Sic1+8)  Sao Hz ($i1 + 80)
1= =

n—1 n—1

= 5, (s,, [T Csict + i) + st [ (sia + s,-))

i2 i
n

= s [ (sio1 +s1)-
i=2
Thus, the proof is completed. O

We will present the inverse of S, in the following theorem.

Theorem 2.4. Let S, be in the form

o
o
d

(s, Sn 0
Sn Sp-1 Sp-1

Sy Sy_i Spo - 00 [sn F]
. . . . . . - ’

o
o

S, =
E Sn—l
Sp Sp-1 Sp—2 " S22 82
Sn Sn-1 Sp-2 0 S2 S1

where E = [s,, Sy sn]T is (n—1) x 1 matrix and F = [sn 0 - 0 0] is 1 x (n-1) matrix. If
si (si.1— 87) # 0 for 2 <i < n, then the inverse of S, is

v —v,FS~!
Sl = n ‘ L n-l , 2.3
v S S E S, +v,S, EFS,], 2.3)
where :
n—1
Vp=—F——. 2.4
sn(sn—l - Sn) ( )
Proof. For the proof, we use the mathematical induction on n. For n = 2, we obtain classically
S1 1
1 — (s1=52)52 S1—52
S3! = S . (2.5)
det(Sz) V) 1 1
S1—52 S1—52
On the other hand, for n = 2, our claim in Eq (2.3) gives
S1 _ K s 1 S1 1
vy ‘ _V2FS1_1 s2(s1—-52) s2(s1—52) 2y (s1—-52)52 S1—-52
— — — —| = = . (2.6)
—VZSI]E‘Sll'FVlelEFSll 51 LS 1 51 lszL 1 1
s2(s1—-52) 81 s1 0 sa(s1—s2) 51728 S1—52 s1=52
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Thus the claim is satisfied for n = 2. Assume that our claim is true for n = ¢ — 1. Then, since

S;__11St—1 = I(t—l)x(t_l), we obtain

S,_l 1
s -° 2.7)
S=1d 1y (t-1)x1
If we multiply with 2 both sides of Eq (2.7), we get
Si-1
1 1
_ 1 _ s, |0
Ss| =S, \E = S_1 : (2.8)
. [_ .
1 (r-1)x1 0 (r-1)x1
For n = ¢, we obtain
S_IS _ Vt _VIFS[__II St F
et | -vSTLE | S +vSYEFS ||E S
T vis; — v FS\E v F-vFS\S,
| S Es + (S +vSNEFS ) E | —vS; L EF + (S +vS;YEFS 1) S,
_ [ VtS, - VtFSt__llE ‘ 0
| Vs S NE+SNE+v S NEFSVE| ]
_ . -
VtS,—V, I:St O O] SL (') O
1|
0
1 1 1 1
P L] IR ] IRV ] R B ) B
Se-1 ] - Se—1] - Se-1] - Se-1] -
| 0 0 0 0 |
— 2 -
VtSt - Vts—[ O
St-1
= 1 1
: Si-1 Sr-1 Si-1 Se-1] -
L0 0 ]
AIMS Mathematics Volume 8, Issue 11, 26199-26212.
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_ ) 07
_ 1
= 3 2
: S Se-1 St-1
10 |
= L.
Thus the proof is completed. O

Theorem 2.5. The characteristic polynomial of S ,, provides the following recurrence relation:

§2
P,(x) = (x— Syt ——
s

n—1

2
) Poi(x) - =1 P, 5 (), (2.9)

Sn—1
where P (x) = x— sy and Py(x) = x> = (51 + $2) x + 52 (51 — 52).

Proof. From the definition of characteristic polynomial of S, and determinantal properties, we get

xX—S, —S, 0 0 0
~Sp X—=8p-1  —Sp-1 0 0
-S, —Sy_1 X —Sy_p - 0 0
1)n(X? = . . .
—Sn —Sn-1 —Sp2 0 X—= 8 =85
—Sn —Sn-1 —Sp-2 -5 X =8
X—S-1  —Su-1 0 0 0
—Sp-1 X—Sp2 —Sp2 - 0 0
—Sn-1 —Sn-2 X—=8p-3 - 0 0
= (x - Sn) . . . .
—Sn-1 ) —Sp-3 . X— 82 T8
—Sn-1 —Sp-2 —Sp-3 0 T8 X8
—Sn —Sp-1 0 -0 0
—Sp X~ Sy —Sn-2 O 0
~Sp  —Sp—2  X—Sp3 - O 0
+Sn| . . . .
L Y ) —Sp-3 0 X8 T8
=Sy —Sp2 —Sp3 vt =8 X— 8y
—Sn-1 —Sn-1 0 0 0
—Sp-1 X—=Sp2  —Sp2 0 0
2
Sy |7 Sn-1 —Sn-2 X = S8p-3 - 0 0
= (x=58,) Py (x) + —| " . .
Sn—1
—Sp-1 TSn2 —Sp-3 v X— 8  —$
—Sn-1 —Sp2 —Sp-3 0 TS X8
2
Sl’l

(x = 82) Pooi(x) + S (Pn-1(x) = xPy2(x))

n—1

AIMS Mathematics Volume 8, Issue 11, 26199-26212.
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2

Sn) Po(x) - xs

n—1

P,a(x).

= (x—sn+

n-1
So, the proof is completed. O
Theorem 2.6. Suppose that

P.(x)=x"+ a/(") e aE")x + a(()") (2.10)

be the characteristic polynomial of S ,,, then we have the followings:

2
(el = (Z-5)al™,
Sn—1
(ll) a’(n) = r(lnzl) — Sn»
2 2
(iiy ™ = o™V (— sn) o - iafﬁ’;z) (1<i<n-2).
Sn—1 Sn-1

Proof. Substituting (2.10) in to (2.9), we get

2
9+ emne ) )
52 ; - o
2 (00l sl s all ).
Sn-1

If we rearrange the right-hand side of the above equation to powers of x and compare the coefficients
of the resulting expression with the coefficients of (2.10), then we obtain

2
(l) a'(()n) = (i - sn)a/(()n 1)9

Sn-1
(i) el = o) = s,
2
(iii) @™ = o™V 4 (— s,l)a,?“) ", (1<i<n-2),
Sn-1 Sn*I
respectively. O

Now we present some norm properties of S, in the following theorems.

Theorem 2.7. The Euclidean norm of S ,, is

ISl = Z(m+1 2 -2

Proof. If we apply the definition of Euclidean norm to the matrix §,, we obtain

n
I1Sallz = A ‘ > |sij|2:(n+1)sﬁ+nsﬁ+ 43534257 - 52 = Z(m+1)s2 - 52,
ij=1

AIMS Mathematics Volume 8, Issue 11, 26199-26212.
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Theorem 2.8. For the matrix S, if s; < 55 <...<s,, then we have the following norm inequality:

— (m+1)s2—s1<|Sa], < ns,.
P -

Proof. Let the n x n matrix X be

11
x=[1 11 -0
P 1
111 1]

and S, be as in (2.1) . So we have

r(X) = max ‘ Z|xu| =

c1(Sy) = max Z|SU = \/nsk = \/ns,.

<<n

and

Since §, = X o S, by the aid of Lemma 1.1, we have
IS 4], < ns,.

Thus, by using (1.3), we obtain

n
> (m+ 1)t < IS < s
m=1

\/_
Thus, the proof is completed. O

3. A numerical example

In this section, we give a numerical example to verify our results. In the example to be given, the
matrix (2.1), whose entries are classical Lucas numbers, will be discussed for n = 4.
The classical Lucas sequence is defined by the following recurrence relation:

ln+2 = ln+1 + ln’ (I’l 2 0) 5

where [y =2,1; = 1.

Let
L I, 0 0 7 7 00
L Iz Iz 0 74 4 0
£4 = =
L L L L 7 4 3 3
L L L 7 4 3 1

AIMS Mathematics Volume 8, Issue 11, 26199-26212.
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be a matrix as in (2.1) for n = 4.
With the help of the Theorem 2.1, the determinant of £, can be calculated as

4
det (L4) =Ly [ [ (i = 1) = ~lolyloly = -42.
=2

Thanks to Theorem 2.2, for 1 < i, j < 4, the LU-decomposition of £, can be written as follows:

1, ifi>},
Lij:
0, otherwise,
and
ly, ifi=j=1,
=y, ifi= _] #1,
Uij_
15_,', 1f]=1+l,
0, otherwise.
Thus we have
7 7 0 0 1 00 0117 7 0O O
£_7440_11000—340
77 4 337111 10|l0 0O -1 3
7 4 3 1 1 11 1]]0 0 0O -2

By virtue of Theorem 2.3, one can obtain the permanent of the matrix £4 as
4
per(ﬁ4) =1l H (li—l + lz) = 13142‘15 =2156.
i=2

With the help of the Theorem 2.4, the inverse of £, can be calculated as

E_l_ Iy F _1_ V4 ‘ —V4F[,51
Y E Ls] | wLS'E| L+ wL3'EFLS |

[ 4
3 ——. Thus, after the necessary

T
where E = [l4 l4 l4] , F = [l4 0 O] and Vg4 = m = 1

calculations, the inverse of £, is obtained as follows:

A 2
;15 2
'CZI —
0o 1 b3
[0 0 3 3

AIMS Mathematics Volume 8, Issue 11, 26199-26212.
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Thanks to Theorem 2.5, we have
12 12
P53(x) = (x -+ 1—3) Py(x) - l—3xP1(x) =x° - 8x* - 6x-8.
2 2

Thus the characteristic polynomial of the matrix £4 can be computed as

I I
Py(x) = (x I+ 1—4) P3(x) - l—4xP2(x) = x* = 15x° + x* + 34x - 42.
3 3

With the help of the Theorem 2.6, we have the followings:

lZ
(i) ag” = -42= (1—4 - 14) af”,

3
(if) ag4) = —15:a§3)—l4,

2 2

(iii) a/§4) = 34=a(()3)+(i—l4)a§3)—ia/(()2),
Ao _ o g®, (b e _h o
(v) oy’ = l=a;"+ E_l4 @, —Ea] .

From Theorem 2.7, Euclidean norm of the matrix £4 can be computed as

4
[Lallz=+\| D (m+1)-1= /337~ 18.358.
m=1
By virtue of Theorem 2.8, we can obtain the lower and upper bounds for the spectral norm of L4 as
9.179 < || L4], = 17.762 < 28.
4. Conclusions
In this paper, we investigated a min matrix and obtained some of its linear algebraic properties. In
future studies, interested readers may examine whether Sturm’s Theorem can be applied to the matrix
discussed in this study. For recent studies on Sturm’s Theorem, we refer to [28,29] and references
therein.
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