
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(11): 26188–26198.
DOI: 10.3934/math.20231335
Received: 28 June 2023
Revised: 21 August 2023
Accepted: 31 August 2023
Published: 12 September 2023

Research article

New regularization methods for convolutional kernel tensors

Pei-Chang Guo*

School of Science, China University of Geosciences, Beijing 100083, China

* Correspondence: Email: gpeichang@126.com.

Abstract: Convolution is a very basic and important operation for convolutional neural networks. For
neural network training, how to bound the convolutional layers is a currently popular research topic.
Each convolutional layer is represented by a tensor, which corresponds to a structured transformation
matrix. The objective is to ensure that the singular values of each transformation matrix are bounded
around 1 by changing the entries of the tensor. We propose three new regularization terms for
a convolutional kernel tensor and derive the gradient descent algorithm for each penalty function.
Numerical examples are presented to demonstrate the effectiveness of the algorithms.

Keywords: regularization; singular values; doubly blocked banded Toeplitz matrices; convolutional
kernel tensor
Mathematics Subject Classification: 15B05, 65F15

1. Introduction

Convolutional neural networks (CNNs) are an important class of deep learning models and they
have been applied successfully in image understanding in recent years. The use of CNNs is now the
dominant approach for almost all recognition and detection tasks [8]. Despite the great success, the
training of deep convolutional networks remains to be difficult both theoretically and practically. It
has been shown that exploiting the orthogonality to regularize convolutional layers can improve the
stability and performance of CNNs and alleviate the issue of unstable gradients [2, 4, 9, 16, 17, 21, 24].
In this paper, we propose three new regularization terms for convolutional layers and derive the gradient
descent algorithm for each penalty function.

First we introduce some necessary notations used in this paper. The notation ∗ denotes the
convolution arithmetic in neural networks. vec(X) denotes the vectorization of X. When X is a matrix,
with the columns of X stacked on top of one another, vec(X) denotes the resulting column vector.
When X is a tensor, vec(X) denotes the column vector obtained by stacking the columns of the
flattening of X along the first index (please see [7] on the flattening of a tensor). The notation ⌜·⌝

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231335

26189

means to round a number to the nearest integer greater than or equal to the number. For a matrix A,
σmax(A) and σmin(A) denote the largest and smallest singular values, respectively.

The tensor is an important concept in many disciplines [5, 15]. Tensors can represent
multi-relational data or nonlinear relationships. In CNNs, the convolution is a basic and important
operation, which is represented by a tensor. Each convolution arithmetic is associated with a linear
structured transformation matrix. Given a convolutional kernel tensor K, Y = K ∗ X is mathematically
equivalent to

vec(Y) = Mvec(X), (1.1)

where M is the structured transformation matrix.
In the field of deep learning, there exist different forms of convolution arithmetic because of different

choices about strides and padding patterns [6]. In this paper, without losing generality, the same
convolution with unit strides is used to introduce our method. For the one-channel case, a convolutional
kernel is represented by a matrix K ∈ Rk×k and the input is a matrix X ∈ RN×N; then, the output
Y ∈ RN×N is computed by

Yr,s = (K ∗ X)r,s =
∑

p∈{1,··· ,k}

∑
q∈{1,··· ,k}

Xr−m+p,s−m+qKp,q,

where m = ⌜k/2⌝ and Xi, j = 0 if i ≤ 0 or i > N, or if j ≤ 0 or j > N.
In deep convolutional networks, multi-channel convolutions are more common and a convolutional

kernel is represented by a 4 dimensional tensor. For a kernel tensor K ∈ Rk×k×g×h and the input
represented by a 3 dimensional tensor X ∈ RN×N×g, the output Y = K ∗ X,Y ∈ RN×N×h is given by

Yr,s,c = (K ∗ X)r,s,c =
∑

d∈{1,··· ,g}

∑
p∈{1,··· ,k}

∑
q∈{1,··· ,k}

Xr−m+p,s−m+q,dKp,q,d,c,

where m = ⌜k/2⌝ and Xi, j,d = 0 if i ≤ 0 or i > N, or if j ≤ 0 or j > N.
Deep neural networks are usually layered. The singular values of the Jacobian of a layer bound the

factors by which the norms of forward-propagated and backpropagated signals change. In the backward
direction, if the singular values of the layers are all close to zero or all significantly larger than 1,
gradient exploding or gradient vanishing will occur, which are fundamental obstacles for training deep
networks [8, 11, 17]. In the forward direction, if the the singular values of the layers are all bounded,
the computations will be more stable, the generalization error can be bounded and the robustness to
adversarial examples can be improved [1, 4, 13, 19, 20, 25]. Therefore, it is desirable to constrain the
operator norms of network layers. The stability and Hopf bifurcation of some delayed neural networks
have been investigated [14, 22, 23]. Convolutional layers are important components of CNNs. In this
paper we will give three new regularization terms for the singular values of convolutional layers and
develop the gradient descent algorithms; thus, we can modify the singular values of M in (1.1) as
desired by changing the entries of K.

In the field of deep learning, there have been many research papers studying how to enforce the
orthogonality or spectral norm regularization on the weights of a neural network [2, 4, 16, 24]. Unlike
the preceding papers including [2, 4, 16, 24] and the references therein, in this paper we handle
convolutions differently. They get the h × (gkk) matrix by reshaping the kernel K ∈ Rk×k×g×h; they then
enforce the constraint directly on the h × (gkk) matrix. We enforce the constraint on the

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26190

transformation matrix M associated with the convolutional kernel tensor K. In [17], the authors
project a convolutional layer onto an operator-norm ball and confirm that this is an effective
regularizer by conducting numerical experiments. Although the projection method in [17] can
effectively prevent the singular values of the transformation matrix from being large, it can’t prevent
the singular values from being too small. In [10, 21], regularization methods are given to ensure that
the transformation matrix is near orthogonal, where the largest and smallest singular values are
modified simultaneously.

In this paper we present new regularization methods for the convolutional kernel tensor K. We
have two main contributions. First, the new proposed regularization terms can decrease the largest
singular value and increase the smallest singular value of convolutional layers independently. Thus the
regularization will be more flexible and targeted, depending on the practical need during the training
process. Existing methods have no clear impact on the singular values of the transformation matrix M,
or they cannot effectively prevent the singular values from being smaller, or can only simultaneously
decrease the largest singular value and increase the smallest singular value [10,16,17,21,24]. Second,
we give the formulae for partial derivatives of the proposed penalty functions versus the convolutional
kernel tensor, which are first order perturbation results, revealing how each entry of a convolutional
kernel tensor affects the singular values of the associated structured transformation matrix.

The rest of the paper is organized as follows: In Section 2, as a warm-up, we handle the one-channel
case in which the kernel K is a k × k matrix. We propose the penalty functions and give the formulas
for computing partial derivatives. In Section 3, we handle the multi-channel case, where the kernel
is represented by a tensor K ∈ Rk×k×g×h. We also propose the penalty functions and give the gradient
descent algorithms. In Section 4, we present numerical results to show that the proposed methods are
effective. In Section 5, some conclusions and discussions are given.

2. One-channel convolution

For the one-channel case, the convolutional kernel is a k×k matrix, and there exist one input channel
and one output channel. Suppose that the convolutional kernel K is a 3 × 3 matrix and the input data
matrix is N × N; we show the form of the associated structured transformation matrix. Here,

K =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 .
For Y = K ∗ X, the linear transformation matrix M satisfies the equation vec(Y) = Mvec(X), so we can
get the linear transformation matrix M as

M =



A0 A−1 0 0 · · · 0

A1 A0 A−1
. . .

. . .
...

0 A1 A0
. . .

. . . 0

0 . . .
. . .

. . . A−1 0
...
. . .

. . . A1 A0 A−1

0 · · · 0 0 A1 A0


, (2.1)

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26191

where

A0 =



k22 k32 0 0 · · · 0

k12 k22 k32
. . .

. . .
...

0 k12 k22
. . .

. . . 0

0 . . .
. . .
. . . k32 0

...
. . .

. . . k12 k22 k32

0 · · · 0 0 k12 k22


, A−1 =



k23 k33 0 0 · · · 0

k13 k23 k33
. . .

. . .
...

0 k13 k23
. . .

. . . 0

0 . . .
. . .
. . . k33 0

...
. . .

. . . k13 k23 k33

0 · · · 0 0 k13 k23


,

A1 =



k21 k31 0 0 · · · 0

k11 k21 k31
. . .

. . .
...

0 k11 k21
. . .

. . . 0

0 . . .
. . .
. . . k31 0

...
. . .

. . . k11 k21 k31

0 · · · 0 0 k11 k21


.

For this case, the N2 × N2 matrix M is a doubly blocked banded Toeplitz matrix, i.e., a banded block
Toeplitz matrix with its blocks represented as banded Toeplitz matrices. For the details about Toeplitz
matrices, we recommend the references [3, 12]. We use T to represent the set of all matrices with the
same structure as M in (2.1), i.e., doubly blocked banded Toeplitz matrices with a fixed bandwidth.

From the structure of M, we see that one entry of K corresponds to more than one entry of M. The
value of Kp,q will appear at different (i, j) indexes of the matrix M. In this section, We use S to denote
this index set, to which each (i, j) index corresponding to Kp,q belongs. That is to say, we have that
mi j = Kp,q for each (i, j) ∈ S and mi j , Kp,q for each (i, j) that does not satisfy (i, j) ∈ S.

2.1. Regularization 1 to obtain a smaller Frobenius norm of M

Given a matrix M, the square of the Frobenius norm of M, ∥M∥2F , is the sum of squares of all the
entries of M. Meanwhile, it is equal to the sum of squares of all the singular values of M [7]. We
will use 1

2∥M∥
2
F as the regularization term for the convolutional kernel K to prevent the singular values

from being too large, and we derive the formula ∂ 1
2∥M∥

2
F/∂Kp,q. We give the following simple lemma,

which will be useful in the following derivation.

Lemma 2.1. For A ∈ Rn×n, in terms of the partial derivative of the square of its Frobenius norm with
respect to entries ai j, it holds that ∂∥A∥2F/∂ai j = 2A.

Proof. Combining
∂Σa2

i j/∂ai j = 2ai j with ∥A∥2F = Σa2
i j,

we can get that
∂∥A∥2F/∂ai j = 2A.

□

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26192

As we see, one entry of K corresponds to more than one entry of M. For the entry Kp,q, the (i, j)
index set S represents the locations in M. According to the chain rule formula about the derivative, in
order to get ∂∥M∥2F/∂Kp,q, we need to compute ∂∥M∥2F/∂mi j for all (i, j) ∈ S and take the sum. Then
we can organize the above analysis result as the following theorem.

Theorem 2.1. Let M ∈ Rn×n be the structured transformation matrix associated with the kernel K ∈
Rk×k. Given (p, q), if S denotes the set of all indices (i, j) such that mi j = kp,q, it holds that

1
2
∂∥M∥2F
∂Kp,q

=
∑

(i, j)∈S

mi j. (2.2)

Proof. As we see from the structure of M, each entry of K corresponds to more than one entry of M.
Given (p, q), as S denotes the set of all indices (i, j) such that mi j = kp,q, combining Lemma 2.1 with
the chain rule formula about the derivative, we get

1
2
∂∥M∥2F
∂Kp,q

=
1
2

∑
(i, j)∈S

∂∥M∥2F
∂mi j

=
∑

(i, j)∈S

mi j.

□
As we know, the Frobenius norm of a matrix equals the sum of squares of the singular values.

Formula (2.2) could be used to implement the gradient descent algorithm for ∥M∥2F . So, we can change
the entries of a convolutional kernel K to let singular values of M be smaller.

2.2. Regularization 2 to obtain a larger σmin(M)

In this subsection, we show how to increase the smallest singular value of M by modifying the
entries of K. To compute ∂σmin(M)/∂Kp,q, we need the following lemma, which is the perturbation
analysis result for a simple singular value of a matrix; see [18] for the details.

Lemma 2.2. For a matrix A = [ai j] ∈ Rm×m, ifσ is a simple singular value, and u and v are respectively
the normalized left and right singular vectors associated with σ. Then ∂σ/∂ai j is uvT .

The value of Kp,q will appear at different (i, j) indexes of the matrix M, where S is the index set.
Therefore we can use the chain rule and Lemma 2.2 to get the next theorem.

Theorem 2.2. For the one-channel convolutional kernel K ∈ Rk×k, let M ∈ Rn×n be the structured
transformation matrix. Assume that σmin(M) is simple and σmin(M) > 0, and that u, v are the
normalized left and right singular vectors associated with σmin(M). Given (p, q), if S denotes the set
of all indices (i, j) such that mi j = kp,q, we have

∂σmin(M)/∂Kp,q =
∑

(i, j)∈S

u(i)v(j). (2.3)

Proof. Each entry of K corresponds to more than one entry of M. Given (p, q), S denotes the set of all
indices (i, j) such that mi j = kp,q. Combining Lemma 2.2 with the chain rule formula for the derivative,
we get (2.3). □

Formula (2.3) could be used to implement the gradient descent for the penalty function σmin(M).
Then we can modify the entries of K to increase σmin(M).

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26193

2.3. Regularization 3 to ensure that the singular values of M are neither large nor small

Now we can combine Theorems 2.1 and 2.2 to ensure that the singular values of M are neither large
nor small. As we know, ∥M∥2F is the squared sum of all singular values of M. If M is n × n, ∥M∥2F is
the squared sum of n singular values. We may choose 1

2∥M∥
2
F − nσmin(M) as the regularization term to

ensure that the singular values of M are neither large nor small. This leads to the next theorem.

Theorem 2.3. Let M ∈ Rn×n be the structured transformation matrix corresponding to the one channel
convolutional kernel K ∈ Rk×k. Assume that σmin(M) > 0 and that σmin(M) is simple, and u, v are the
normalized left and right singular vectors of M that are respectively associated with σmin(M). Given
(p, q), if S denotes the set of all indices (i, j) such that mi j = kp,q, we have

∂(
1
2
∥M∥2F − nσmin(M))/∂Kp,q =

∑
(i, j)∈S

(mi j − nu(i)v(j)). (2.4)

Proof. Combining (2.2) with (2.3), we can get (2.4). □

3. Multi-channel convolution

For the case of multi-channel convolution, the convolutional kernel is represented by a tensor K ∈
Rk×k×g×h. The tensor X ∈ RN×N×g denotes the input, where element Xi, j,d is the value of the input unit
within channel d at row i and column j. Entries of Y = K ∗ X,Y ∈ RN×N×h are computed according to

Yr,s,c = (K ∗ X)r,s,c =
∑

d∈{1,··· ,g}

∑
p∈{1,··· ,k}

∑
q∈{1,··· ,k}

Xr−m+p,s−m+q,dKp,q,d,c,

where Xi, j,d = 0 if i ≤ 0 or i > N, or if j ≤ 0 or j > N. Through calculation, the structured
transformation matrix M such that vec(Y) = Mvec(X) is as follows

M =


M(1)(1) M(1)(2) · · · M(1)(g)

M(2)(1) M(2)(2) · · · M(2)(g)
...

... · · ·
...

M(h)(1) M(h)(2) · · · M(h)(g)

 , (3.1)

where M(c)(d) ∈ S, i.e., M(c)(d) is a N2 × N2 doubly blocked banded Toeplitz matrix. M(c)(d) corresponds
to the portion K:,:,d,c that is convolved with the d-th input channel to get the c-th output channel.

In this section, we use Ωp,q,z,y to denote the set of all indexes (i, j) satisfying that mi j = Kp,q,z,y. That
is to say, we have that mi j = Kp,q,z,y for each (i, j) ∈ Ωp,q,z,y and mi j , Kp,q,z,y for each (i, j) that does not
satisfy (i, j) ∈ Ωp,q,z,y.

We can generalize the results for one-channel convolution to the multi-channel case, which are
summarized as the following two theorems.

Theorem 3.1. For the convolutional kernel K ∈ Rk×k×g×h, let M be the associated structured
transformation matrix as defined in (3.1). Given (p, q, z, y), if Ωp,q,z,y is the set of all indices (i, j) such
that mi j = kp,q,z,y, it holds that

1
2
∂∥M∥2F
∂Kp,q,z,y

=
∑

(i, j)∈Ωp,q,z,y

mi j. (3.2)

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26194

The proof of Theorem 3.1 follows from Lemma 2.1 as in Theorem 2.1; it is omitted here.

Theorem 3.2. For the convolutional kernel K ∈ Rk×k×g×h, let M be the associated structured
transformation matrix as defined in (3.1). Given (p, q, z, y), if Ωp,q,z,y is the set of all indices (i, j) such
that mi j = kp,q,z,y, it holds that

∂σmin(M)/∂Kp,q,z,y =
∑

(i, j)∈Ωp,q,z,y

u(i)v(j). (3.3)

The proof of Theorem 3.2 follows from Lemma 2.2 as in Theorem 2.2; it is omitted here.

Theorem 3.3. For the convolutional kernel K ∈ Rk×k×g×h, let M be the associated structured
transformation matrix as defined in (3.1). Given (p, q, z, y), if Ωp,q,z,y is the set of all indices (i, j) such
that mi j = kp,q,z,y, it holds that

∂(
1
2
∥M∥2F − min(g, h)N2σmin(M))/∂Kp,q,z,y =

∑
(i, j)∈Ωp,q,z,y

(mi j − min(g, h)u(i)v(j)). (3.4)

Here, min(g, h) denotes the smaller value of g and h.

Proof. Combining (3.2) with (3.3), we can get (3.4). □

Then we present the detailed gradient descent algorithm for the three different penalty functions,
where in Algorithm 3.3, min(g, h) denotes the smaller value of g and h.

Algorithm 3.1. Gradient descent algorithm for Rα(K) = 1
2∥M∥

2
F

(1) Input: a convolutional kernel tensor K ∈ Rk×k×g×h, step size λ, and input size N × N × g.
(2) If σmax(M) is large:

(3) Compute G = [∂
1
2 ∥M∥

2
F

∂kp,q,z,y
]k,k,g,h

p,q,z,y=1 by (3.2);
(4) Update K = K − λG;
(5) End

Algorithm 3.2. Gradient descent algorithm for Rα(K) = −σmin(M)

(1) Input: a convolutional kernel tensor K ∈ Rk×k×g×h, step size λ, and input size N × N × g.
(2) If σmin(M) is small:
(3) Compute G = [−∂σmin(M)

∂kp,q,z,y
]k,k,g,h

p,q,z,y=1 by (3.3);
(4) Update K = K − λG;
(5) End

Algorithm 3.3. Gradient descent algorithm for Rα(K) = 1
2∥M∥

2
F − min(g, h)N2σmin(M)

(1) Input: a convolutional kernel tensor K ∈ Rk×k×g×h, step size λ, and input size N × N × g.
(2) While not converged:

(3) Compute G = [∂(
1
2 ∥M∥

2
F−min(g,h)N2σmin(M))
∂kp,q,z,y

]k,k,g,h
p,q,z,y=1 by (3.4);

(4) Update K = K − λG;
(5) End

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26195

4. Numerical experiments

We do numerical experiments by using MATLAB R2016b on a laptop. The laptop had
specifications of 3.0 GHz and 16GB of memory. M denotes the transformation matrix corresponding
to the convolutional kernel tensor. σmax(M) and σmin(M), the iteration steps (denoted as “iter”), are
used to show the effectiveness of the proposed algorithms. We randomly generated multi-channel
convolutional kernels using the following command

rand(‘state’,1),
K = rand(k, k, g, h).

We considered K ∈ R3×3×g×h with different values of g, h, i.e., kernels of different sizes with 3×3 filters.
For each kernel, we used 20 × 20 × g as the size of the input data matrix. We then minimized the three
different penalty functions by using Algorithms 3.1–3.3 respectively.

Regarding the choice of the step size λ, although we have no theoretical result, we have a good
rule of thumb. According to our numerical experimental results, the step size λ = 1e − 5 is suitable
for Algorithms 3.1 and 3.3 and the step size λ = 1e − 4 is suitable for Algorithm 3.2. Regarding the
process to obtain Ωp,q,z,y, i.e., the set of all indexes (i, j) such that mi j = kp,q,z,y, we first generated a
structured matrix A with the entry kp,q,z,y and then we used the MATLAB command “find(A)” to get
the row and column subscripts of each nonzero element in A. Besides, at each iteration step we used
MATLAB commands “norm(M)” and “cond(M)” to compute the largest and smallest singular value of
the new transformation matrix.

We present the results for 3×3×3×1 and 3×3×1×3 kernels in the following figures. In Figure 1,
we demonstrate the changes of the largest singular value of M by using Algorithm 3.1.

0 500 1000
0

1

2

3

4

5

6

7

8

9

0 500 1000
0

1

2

3

4

5

6

7

8

9

Figure 1. Changes of σmax(M) for different kernel sizes.

As the number of iterations increases, σmax(M) is reduced. In Figure 2, we demonstrate the changes
of the smallest singular value of M by using Algorithm 3.2. As the number of iterations increases,
σmin(M) increases.

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26196

0 500 1000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2. Changes of σmin(M) for different kernel sizes.

In Figure 3, the changes of σmax(M) and σmin(M) are shown, respectively as a result of using
Algorithm 3.3. As the number of iterations increases, σmax(M) on the left axis scale is reduced and
meanwhile σmin(M) on the right axis scale increases. The changes of σmax(M) and σmin(M) in the
figures confirm that the three proposed algorithms are effective. In the training of deep neural
networks, the practitioners decide which algorithm should be used based on the knowledge about the
specific neural network architecture.

0 50 100
5.5

6

6.5

7

7.5

8

8.5

la
rg

e
s
t

s
in

g
u

la
r

v
a

lu
e

 o
f

M

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

s
m

a
lle

s
t

s
in

g
u

la
r

v
a

lu
e

 o
f

M

0 50 100
5.5

6

6.5

7

7.5

8

8.5

la
rg

e
s
t

s
in

g
u

la
r

v
a

lu
e

 o
f

M

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

th
e

 s
m

a
lle

s
t

s
in

g
u

la
r

v
a

lu
e

 o
f

M

Figure 3. Changes of σmax(M) and σmin(M) for different kernel sizes.

Numerical experiments were performed by using other randomly generated examples, which
include random kernels with each entry uniformly distributed on [0, 1]. The figures illustrating the

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

26197

convergence of σmax(M) and σmin(M) were similar to the figures presented in the paper.

5. Conclusions

In this paper, we provide new methods to modify the singular values of the convolutional kernel
tensors. From the perspective of linear algebra, each convolution operation corresponds to a
structured transformation matrix. We have applied the knowledge about linear algebra in combination
with the chain rule formula for computing derivatives to get the new regularization methods. New
regularization terms for convolutional kernels have been proposed and the gradient decent algorithms
for the regularization terms have been provided. The methods are shown to be effective in modifying
the singular values of convolutional kernel tensors.

Use of AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant
No. 12001504) and the Fundamental Research Funds for the Central Universities (Grant
No. 2652019320).

Conflict of interest

The author declares no conflict of interest.

References

1. P. L. Bartlett, D. J. Foster, M. Telgarsky, Spectrally-normalized margin bounds for neural networks,
Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017,
6241–6250.

2. A. Brock, T. Lim, J. M. Ritchie, N. Weston, Neural photo editing with introspective adversarial
networks, ArXiv, 2017. https://doi.org/10.48550/arXiv.1609.07093

3. R. H. F. Chan, X. Jin, An introduction to iterative toeplitz solvers, SIAM Press, 2007.
4. M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, N. Usunier, Parseval networks: improving

robustness to adversarial examples, Proceedings of the 34th International Conference on Machine
Learning, 70 (2017), 854–863.

5. W. Ding, Y. Wei, Theory and computation of tensors: multi-dimensional arrays, Academic Press,
2016. https://doi.org/10.1016/C2014-0-04764-8

6. V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, ArXiv, 2018.
https://doi.org/10.48550/arXiv.1603.07285

7. G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins University Press, 2013.
https://doi.org/10.56021/9781421407944

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

http://dx.doi.org/https://doi.org/10.48550/arXiv.1609.07093
http://dx.doi.org/https://doi.org/10.1016/C2014-0-04764-8
http://dx.doi.org/https://doi.org/10.48550/arXiv.1603.07285
http://dx.doi.org/https://doi.org/10.56021/9781421407944

26198

8. I. J. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.
9. I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, ArXiv,

2015. https://doi.org/10.48550/arXiv.1412.6572
10. P. C. Guo, Q. Ye, On the regularization of convolutional kernels in neural networks, Linear

Multilinear Algebra, 70 (2022), 2318–2330. https://doi.org/10.1080/03081087.2020.1795058
11. J. F. Kolen, S. C. Kremer, Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies, Wiley-IEEE Press, 2001. https://doi.org/10.1109/9780470544037.ch14
12. X. Q. Jin, Developments and applications of block Toeplitz iterative solvers, Springer Science &

Business Media, 2003.
13. J. Kovačević, A. Chebira, An introduction to frames, Now Publishers Inc., 2008.
14. P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf bifurcation and control methods in fractional

order BAM neural networks incorporating symmetric structure and delay, Cognit. Comput., 2023.
https://doi.org/10.1007/s12559-023-10155-2

15. L. H. Lim, Tensors in computations, Acta Numer., 30 (2021), 555–764.
https://doi.org/10.1017/S0962492921000076

16. T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial
networks, ArXiv, 2018. https://doi.org/10.48550/arXiv.1802.05957

17. H. Sedghi, V. Gupta, P. M. Long, The singular values of convolutional layers, ArXiv, 2018.
https://doi.org/10.48550/arXiv.1805.10408

18. G. W. Stewart. Matrix algorithms, SIAM Publications Library, 2001.
https://doi.org/10.1137/1.9780898718058

19. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, et al., Intriguing
properties of neural networks, ArXiv, 2013. https://doi.org/10.48550/arXiv.1312.6199

20. Y. Tsuzuku, I. Sato, M. Sugiyama, Lipschitz-Margin training: scalable certification of perturbation
invariance for deep neural networks, Adv. Neural Inf. Process., 31 (2018), 6542–6551.

21. J. Wang, Y. Chen, R. Chakraborty, S. X. Yu, Orthogonal convolutional neural networks,
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
https://doi.org/10.1109/CVPR42600.2020.01152

22. C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle
multi-delayed neural networks, Neural Process. Lett., 2022. https://doi.org/10.1007/s11063-022-
11130-y

23. C. Xu, W. Zhang, Z. Liu, L. Yao, Delay-induced periodic oscillation for fractional-
order neural networks with mixed delays, Neurocomputing, 488 (2022), 681–693.
https://doi.org/10.1016/j.neucom.2021.11.079

24. Y. Yoshida, T. Miyato, Spectral norm regularization for improving the generalizability of deep
learning, ArXiv, 2017. https://doi.org/10.48550/arXiv.1705.10941

25. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning (still) requires
rethinking generalization, Commun. ACM, 64 (2021), 107–115. https://doi.org/10.1145/3446776

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 11, 26188–26198.

http://dx.doi.org/https://doi.org/10.48550/arXiv.1412.6572
http://dx.doi.org/https://doi.org/10.1080/03081087.2020.1795058
http://dx.doi.org/https://doi.org/10.1109/9780470544037.ch14
http://dx.doi.org/https://doi.org/10.1007/s12559-023-10155-2
http://dx.doi.org/https://doi.org/10.1017/S0962492921000076
http://dx.doi.org/https://doi.org/10.48550/arXiv.1802.05957
http://dx.doi.org/https://doi.org/10.48550/arXiv.1805.10408
http://dx.doi.org/https://doi.org/10.1137/1.9780898718058
http://dx.doi.org/https://doi.org/10.48550/arXiv.1312.6199
http://dx.doi.org/https://doi.org/10.1109/CVPR42600.2020.01152
http://dx.doi.org/https://doi.org/10.1007/s11063-022-11130-y
http://dx.doi.org/https://doi.org/10.1007/s11063-022-11130-y
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.11.079
http://dx.doi.org/https://doi.org/10.48550/arXiv.1705.10941
http://dx.doi.org/https://doi.org/10.1145/3446776
http://creativecommons.org/licenses/by/4.0

	Introduction
	One-channel convolution
	Regularization 1 to obtain a smaller Frobenius norm of M
	Regularization 2 to obtain a larger min(M)
	Regularization 3 to ensure that the singular values of M are neither large nor small

	Multi-channel convolution
	Numerical experiments
	Conclusions

