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Abstract: We extend the notion of classical metric geometric mean (MGM) for positive definite
matrices of the same dimension to those of arbitrary dimensions, so that usual matrix products
are replaced by semi-tensor products. When the weights are arbitrary real numbers, the weighted
MGMs possess not only nice properties as in the classical case, but also affine change of parameters,
exponential law, and cancellability. Moreover, when the weights belong to the unit interval, the
weighted MGM has remarkable properties, namely, monotonicity and continuity from above. Then we
apply a continuity argument to extend the weighted MGM to positive semidefinite matrices, here the
weights belong to the unit interval. It turns out that this matrix mean posses rich algebraic, order, and
analytic properties, such as, monotonicity, continuity from above, congruent invariance, permutation
invariance, affine change of parameters, and exponential law. Furthermore, we investigate certain
equations concerning weighted MGMs of positive definite matrices. It turns out that such equations
are always uniquely solvable with explicit solutions. The notion of MGMs can be applied to solve
certain symmetric word equations in two letters.
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1. Introduction

The notion of metric geometric mean (MGM for short) of positive definite matrices involves many
mathematical areas, e.g. matrix/operator theory, geometry, and group theory. For any positive definite
matrices A and B of the same size, the MGM of A and B is defined as

A ♯ B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2. (1.1)
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From algebraic viewpoint, A ♯ B is a unique positive solution of the Riccati equation (see [1, Ch. 4])

XA−1X = B. (1.2)

In fact, the explicit formula (1.1) and the equation (1.2) are two equivalent ways to describe the
geometric mean; see [2]. From differential-geometry viewpoint, A♯B is a unique midpoint of the
Riemannian geodesic interpolated from A to B, called the weighted geometric mean of A and B:

γ(t) := A ♯t B = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ⩽ t ⩽ 1. (1.3)

This midpoint is measured through a natural Riemannian metric; see a monograph [1, Ch. 6] or
Section 2. The weighted MGMs (1.3) posses rich algebraic, order, and analytic properties, namely,
positive homogeneity, congruent invariance, permutation invariance, self duality, monotonicity, and
continuity from above; see [3, Sect. 3].

In operator-theoretic approach, the weighted MGMs (1.3) for positive operators on a Hilbert space
are Kubo-Ando means [4] in the sense that they satisfy the monotonicity, transformer inequality,
continuity from above, and normalization. More precisely, A ♯t B is the Kubo-Ando mean associated
with the operator monotone function f (x) = xt on the positive half-line, e.g. [3, Sect. 3]. The
geometric mean serves as a tool for deriving matrix/operators inequalities; see the original idea in [5],
see also [1, Ch. 4], [3, Sect. 3], and [6]. The cancellability of the weighted MGM together with
spectral theory can be applied to solve operator mean equations; see [7] . Indeed, given two positive
invertible operators A and B acting on the same Hilbert space (or positive definite matrices of the
same dimension), the equation A ♯t X = B is uniquely solvable in terms of the weighted MGM in
which the weight can be any nonzero real number. See more development of geometric mean theory
for matrices/operators in [8–10].

A series of Lawson and Lim works investigated the theory of (weighted) MGM in various
frameworks. Indeed, the geometric mean (with weight 1/2) can be naturally defined on symmetric
cones [11], symmetric sets [12], two-powered twisted subgroups [12, 13], and Bruhat-Tits spaces [2].
The framework of reflection quasigroups (based on point-reflection geometry and quasigroup
theory) [13] allows us to define weighted MGMs via geodesics, where the weights can be any dyadic
rationals. On lineated symmetric spaces [14], the weights can be arbitrary real numbers, due to the
density of the dyadic rationals on the real line. Their theory can be applied to solve certain symmetric
word equations in two matrix letters; see [15]. Moreover, mean equations related MGMs were
investigated in [13, 16].

From the formulas (1.1) and (1.3), the matrix products are the usual products between matching-
dimension matrices. We can extend the MGM theory by replacing the usual product to the semi-
tensor product (STP) between square matrices of general dimension. The STP was introduced by
Cheng [17], so that the STP reduces to the usual matrix product in matching-dimension case. The
STP keeps various algebraic properties of the usual matrix product such as the distribution over the
addition, the associativity, and compatibility with transposition, inversion and scalar multiplication.
The STP is a useful tool when dealing with vectors and matrices in classical and fuzzy logic, lattices
and universal algebra, and differential geometry; see [18, 19]. The STPs turn out to have a variety of
applications in other fields: networked evolutionary games [20], finite state machines [21], Boolean
networks [19, 22, 23], physics [24], and engineering [25]. Many authors developed matrix equations
based on STPs; e.g. Sylvester-type equations [26–28], and a quadratic equation A ⋉ X ⋉ X = B [29].
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The present paper aims to develop further theory on weighted MGMs for positive definite matrices
of arbitrary dimensions, where the matrix products are given by the STPs. In this case, the weights can
be arbitrary real numbers; see Section 3. It turns out that this mean satisfies various properties as in the
classical case. The most interesting case is when the weights belong to the unit interval. In this case,
the weighted MGM satisfies the monotonicity, and the continuity from above. Then we investigate the
theory when either A or B is not assumed to be invertible. In such case, the weights are restricted to
be in [0,∞) or (−∞, 1]. We also use a continuity argument to study the weighted MGMs, in which
the weights belong to [0, 1]. Moreover, we prove the cancellability of the weighted MGMs, and apply
to solve certain nonlinear matrix equations concerning MGMs; see Section 4. In Section 5, we apply
the theory to solve the Riccati equation and certain symmetric word equations in two matrix letters.
Finally, we summarize the whole work in Section 6.

In the next section, we setup basic notation and provide preliminaries results on the Riemannian
geometry of positive definite matrices, the tensor product, and the semi-tensor product.

2. Preliminaries

Throughout, let Mm,n be the set of all m × n complex matrices, and abbreviate Mn,n to Mn. Define
Cn = Mn,1, the set of n-dimensional complex vectors. Denote by AT and A∗ the transpose and conjugate
transpose of a matrix A, respectively. The n × n identity matrix is denoted by In. The general linear
group of n × n invertible complex matrices is denoted by GLn. The symbols Hn, and PSn stand for
the vector space of n × n Hermitian matrices, and the cone of n × n positive semidefinite matrices,
respectively. For a pair (A, B) ∈ Hn × Hn, the partial ordering A ⩾ B means that A − B lies in the
positive cone PSn. In particular, A ∈ PSn if and only if A ⩾ 0. Let us denote the set of n × n positive
definite matrices by Pn. For each A ∈ Hn, the strict inequality A > 0 indicates that A ∈ Pn.

A matrix pair (A, B) ∈ Mm,n ×Mp,q is said to satisfy factor-dimension condition if n|p or p|n. In this
case, we write A ≻k B when n = kp, and A ≺k B when p = kn.

2.1. Geometry of positive definite matrices

Recall thatMn is a Hilbert space endowed with the Hilbert-Schmidt inner product ⟨A, B⟩HS = tr A∗B
and the associated norm ∥A∥HS = (tr A∗A)1/2. The subset Pn, which is an open subset in Hn, is a
Riemannian manifold endowed with the trace Riemannian

ds = ∥A−1/2dAA−1/2∥HS =
[
tr(A−1dA)2

]1/2
.

If γ : [a, b]→ Pn is a (piecewise) differentiable path in Pn, we define the length of γ by

L(γ) =
∫ b

a
∥γ−1/2(t)γ′(t)γ−1/2(t)∥HS dt.

For each X ∈ GLn, the congruence transformation

ΓX : Pn → Pn, A 7→ X∗AX (2.1)

is bijective and the composition ΓX ◦ γ : [a, b] → Pn is another path in Pn. For any A, B ∈ Pn, the
distance between A and B is given by

δHS (A, B) = inf{ L(γ) : γ is a path from A to B }.
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Lemma 2.1 (e.g. [1]). For each A, B ∈ Pn, there is a unique geodesic from A to B, parametrized by

γ(t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ⩽ t ⩽ 1. (2.2)

This geodesic is natural in the sense that δHS (A, γ(t)) = tδHS (A, B) for each t.

For any A, B ∈ Pn, denote the geodesic from A to B by [A, B].

2.2. Tensor and semi-tensor products of matrices

This subsection is a brief review on tensor products and semi-tensor products of matrices. Recall
that for any matrices A = [ai j] ∈ Mm,n and B ∈ Mp,q, their tensor product is defined by

A ⊗ B = [ai jB] ∈ Mmp,nq.

The tensor operation (A, B) 7→ A ⊗ B is bilinear and associative.

Lemma 2.2 (e.g. [3]). Let (A, B) ∈ Mm,n ×Mp,q and (P,Q) ∈ Mm ×Mn. Then we have

(1). A ⊗ B = 0 if and only if either A = 0 or B = 0;
(2). (A ⊗ B)∗ = A∗ ⊗ B∗;
(3). if (P,Q) ∈ GLm × GLn, then (P ⊗ Q)−1 = P−1 ⊗ Q−1;
(4). if (P,Q) ∈ PSm × PSn, then P ⊗ Q ∈ PSmn and (P ⊗ Q)1/2 = P1/2 ⊗ Q1/2;
(5). if (P,Q) ∈ Pm × Pn, then P ⊗ Q ∈ Pmn;
(6). det(P ⊗ Q) = (det P)n(det Q)m.

To define the semi-tensor product, first consider a pair (X,Y) ∈ M1,m×C
n of row and column vectors,

respectively. If X ≻k Y , then we split X into X1, X2, . . . , Xn ∈ M1,k and define the STP of X and Y as

X ⋉ Y =
n∑

i=1

yiXi ∈ M1,k.

If X ≺k Y , then we split Y into Y1,Y2, . . . ,Ym ∈ Ck and define the STP of X and Y as

X ⋉ Y =
m∑

i=1

xiY i ∈ Ck.

In general, for a pair (A, B) ∈ Mm,n ×Mp,q satisfying the factor-dimensional condition, we define

A ⋉ B =
[
Ai ⋉ B j

]m,q
i, j=1
,

where Ai is i-th row of A and B j is the j-th column of B. More generally, for an arbitrary matrix pair
(A, B) ∈ Mm,n ×Mp,q, we let α = lcm(n, p) and define

A ⋉ B = (A ⊗ Iα/n)(B ⊗ Iα/p) ∈ M αm
n ,
αq
p
.

The operation (A, B) 7→ A ⋉ B turns out to be bilinear, associative, and continuous.

Lemma 2.3 (e.g. [18]). Let (A, B) ∈ Mm,n ×Mp,q and (P,Q) ∈ Mm ×Mn. Then we have
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(1). (A ⋉ B)∗ = B∗ ⋉ A∗;
(2). if (P,Q) ∈ GLm × GLn, then (P ⋉ Q)−1 = Q−1 ⋉ P−1;
(3). det(P ⋉ Q) = (det P)α/m(det Q)α/n where α = lcm(m, n).

Proposition 2.4. Let A ∈ Mm, X ∈ Mn and S ,T ∈ Hm.

(1). If A ⩾ 0, then X∗ ⋉ A ⋉ X ⩾ 0.
(2). If S ⩾ T, then X∗ ⋉ S ⋉ X ⩾ X∗ ⋉ T ⋉ X.
(3). If A > 0 and X ∈ GLn, then X∗ ⋉ A ⋉ X > 0.
(4). If S > T, then X∗ ⋉ S ⋉ X > X∗ ⋉ T ⋉ X.

Proof. 1) Since (X∗ ⋉ A ⋉ X)∗ = X∗ ⋉ A ⋉ X, we have that X∗ ⋉ A ⋉ X is Hermitian. Let α = lcm(m, n)
and u ∈ Cα. Set v = X ⋉ u. Using Lemma 2.2, we obtain that A ⊗ Iα/p ⩾ 0 and then, by Lemma 2.3,

u∗(X∗ ⋉ A ⋉ X)u = (X ⋉ u)∗ ⋉ A ⋉ (X ⋉ u) = v∗(A ⊗ Iα/n)v ⩾ 0.

This implies that X∗ ⋉ A ⋉ X ⩾ 0. 2) Since S ⩾ T , we have S − T ⩾ 0. Applying the assertion 1, we
get X∗ ⋉ (S − T ) ⋉ X ⩾ 0, i.e., X∗ ⋉ S ⋉ X ⩾ X∗ ⋉ T ⋉ X. The proofs of the assertions 3)-4) are similar
to the assertions 1)-2), respectively. □

3. Weighted metric geometric means of positive (semi)definite matrices

We extend the classical weighted MGM (1.3) for a pair of positive definite matrices of different
sizes as follows.

Definition 3.1. Let (A, B) ∈ Pm × Pn. For any t ∈ R, the t-weighted metric geometric mean (MGM) of
A and B is defined by

A ♯t B = A1/2 ⋉
(
A−1/2 ⋉ B ⋉ A−1/2

)t
⋉ A1/2 ∈ Mα, (3.1)

where α = lcm(m, n).

Note that when m = n, Eq (3.1) reduces to the classical one (1.3). In particular, A ♯0 B = A ⊗ Iα/m,
A ♯1 B = B ⊗ Iα/n, A ♯−1 B = A ⋉ B−1 ⋉ A, and A ♯2 B = B ⋉ A−1 ⋉ B. Fundamental properties of the
weighted MGMs (3.1) are as follows.

Theorem 3.2. Let (A, B) ∈ Pm × Pn. Let r, s, t ∈ R and α = lcm(m, n). Then

(1). Positivity: A ♯t B > 0.
(2). Fixed-point property: A ♯t A = A.
(3). Positive homogeneity: c(A ♯t B) = (cA) ♯t (cB) for all c > 0.
(4). Congruent invariance: C∗(A ♯t B)C = (C∗ ⋉ A ⋉C) ♯t (C∗ ⋉ B ⋉C) for all C ∈ GLα.
(5). Self duality: (A ♯t B)−1 = A−1 ♯t B−1.
(6). Permutation invariance: A ♯1/2 B = B ♯1/2 A. More generally, A ♯t B = B ♯1−t A.
(7). Affine change of parameters: (A ♯r B) ♯t (A ♯s B) = A ♯(1−t)r+ts B.
(8). Exponential law: A ♯r (A ♯s B) = A ♯rs B.
(9). C ♯−1 (A ♯t B) = (C ♯−1 A) ♯t (C ♯−1 B) for any C ∈ Pm.
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(10). Left cancellability: Let Y1,Y2 ∈ Pn and t ∈ R − {0}. Then the equation A ♯t Y1 = A ♯t Y2 implies
Y1 = Y2. In other words, for each t , 0, the map X 7→ A ♯t X is an injective map from Pn to Pα.

(11). Right cancellability: Let X1, X2 ∈ Pm and t ∈ R − {1}. Then the equation X1 ♯t B = X2 ♯t B implies
X1 = X2. In other words, for each t , 1, the map X 7→ X ♯t B is an injective map from Pm to Pα.

(12). Determinantal identity: det(A ♯t B) = (det A)
(1−t)α

m (det B)
tα
n .

Proof. The positivity of ♯t follows from Proposition 2.4(3). Properties 2 and 3 follow directly from the
formula (3.1). Let γ be the natural parametrization of the geodesic [A⊗ Iα/m, B⊗ Iα/n] on the space Pα as
discussed in Lemma 2.1. To prove the congruent invariance, let C ∈ GLα and consider the congruence
transformation ΓC defined by (2.1). Then the path γC(t) := ΓC(γ(t)) joins the points γC(0) = C∗ ⋉ A⋉C
and γC(1) = C∗ ⋉ B ⋉C. By Lemma 2.1, we obtain

C∗(A ♯t B)C = ΓC(γ(t)) = γC(t) = (C∗ ⋉ A ⋉C) ♯t (C∗ ⋉ B ⋉C).

To prove the self duality, let β(t) = (γ(t))−1. By Lemma 2.2, we have β(0) = A−1 ⊗ Iα/m and β(1) =
B−1 ⊗ Iα/n. Thus

(A ♯t B)−1 = (γ(t))−1 = β(t) = A−1 ♯t B−1.

To prove the 6th item, define f : R → R by f (t) = 1 − t. Let δ = γ ◦ f . Then δ(0) = B ⊗ Iα/n and
δ(1) = A ⊗ Iα/m. By Lemma 2.1, we have δ(t) = B ♯t A, and thus

A ♯t B = γ(t) = γ( f (1 − t)) = δ(1 − t) = B ♯1−t A.

To prove the 7th item, fix r, s and let t vary. Let δ(t) = (A ♯r B) ♯t (A ♯s B). We have δ(0) = A ♯r B and
δ(1) = A ♯s B. Define f : R→ R, f (t) = (1 − t)r + ts and β = γ ◦ f . We obtain

β(t) = γ((1 − t)r + ts) = A ♯(1−t)r+ts B

and β(0) = A ♯r B, β(1) = A ♯s B. Hence, δ(t) = β(t), i.e., (A ♯r B) ♯t (A ♯s B) = A♯(1−t)r+tsB. The
exponential law is derived from the 7th item as follows: A ♯r (A ♯s B) = (A♯0B) ♯r (A ♯s B) = A♯rsB.
The 9th item follows from the congruent invariance and the self duality. To prove the left cancellability,
let t ∈ R − {0} and suppose that A ♯t Y1 = A ♯t Y2. We have by the exponential law that

Y1 ⊗ Iα/n = A ♯1Y1 = A ♯1/t (A ♯t Y1) = A ♯1/t (A ♯t Y2) = A ♯1Y2 = Y2 ⊗ Iα/n.

It follows that (Y1 − Y2) ⊗ Iα/n = 0, and thus by Lemma 2.2 we conclude that Y1 = Y2. Hence, the map
X 7→ A ♯t X is injective. The right cancellability follows from the left cancellability together with the
permutation inavariance. The determinantal identity follows directly from Lemmas 2.3 and 2.2:

det(A ♯t B) = det(A1/2)α/m det
(
(A−1/2 ⋉ B ⋉ A−1/2)t

)
(det A1/2)α/m

= (det A)α/m
(
det(A−1/2 ⋉ B ⋉ A−1/2)t

)
= (det A)α/m(det A)−tα/m(det B)tα/n = (det A)(1−t)α/m(det B)tα/n.

This finishes the proof. □
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Remark 3.3. From Theorem 3.2, a particular case of the exponential law is that (Bs)r = Bsr for any
B > 0 and s, t ∈ R. The congruent invariance means that the operation ♯t is invariant under the
congruence transformation ΓC for any C ∈ GLα.

Now, we focus on weighted MGMs in which the weight lies in the interval [0, 1]. Let us write
Ak → A when the matrix sequence (Ak) converges to the matrix A. If (Ak) is a sequence in Hn, the
expression Ak ↓ A means that (Ak) is a decreasing sequence and Ak → A. Recall the following well
known matrix inequality:

Lemma 3.4 (Löwner-Heinz inequality, e.g. [3]). Let S ,T ∈ PSn and w ∈ [0, 1]. If S ⩽ T, then
S w ⩽ T w.

When the weights are in [0, 1], this mean has remarkable order and analytic properties:

Theorem 3.5. Let (A, B), (C,D) ∈ Pm × Pn and w ∈ [0, 1].

(1). Monotonicity: If A ⩽ C and B ⩽ D, then A ♯w B ⩽ C ♯w D.
(2). Continuity from above: Let (Ak, Bk) ∈ Pm × Pn for all k ∈ N. If Ak ↓ A and Bk ↓ B, then

Ak ♯w Bk ↓ A ♯w B.

Proof. To prove the monotonicity, suppose that A ⩽ C and B ⩽ D. By Proposition 2.4, we have that
A−1/2 ⋉ B ⋉ A−1/2 ⩽ A−1/2 ⋉ D ⋉ A−1/2. Using Lemma 3.4 and Proposition 2.4, we obtain

A ♯w B = A1/2 ⋉ (A−1/2 ⋉ B ⋉ A−1/2)w ⋉ A1/2 ⩽ A1/2 ⋉ (A−1/2 ⋉ D ⋉ A−1/2)w ⋉ A1/2 = A ♯w D.

This shows the monotonicity of ♯w in the second argument. This property together with the permutation
invariance in Theorem 3.2 yield

A ♯w B = B ♯1−w A ⩽ B ♯1−w C = C ♯w B ⩽ C ♯w D.

To prove the continuity from above, suppose that Ak ↓ A and Bk ↓ B. Applying the monotonicity and
the positivity, we conclude that (Ak ♯w Bk) is a decreasing sequence of positive definite matrices. The
continuity of the semi-tensor multiplication implies that A−1/2

k ⋉Bk⋉A−1/2
k converges to A−1/2⋉B⋉A−1/2,

and thus

A1/2
k ⋉

(
A−1/2

k ⋉ Bk ⋉ A−1/2
k

)w
⋉ A1/2

k → A1/2 ⋉
(
A−1/2 ⋉ B ⋉ A−1/2

)w
⋉ A1/2.

Hence, Ak ♯w Bk ↓ A ♯w B. □

Now, we extend the weighted MGM to positive semidefinite matrices. Indeed, when the first
matrix argument is positive definite but the second one is positive semidefinite, the weights can be any
nonnegative real numbers.

Definition 3.6. Let (A, B) ∈ Pm×PSn. For any t ∈ [0,∞), the t-weighted MGM of A and B is defined by

A ♯t B = A1/2 ⋉
(
A−1/2 ⋉ B ⋉ A−1/2

)t
⋉ A1/2. (3.2)

Here, we apply a convention X0 = Iα for any X ∈ Mα.
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This definition is well-defined since the matrix A−1/2 ⋉ B ⋉ A−1/2 is positive semidefinite according
to Proposition 2.4. The permutation invariance suggests the following definition.

Definition 3.7. Let (A, B) ∈ PSm × Pn. For any t ∈ (−∞, 1], the t-weighted MGM of A and B is
defined by

A ♯t B = B ♯1−t A = B1/2 ⋉
(
B−1/2 ⋉ A ⋉ B−1/2

)1−t
⋉ B1/2. (3.3)

Here, we apply the convention X0 = Iα for any X ∈ Mα.

This definition is well-defined according to Definition 3.6 (since 1 − t ⩾ 0). Note that when A > 0
and B > 0, Definitions 3.1, 3.6, and 3.7 are coincide. Fundamental properties of the means (3.2)
and (3.3) are as follows.

Theorem 3.8. Denote α = lcm(m, n). If either

(i) (A, B) ∈ Pm × PSn and r, s, t ⩾ 0, or
(ii) (A, B) ∈ PSm × Pn and r, s, t ⩽ 1,

then

(1). Positivity: A ♯t B ⩾ 0.
(2). Positive homogeneity: c(A ♯t B) = (cA) ♯t (cB) for all c > 0.
(3). Congruent invariance: C∗(A ♯t B)C = (C∗ ⋉ A ⋉C) ♯t (C∗ ⋉ B ⋉C) for all C ∈ GLα.
(4). Affine change of parameters: (A ♯r B) ♯t (A ♯s B) = A ♯(1−t)r+ts B.
(5). Exponential law: A ♯r (A ♯s B) = A ♯rs B.
(6). Determinantal identity: det(A ♯t B) = (det A)

(1−t)α
m (det B)

tα
n .

Proof. The proof of each assertion is similar to that in Theorem 3.2. When A ∈ PSm, we consider
A + ϵIm ∈ Pm and take limits when ϵ → 0+. When B ∈ PSn, we consider B + ϵIn ∈ Pn and take limits
when ϵ → 0+. □

It is natural to extend the weighted MGMs of positive definite matrices to those of positive
semidefinite matrices by a limit process. Theorem 3.5 (or both Definitions 3.6 and 3.7) then suggests
us that the weights must be in the interval [0, 1].

Definition 3.9. Let (A, B) ∈ PSm × PSn. For any w ∈ [0, 1], the w-weighted MGM of A and B is
defined by

A ♯w B = lim
ε↓0+

(A + εIm) ♯w (B + εIn) ∈ Mα, (3.4)

where α = lcm(m, n). Here, we apply the convention X0 = Iα for any X ∈ Mα.

Lemma 3.10. Definition 3.4 is well-defined. Moreover, if (A, B) ∈ PSm × PSn, then A ♯w B ∈ PSα.

Proof. When ε ↓ 0+, the nets A + εIm and B + εIn are decreasing nets of positive definite matrices.
From the monotonicity property in Theorem 3.5, the net (A+ εIm) ♯w (B+ εIn) is decreasing. Since this
net is also bounded below by the zero matrix, the order-completeness of the matrix space guarantees
an existence of the limit (3.4). Moreover, the matrix limit is positive semidefinite. □
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Fundamental properties of weighted MGMs are listed below.

Theorem 3.11. Let (A, B), (C,D) ∈ PSm × PSn. Let w, r, s ∈ [0, 1] and α = lcm(m, n). Then

(1). Fixed-point property: A ♯w A = A.
(2). Positive homogeneity: c(A ♯w B) = (cA) ♯w (cB) for all c ⩾ 0.
(3). Congruent invariance: T ∗ ⋉ (A ♯w B) ⋉ T = (T ∗ ⋉ A ⋉ T ) ♯w (T ∗ ⋉ B ⋉ T ) for all T ∈ GLα.
(4). Permutation invariance: A ♯1/2 B = B ♯1/2 A. More generally, A ♯w B = B ♯1−w A.
(5). Affine change of parameters: (A ♯r B) ♯w (A ♯s B) = A ♯(1−w)r+ws B.
(6). Exponential law: A ♯r (A ♯s B) = A ♯rs B.
(7). Determinantal identity: det(A ♯w B) = (det A)

(1−w)α
m (det B)

wα
n .

(8). Monotonicity: If A ⩽ C and B ⩽ D, then A ♯w B ⩽ C ♯w D.
(9). Continuity from above: If Ak ∈ PSm and Bk ∈ PSn for all k ∈ N are such that Ak ↓ A and Bk ↓ B,

then Ak ♯w Bk ↓ A ♯w B.

Proof. When A ∈ PSm and B ∈ PSn, we can consider A+εIm ∈ Pm and B+εIn ∈ Pn, and then take limits
when ε → 0+. The 1st-7th items now follow from Theorem 3.2 (or Theorems 3.8). The 8th-9th items
follow from Theorem 3.5. For the continuity from above, if Ak ↓ A and Bk ↓ B, then the monotonicity
implies the decreasingness of the sequence Ak ♯w Bk when k → ∞. Moreover,

lim
k→∞

Ak ♯w Bk = lim
k→∞

lim
ε→0+

(Ak + εIm) ♯w (Bk + εIn) = lim
ε→0+

lim
k→∞

(Ak + εIm) ♯w (Bk + εIn)

= lim
ε→0+

(A + εIm) ♯w (B + εIn) = A ♯w B.

Thus, Ak ♯w Bk ↓ A ♯w B as desire. □

In particular, the congruent invariance implies the transformer inequality:

C ⋉ (A ♯w B) ⋉C ⩽ (C ⋉ A ⋉C) ♯w (C ⋉ B ⋉C), C ⩾ 0.

This property together with the monotonicity, the above continuity, and the fixed-point property yield
that the mean ♯w is a Kubo-Ando mean when w ∈ [0, 1]. The results in this section include those for
the MGM with weight 1/2 in [30].

4. Mean equations

In this section, we apply our theory to solve certain matrix equations concerning weighted MGMs
for positive definite matrices.

Corollary 4.1. Let A ∈ Pm and B, X ∈ Pn with A ≺k B. Let t ∈ R − {0}. Then the mean equation

A ♯t X = B (4.1)

is uniquely solvable with an explicit solution X = A ♯1/t B. Moreover, the solution varies continuously
on the given matrices A and B. In particular, the geometric mean problem A ♯1/2 X = B has a unique
solution X = A ♯2 B = B ⋉ A−1 ⋉ B.
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Proof. The exponential law in Theorem 3.2 implies that

A ♯t X = B = A ♯1 B = A ♯t (A ♯1/t B).

Then the left cancellability implies that Eq (4.1) has a unique solution X = A ♯1/t B. The continuity of
the solution follows from the explicit formula (3.1) and the continuity of the semi-tensor operation. □

Remark 4.2. We can investigate the Eq (4.1) when A ∈ Pm and B ∈ PSn. In this case, the weight t
must be positive. This equation is uniquely solvable with an explicit solution X = A ♯1/t B ∈ PSn. For
simplicity in this section, we consider only the case when all given matrices are positive definite.

Corollary 4.3. Let A ∈ Pm and B, X ∈ Pn with A ≺k B. Let r, s, t ∈ R.

(1). If s , 0 and t , 1, then the mean equation

(A ♯s X) ♯t A = B (4.2)

is uniquely solvable with an explicit solution X = A ♯ 1
s(1−t)

B.
(2). If s + t , st, then the equation

(A ♯s X) ♯t X = B (4.3)

is uniquely solvable with an explicit solution X = A ♯λ B, where λ = 1/(s + t − st).
(3). If s(1 − t) , 1, then the mean equation

(A ♯s X) ♯t B = X (4.4)

is uniquely solvable with an explicit solution X = A ♯λ B, where λ = t/(st − s + 1).
(4). If s , t, then the equation

A ♯s X = B ♯t X (4.5)

is uniquely solvable with an explicit solution X = A ♯λ B, where λ = (1 − t)/(s − t).
(5). If s − rs + rt , 1, then the equation

(A ♯s X) ♯r (B ♯t X) = X (4.6)

is uniquely solvable with an explicit solution X = A ♯λ B, where λ = (rt − r)/(s − rs + rt − 1).
(6). If t , 0, then the mean equation

(A ♯t X) ♯r (B ♯t X) = X (4.7)

is uniquely solvable with an explicit solution X = A ♯r B.

Proof. For the 1st assertion, using Theorem 3.2, we have

A ♯s(1−t) X = A ♯1−t (A ♯s X) = (A ♯s X) ♯t A = B.

By Corollary 4.1, we get the desire solution.
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For the 2nd item, applying Theorem 3.2, we get

A ♯s+t−st X = X ♯(1−s)(1−t) A = X ♯1−t (X♯1−sA) = (A ♯s X) ♯t X = B.

Using Corollary 4.1, we obtain that X = A♯ 1
s+t−st

B.
For the 3rd item, the trivial case s = t = 0 yields X = A ♯0 B. Assume that s, t , 0. From

B ♯1−t (A ♯s X) = X, we get by Theorem 3.2 and Corollary 4.1 that A ♯s X = B ♯ 1
1−t

X = X ♯ t
t−1

B. Consider

B = X ♯ t−1
t

(A ♯s X) = X ♯ t−1
t

(X ♯1−s A) = X ♯ (t−1)(1−s)
t

A = A ♯ 1
λ

X,

where λ = t/(st − s + 1). Now, we can deduce the desire solution from Corollary 4.1.
For the 4th item, the trivial case s = 0 yields that the equation B ♯t X = A ⊗ Ik has a unique solution

X = B ♯ 1
t

A = A ♯ t−1
t

B. Now, consider the case s , 0. Using Corollary 4.1, we have

X = A ♯ 1
s

(B ♯t X) = (B ♯t X) ♯ s−1
s

A.

Applying (4.4), we obtain that X = B ♯(s−1)/(s−t) A = A ♯λ B, where λ = (1 − t)/(s − t).
For the 5th item, the case r = 0 yields that the equation A ♯s X = X has a unique solution X = A ♯0 B.

Now, consider the case r , 0. Using Theorem 3.2 and Corollary 4.1, we get

B ♯t X = (A ♯s X) ♯ 1
r

X = X ♯ r−1
r

(X ♯1−s A) = X ♯ (r−1)(1−s)
r

A = A ♯ rs−s+1
r

X.

Applying the equation (4.5), we obtain that X = A ♯λ B, where λ = rt/(s − rs + rt).
For the 6th item, setting s = t in (4.6) yields the desire result. □

Remark 4.4. Note that the cases t = 0 in Eqs (4.2)–(4.5) all reduce to Eq (4.1). A particular case
of (4.3) when s = t = 1/2 reads that the mean equation

(A ♯ X) ♯ X = B (4.8)

has a unique solution X = A ♯4/3 B. In Eq (4.4), when s = t = 1/2, the mean equation

(A ♯ X) ♯ B = X

has a unique solution X = A ♯2/3 B. If r = s = t = 1/2, then Eqs (4.6) or (4.7) implies that the geometric
mean X = A ♯ B is a unique solution of the equation

(A ♯ X) ♯ (B ♯ X) = X. (4.9)

Equtions (4.8) and (4.9) were studied in [13] in the framework of dyadic symmetric sets.

5. Applications to symmetric matrix-word equations

Recall that a matrix word in two letters A, B ∈ Mn is an expression of the form

W(A, B) = Ar1 Bs1 Ar2 Bs2 · · · Arp Bsp Arp+1
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in which the exponents ri, si ∈ R − {0} for all i = 1, 2, . . . , p and rp+1 ∈ R. A matrix word is said to
be symmetric if it is identical to its reversal. A famous symmetric matrix-word equation is the Riccati
equation

XAX = B, (5.1)

here A, B, X are positive definite matrices of the same dimension. Indeed, in control engineering,
an optimal regulator problem for a linear dynamical system reduces to an algebraic Riccati equation
(under the controllability and the observability conditions) X∗A−1X − R∗X − X∗R = B, where A, B are
positive definite, and R is an arbitrary square matrix. A simple case R = 0 yields the Riccati equation
X∗A−1X = B.

In our context, the Riccati equation (5.1) can be written as A−1 ♯2 X = B or X ♯−1 A−1 = B. The case
t = 2 in Corollary 4.1 reads:

Corollary 5.1. Let A ∈ Pm and B, X ∈ Pn with A ≺k B. Then the Riccati equation X ⋉ A ⋉ X = B has a
unique positive solution X = A−1 ♯1/2 B.

More generally, consider the following symmetric word equation in two positive definite letters
A, B ∈ Pn with respect to the usual products:

B = XAXAX · · · AXAX ((p + 1)-terms of X, and p-terms of A)
= X(AX)p,

here p ∈ N. We now investigate such equations with respect to semi-tensor products.

Corollary 5.2. Let A ∈ Pm and B, X ∈ Pn with A ≺k B.

(1). Let p ∈ N. Then the symmetric word equation

X(A ⋉ X)p = B (5.2)

is uniquely solvable with an explicit solution X = A−1 ♯ 1
p+1

B.
(2). Let r ∈ R − {−1}. Then the symmetric word equation

X(X ⋉ A ⋉ X)rX = B (5.3)

is uniquely solvable with an explicit solution

X = (A−1 ♯ 1
r+1

B)1/2.

Proof. First, since p ∈ N, we can observe the following:

X(A ⋉ X)p = X1/2(X1/2 ⋉ A ⋉ X1/2)pX1/2.

It follows from the results in Section 3 that

X(A ⋉ X)p = X1/2(X−1/2 ⋉ A−1 ⋉ X−1/2)−pX1/2

= X ♯−p A−1 = A−1 ♯p+1 X.

According to Corollary 4.1, the equation A−1 ♯p+1 X = B has a unique solution X = A−1 ♯ 1
p+1

B.
To solve Eq (5.3), we observe the following:

X(X ⋉ A ⋉ X)rX = X(X−1 ⋉ A−1 ⋉ X−1)−rX = X2 ♯−r A−1 = A−1 ♯r+1 X2.

According to Corollary 4.1, the equation A−1 ♯r+1 X2 = B has a unique solution X2 = A−1 ♯ 1
r+1

B. Hence,
we get the desire formula of X. □
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6. Conclusions

We extend the notion of the classical weighted MGM to that of positive definite matrices of
arbitrary dimensions, so that the usual matrix products are generalized to the semi-tensor products.
When the weights are arbitrary real numbers, the weighted MGMs posses not only nice properties as
in the classical case, e.g. the congruent invariance and the self duality, but also affine change of
parameters, exponential law, and left/right cancellability. Moreover, when the weights belong to the
unit interval, the weighted MGM has remarkable properties, namely, monotonicity and continuity
from above (according to the famous Löwner-Heinz inequality). When the matrix A or B is not
assumed to be invertible, we can define A ♯t B where the weight t is restricted to [0,∞) or (−∞, 1].
Then we apply a continuity argument to extend the weighted MGM to positive semidefinite matrices,
here the weights belong to the unit interval. It turns out that this matrix mean posses rich algebraic,
order, and analytic properties, such as, monotonicity, continuity from above, congruent invariance,
permutation invariance, affine change of parameters, and exponential law. Furthermore, we
investigate certain equations concerning weighted MGMs of positive definite matrices. Due to the
cancellability and another properties of the weighted MGM, such equations are always uniquely
solvable with solutions expressed in terms of weighted MGMs. The notion of MGMs can be applied
to solve certain symmetric word equations in two positive definite letters. A particular interest of the
word equations in the field of control engineering is the Riccati equation in a general form involving
semi-tensor products. Our results include the classical weighted MGMs of matrices as special case.
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