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1. Introduction

One of the concepts which have significant impact in Clifford analysis is studying the approximation
of a Cliffordian function h(m)(x), x ∈ Rm+1 as a series of the form:

∞∑
n=0

Q(m)
n (x) a(m)

n , a(m)
n ∈ Cm, (1.1)

where {Q(m)
n (x), x ∈ Rm+1} is a prescribed base of Cllifordian polynomials and Cm is the real Clifford

algebra of dimension 2m. In 1990, this problem was addressed by the authors of [1]. The polynomials
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are assumed to form a Hamel basis of Sm(x) (the Clifford linear space of all special monogenic
polynomials (SMPs) with Clifford algebra coefficients). The series (1.1) is called the basic series
associated with the base of SMPs. Many results about the approximation of SMFs and ESMFs by
basic series, which can be associated with bases of SMPs [2, 3].

The theory of basic series in the case of one complex variable was originally discovered by
Whittaker and Cannon [4–7] about 90 years ago. As we have mentioned earlier, the attempt done
by authors of [1] were the first to extend the notion of basic series in the case of Clifford analysis.

In the case of a single complex variable, the approximation properties of the derivative and
integral bases of a certain base of polynomials of in a disk of center origin have been studied by
many authors, of whom we may mention Makar [8], Mikhail [9], and Newns [10]. In the case of
of several complex variables the domains of representation are hyperspherical, hyperelliptical and
polycylinderical regions (see [11, 12]). Afterwards, the authors of [13, 14] generalized this problem
in Clifford analysis, which is called hypercomplex primitive and derivative bases of SMPs and their
representations is in closed hyperballs.

Approximation theory is a rich topic which has numerous applications in various scientific
disciplines such that mathematical analysis, statistics, engineering and physics. Recently, order
moment of the wind power time series has been studied in [15]. Although our study is narrowed
to theoretical aspects, the basic sets (bases) of polynomials proved its efficiency in as solutions to
important partial differential equations, such as the heat equation [16] and wave equation [17, 18].

The authors of [19] introduced an expansion of a SMF by basic series of generalized Bessel SMPs.
They proved that the GBSMPs are solutions of second order homogeneous differential equations.
Furthermore, in [3], the authors proved an extended version of Hadamard’s three-hyperballs theorem
to study the overconvergence properties. One of the recent fascinating research findings can be
found in [20] where the authors of used the Hadamard’s three-hyperballs theorem to generalize the
Whittaker-Cannon theorem in open hyperballs in Rm+1. Precisely, they proved that the hypercomplex
Cannon functions preserved the effectiveness properties of both Cannon and non-Cannon bases. In the
very recent paper [21] the authors derived a new base of SMPs in F-modules, named the equivalent
base. They have also studied the convergence properties (effectiveness, order and type, Tρ-property) of
these base.

In 2017, a study based primarily on combination of Clifford analysis and functional analysis [26]
when the considered bases {Q(m)

n (x)} are not necessarily consisting of polynomials. The convergence
properties of these general bases had been studied in F-modules. Precisely, a general criterion for
effectiveness of basic series in F-modules was constructed.

Recently in [22], the authors have studied a new base called hypercomplex Ruscheweyh derivative
bases (HRDBs). They investigated the effectiveness properties of HRDBs of a given base of SMPs
in different regions of convergence in F-modules. The above treatment is considered to extend and
improve the results in Clifford and complex given in [8–10, 13, 14].

Motivated by the preceding discussion, the current work introduces a modified generalization of the
Hasse derivative operator (HDO). Acting by hypercomplex HDO on bases, we derive a base of SMPs,
which we may call the hypercomplex Hasse derivative bases of SMPs (HHDBSMPs). Consequently,
we discuss the effectiveness properties, mode of increase, and the Tρ-property of such a base in several
regions: closed and open hyperballs, open regions surrounding closed hyperball, at the origin, and for
all entire SMFs. Some applications on the HHD of Bernoulli SMPs (BSMPs), Euler SMPs (ESMPs),
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proper Bessel SMPs (PBSMPs), general Bessel SMPs (GBSMPs) and Chebyshev SMPs (CSMPs)
are also provided. The obtained results offer new generalizations of existing work concerning the
convergence properties of polynomials bases in both complex and Clifford settings.

2. Preliminaries

This section collects some notations and basic results which are needed throughout the paper. More
details can be found in the literature, see [1, 23–26]. The real Clifford algebra over R is defined as

Cm = {b =
∑

B⊆{1,...m}

bBeB, bB ∈ R},

where ei = e{i}, i = 1, . . . ,m, e0 = eφ = 1 and eB = eβ1 ...eβh , with 1 ≤ β1 < β2 < · · · < βh ≤ m. The
product in Cm is determined by the relations eie j + e jei = −2δi j where δi j denotes the Kronecker delta
and e0 = 1 for 1 ≤ i , j ≤ m (for details on the main concepts about Cm, see [25]). The norm of a
Clifford number is given by |b| = (

∑
B⊆N

|bB|
2)

1
2 where N stands for {1, . . . ,m}.

Since Cm is isomorphic to R2m
we may provide it with the R2m

-norm |b| and one sees easily that for
any b, c ∈ Cm, |bc| ≤ 2

m
2 |b||c|.

The elements (x0, x) = (x0, x1, ..., xm) ∈ Rm+1 will be identified with the Clifford numbers x0 + x =

x0 +
∑m

j=1 e jx j. Note that if x = x0 + x ∈ Rm+1, x = x0 − x.

Definition 2.1. Let x ∈ Rm+1 and Ω ⊂ Rm+1 be an open set, then the function h(m)(x) is called left
monogenic in Ω if D[h(m)(x)] = 0 where

D =

m∑
i=0

ei
∂

∂xi

is the generalized Cauchy-Riemann operator. Similarly, h(m)(x) is a right monogenic function if
[h(m)(x)]D = 0.

Definition 2.2. A polynomial Q(m)(x) is SMP iff DQ(m)(x) = 0 and has the form:

Q(m)(x) =

f inite∑
i, j

xix ja(m)
i, j ,

where a(m)
i, j ∈ Cm.

Let Sm[x] be the space of all SMPs is the right Cm-module defined by

Sm[x] = spanCm
{Q(m)

n (x) : n ∈ N},

where Q(m)
n (x) was given in [1] as follows:

Q(m)
n (x) =

n!
(m)n

∑
r+s=n

(m−1
2 )r(m+1

2 )s

r!s!
xr xs, (2.1)

where for β ∈ R, (β)l = β(β + 1) . . . (β + l − 1) is the Pochhamer symbol.
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Definition 2.3. Let Ω ⊂ Rm+1 be a connected open containing 0 and h(m) is monogenic in Ω. The
function h(m) is said to be SMF in Ω if and only if its Taylor series near zero exists and cab be expressed

as: h(m)(x) =

∞∑
n=0

Q(m)
n (x) a(m)

n for some SMPs Q(m)
n (x).

If Q(m)
n (x) is a homogeneous SMP has degree n in x, (see [1])

Q(m)
n (x) = Q(m)

n (x) β(m)
n ,

where β(m)
n ∈ Cm is a constant. Accordingly, it follows that:

‖Q(m)
n ‖R = sup

B(R)

|Q(m)
n (x)| = Rn.

Next, we recall the definition of F-module.

Definition 2.4. An F-module E over Cm is a complete Hausdorff topological vector space by countable
family of a proper system of semi-norms Q = {‖.‖s}s≥0 such that s < t ⇒ ‖h(m)‖s ≤ ‖h(m)‖t; (h(m) ∈ E),
Hence W ⊂ E is open iff ∀ h(m) ∈ W, ∃ ε > 0, M ≥ 0 such that {g(m) ∈ E : ‖h(m) − g(m)‖s) ≤ ε} ⊂

W, ∀s ≤ M.

Definition 2.5. A sequence {h(m)
n } in an F-module E converges to g(m) in E if

lim
n→∞

‖h(m)
n − g(m)‖s = 0

for all ‖.‖s ∈ Q.

The domains of representation adopted here are the open hyperball B(R), the closed hyperball B(R)
and B+(R); R > 0, where B+(R) any open hyperball enclosing closed hyperball, these are the sets
defined by

B(R) = {x ∈ Rm+1 : |x| < R},

B(R) = {x ∈ Rm+1 : |x| ≤ R},

B+(R) = {x ∈ Rm+1 : |x| < R+}.

Table 1 summarizes certain classes of SMFs which represent F-modules where x ∈ Rm+1 and each
space is associated with the a proper countable system of semi-norms as follows.

Table 1. F-modules.

Space The Associated Semi-Norms
M[B(R)]: Class of SMFs in B(R) ‖h(m)‖r = supB(r) |h

(m)(x)|, ∀r < R, h(m) ∈ M[B(R)],
M[B(R)]: Classe of SMFs in B(R) ‖h(m)‖R = supB(R) |h

(m)(x)|, ∀ h(m) ∈ M[B(R)],
M[B+(R)]: Class of SMFs in B+(R) ‖h(m)‖r = supB(r) |h

(m)(x)|, ∀R < r, h(m) ∈ M[B+(R)],
M[0+]: Class of SMFs at the origin ‖h(m)‖ε = supB(ε) |h

(m)(x)|, ε > 0 ∀h(m) ∈ M[0+] ,
M[∞]: Class of ESMFs on Rm+1 ‖h(m)‖n = supB(n) |h

(m)(x)|, n < ∞ ∀h(m) ∈ M[∞].
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Now, let {Q(m)
n (x)} be a base of an F-module E such that

Q(m)
n (x) =

∞∑
k=0

Q
(m)
k (x) Q(m)

n,k , Q(m)
n,k ∈ Cm, (2.2)

Q(m)
n (x) =

∞∑
k=0

Q(m)
k (x) π(m)

n,k , π
(m)
n,k ∈ Cm, (2.3)

‖Q(m)
n ‖R = sup

B(R)

|Q(m)
n (x)|, (2.4)

ΨQ(m)
n

(R) =
∑

k

‖Q(m)
k π(m)

n,k ‖R, (2.5)

this sum is called hypercomplex Cannon sum, where

‖Q(m)
k π(m)

n,k ‖R = sup
B(R)

|Q(m)
k (x) π(m)

n,k |,

ΨQ(m)(R) = lim sup
n→∞

{ΨQ(m)
n

(R)}
1
n , (2.6)

where ΨQ(m)(R) is called the hypercomplex Cannon function of the base {Q(m)
n (x)} in closed

hyperball B(R).
Let Dn is the degree of the polynomial of highest degree in the representation (2.3) the following

restrictions are imposed.

lim
n→∞
{Dn}

1
n = 1, (2.7)

Dn = O[na], a ≥ 1, (2.8)

Dn = o(n log n). (2.9)

If dk is the degree of the polynomials {Q(m)
k (x)}, then dk ≤ Dn for all k ≤ n (see [1]).

If Q(m) = (Q(m)
n,k ) and Π(m) = (π(m)

n,k ) are the Clifford matrices of coefficients and operators respectively
of the set {Q(m)

n (x)}. Thus according to [1] the set {Q(m)
n (x)} will be base iff

Q(m)Π(m) = Π(m)Q(m) = I, (2.10)

where I is the unit matrix.

Let h(m)(x) =

∞∑
n=0

Q(m)
n (x) an(h(m)) be any function which is SMF at the origin, substituting for Q(m)

n (x)

from (2.3) we obtain the basic series

h(m)(x) ∼
∞∑

n=0

Q(m)
n (x) Πn(h(m)), (2.11)

where
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Πn(h(m)) =

∞∑
k=0

π(m)
k,n ak(h(m)) . (2.12)

The authors in [22,26] introduced the idea of effectiveness for the classM[B(R)]. A base {Q(m)
n (x)} is

effective for the classM[B(R)] If the basic series (2.11) converges normally to every function h(m)(x) ∈
M[B(R)] which is SMF in B(R). Similar definitions are used for the classes M[B(R)], M[B+(R)],
M[∞] andM[0+].

They also proved:

Theorem 2.1. A base {Q(m)
n (x)} is effective for the classes M[B(R)], M[B(R)], M[B+(R)], M[∞] or

M[0+] if and only if ΨQ(m)(R) = R, ΨQ(m)(r) < R ∀ r < R, ΨQ(m)(R+) = R, ΨQ(m)(R) < ∞ ∀ R < ∞, or
ΨQ(m)(0+) = 0.

For the definition of bases of SMPs and theorems governing the effectiveness properties of bases of
SMPs, the reader is referred to the authors [21, 22, 26].

3. Hypercomplex Hasse derivative bases

The complex Hasse derivative operator (CHDO) of order i is defined in [28–30]. Using the
definition of the complex Hasse derivative, we can define a new operator in the case of Clifford setting
called the hypercomplex Hasse derivative (HHD) as follows:

Definition 3.1. For each integer i ≥ 0 the HHD H(i) of order i is defined by

H(i)(Q(m)
n (x)) = ζn,i Q

(m)
n−i(x), (3.1)

where

ζn,i =
ni

i!

i−1∏
j=1

(
1 −

j
n

)
and H(i) is closely related to the higher hypercomplex derivative (1

2D)i: H(i) = 1
i! (

1
2D)i.

The set {Q(m)
n (x)} is an Appell sequence with respect to

∂

∂x0
or

1
2

D : 1
2DQ(m)

n (x) = nQ(m)
n−1(x).

Remark 3.1. If x ∈ C1 then (3.1) is reduced to the ordinary Hasse derivative of order i (see [28–30]),

Definition 3.2. Let {Q(m)
n (x)} be a base. By acting on both sides of Eq (2.2) with the operator H(i) ,

we get

H(i)Q(m)
n (x) =

∑
k

ζk,i Q
(m)
k−i(x)Q(m)

n,k . (3.2)

The set {H(i)Q(m)
n (x)}={H(i,m)(x)} is defined the Hypercomplex Hasse derivative bases (HHDBs).

The present work deals principally with the convergence properties of certain classes of bases,
namely HHDBs. In fact we shall study the convergence of the expansion of certain classes of functions
as series of HHDBs. This study will be based on the already established theorems dealing with the
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convergence of basic series of HHDBs. The convergence properties of HHDBs are mainly classified
as follows:

(1) The region of effectiveness of HHDBs for the classesM[B(R)], M[B(R)], M[B+(R)], M[0+],
andM[∞].

(2) The mode of increase of HHDBs which determined by the order and type.
(3) The Tρ-property of HHDBs.
In the following sections, we will investigated all of these problems.

4. Effectiveness of the HHDBs for the classesM[B(R)],M[0+],M[∞] andM[B+(R)]

In the current section, the property of effectiveness concerning the HHDBs in several regions such
asM[B(R)],M[0+],M[∞] andM[B+(R)] are demonstrated.

Theorem 4.1. If {Q(m)
n (x)} is a base, then the HHD set {H(i,m)(x)} is also base.

Proof. We form the coefficient matrix H(i,m) by defining the HHDBs in (2.2)

H(i,m)
n (x) =

∑
k

Q
(m)
k−i(x) ζk,iQ

(m)
n,k .

Hence, the coefficients matrix H(i,m) is given by the following:

H(i,m) =
(
H(i,m)

n,k

)
= (ζk,i Q(m)

n,k ).

Also, the operators matrix Π(i,m) follows from the effect H(i) on both sides of the representation (2.3)
where

Q
(m)
k−i(x) =

1
ζn,i

∑
k

π(m)
n,kH

(i,m)
k (x),

and

Π(i,m) = (π(i,m)
n,k ) =

(
1
ζn,i

π(m)
n,k

)
.

Consequently,

H(i,m)Π(i,m) =

∑
k

H(i,m)
n,k π(i,m)

k,h

 =

∑
k

Q(m)
n,k π

(m)
k,h

 =
(
δn,h

)
= I.

Moreover,

Π(i,m)H(i,m) =

∑
k

π(i,m)
n,k H

(i,m)
k,h

 =

∑
k

1
ζn,i

π(m)
n,k ζh,i Q(m)

k,h

 =

(
ζh,i

ζn,i
δn,h

)
= I.

We easily obtain from (2.10) that the set {H(i,m)
n (x)} is a base. �

Theorem 4.2. The base {Q(m)
n (x)} and its HHDBs {H(i,m)

n (x)} have the same region of effectiveness for
the classM[B(R)].
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Proof. If Q(m)
n (x) is a base, ‖Q(m)

n ‖r = sup
B(r)

|Q(m)
n (x)| and ‖H(i,m)

n ‖r = sup
B(r)

|H(i,m)
n (x)|, then

‖H(i,m)
n ‖r = sup

B(r)

|H(i,m)
n (x)|

= sup
B(r)

|
∑

j

ζ j,i Q
(m)
j−i(x)Qn, j|

≤ 2m/2
∑

j

ζ j,i r j−i ‖Q
(m)
n ‖R

R j

=
2m/2

ri Υ(r,R) ‖Q(m)
n ‖R = K1 ‖Q(m)

n ‖R for all r < R,

(4.1)

where K1 =
2m/2

ri Υ(r,R) and Υ(r,R) =

∞∑
j=0

ζ j,i(
r
R

) j < ∞.

Using (2.5) and (4.1), it follows that the hypercomplex Cannon sum of the HHDBs {H(i,m)
n (x)} is

given by

ΨH(i,m)
n

(r) =
∑

k

‖H(i,m)
k π(i,m)

n,k ‖r

≤ K1

∑
k

‖Q(m)
k π(i,m)

n,k ‖R

=
K1

ζn,i

∑
k

‖Q(m)
k π(m)

n,k ‖R

=
K1

ζn,i
ΨQ(m)

n
(R).

(4.2)

Using (2.6) and (4.2), we obtain that the hypercomplex Cannon function of the HHDBs is given by:

ΨH(i,m)(r) ≤ ΨQ(m)(R), ∀ r < R. (4.3)

Now, suppose that the base {Q(m)
n (x)} is effective forM[B(R)], we can apply Theorem 2.1, we have

ΨQ(m)(r) < R, ∀ r < R. (4.4)

Hence there is a number r1 such that r < r1 < R, then from (4.3) and (4.4), we deduce that

ΨH(i,m)(r) ≤ ΨQ(m)(r1) < R, ∀ r < R,

that is to say the base {H(i,m)
n (x)} is effective forM[B(R)].

�

Theorem 4.3. The base {Q(m)
n (x)} and its HHDBs {H(i,m)

n (x)} have the same region of effectiveness for
the classM[0+] orM[∞].

Proof. Suppose that the base {Q(m)
n (x)} is effective for M[0+], we can apply Theorem 2.1, it follows

that ΨQ(m)(0+) = 0. Making R, r → 0+ in (4.3), we have ΨH(i,m)(0+) ≤ ΨQ(m)(0+) = 0 but we know that
ΨH(i,m)(0+) ≥ 0, thus, ΨH(i,m)(0+) = 0. Therefore, the base {H(i,m)

n (x)} is effective forM[0+].
Now, suppose that the base {Q(m)

n (x)} is effective for M[∞]. Applying Theorem 2.1 we conclude
that
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ΨQ(m)(r) < ∞, ∀r < ∞. (4.5)

Thus if we choose the number r2 such that r < r2 < R, making R → ∞ in (4.3). Then, by using (4.5),
we obtain that

ΨH(i,m)(r) ≤ ΨQ(m)(r2) < ∞, ∀r < ∞,

and, the base {H(i,m)
n (x)} will be effective forM[∞]. �

Theorem 4.4. The base {Q(m)
n (x)} and its HHDBs {H(i,m)

n (x)} have the same region of effectiveness for
the classM[B+(R)].

Proof. If the base {Q(m)
n (x)} is effective forM[B+(r3)] and r3 is any positive number such that r3 < r,

we can apply Theorem 2.1, we obtain

ΨQ(m)(r+
3 ) = r3, r3 < r < R. (4.6)

Making R → r+
3 in (4.3), we easily obtain, from (4.6) that ΨH(i,m)(r+

3 ) ≤ ΨQ(m)(r+
3 ) = r3, but

ΨH(i,m)(r+
3 ) ≥ r3 which implies that ΨH(i,m)(r+

3 ) = r3. Hence, the base {H(i,m)
n (x)} is indeed effective for

M[B+(r3)] as required. �

5. Effectiveness of the HHDBSMPs for the classM[B(R)]

When the representation (2.3) is finite then the base is called SMPs. In this section we will discuss
the region of effectiveness of HHDBSMPs for the class of SMFs in B(R). The following result states
the purpose of this section.

Theorem 5.1. The base {Q(m)
n (x)} for which the condition (2.7) is satisfied and its HHDBSMPs

{H(i,m)
n (x)} have the same region of effectiveness for the classM[B(R)].

Proof. If Q(m)
n (x) is a base of SMPs, ‖Q(m)

n ‖R = sup
B(R)

|Q(m)
n (x)| and ‖H(i,m)

n ‖R = sup
B(R)

|H(i,m)
n (x)|, then

‖H(i,m)
n ‖R = sup

B(R)

|H(i,m)
n (x)|

= sup
B(R)

|
∑

j

Q(m)
n, j ζ j,i Q

(m)
j−i(x)|

≤
∑

j

‖Q(m)
n ‖R

R j ζ j,i R j−i

=
‖Q(m)

n ‖R

Ri

∑
j

ζ j,i

≤
‖Q(m)

n ‖R

Ri ζdn,i (ζdn,i + 1),

(5.1)

where dn is the degree of the polynomial Q(m)
n (x), dn ≤ Dn. Applying (2.5) and (5.1), it follows that
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ΨH(i,m)
n

(R) =
∑

k

‖H(i,m)
k π(i,m)

n,k ‖R

≤
1

ζn,iRi

∑
k

‖Q(m)
k π(m)

n,k ‖R ζdk ,i (ζdk ,i + 1)

≤
1

ζn,iRi ζDn,i (ζDn,i + 1) ΨQ(m)
n

(R).

(5.2)

A combination of (2.6), (2.7) and (5.2), gives ΨH(i,m)
n

(R) ≤ ΨP(m)(R) ≤ R.
But ΨH(i,m)

n
(R) ≥ R. We finally deduce that

ΨH(i,m)
n

(R) = R. (5.3)

and the HHDBSMPs {H(i,m)
n (x)} is effective forM[B(R)]. �

The following example shows that the condition (2.7) imposed on the class of the base {Q(m)
n (x)}

cannot be relaxed.

Example 5.1. Theorem 5.1 is not always correct if the condition (2.7) is not satisfied. Let

Q(m)
n (x) =

Q(m)
n (x), n is even,

Q
(m)
n (x) + Q

(m)
b (x), b = 2n, n is odd.

When n is even, we have Q(m)
n (x) = Q(m)

n (x) and hence ΨQ(m)
n

(R) = Rn. Thus, by taking R = 1, then

ΨQ(m)
n

(1) = 1, and lim
n→∞
{ΨQ(m)

2n
(1)}

1
2n = 1.

Furthermore, Q(m)
n (x) = Q(m)

n (x) − Q(m)
b (x), when n is odd, then

ΨQ(m)
n

(R) = Rn + 2 Rb.

So that when R = 1, ΨQ(m)
n

(1) = 3, we get

lim
n→∞
{ΨQ(m)

2n+1
(1)}

1
2n+1 = 1.

Consequently, ΨQ(m)(1) = lim sup
n→∞

{ΨQ(m)
n

(1)}
1
n = 1, and the base {Q(m)

n (x)} is effective forM[B(1)].

Forming the HHDBSMPs {H(i,m)
n (x)}, we easily get

H(i,m)
n (x) =

ζn,i Q
(m)
n−i(x), n is even, and ≥ 2,

ζn,i Q
(m)
n−i(x) + ζb,iQ

(m)
b−i(x), n is odd.

Since Q(m)
n−i(x) = (1 \ ζn,i) H(i,m)

n (x), when n is even, then ΨH(i,m)
n

(R) = Rn−i, taking R = 1, ΨH(i,m)
n

(1) = 1.
Hence,

lim
n→∞
{ΨH(i,m)

2n
(1)}

1
2n = 1.

When n is odd, Q(m)
n−i(x) = (1 \ ζn,i)[H

(i,m)
Pn

(x) − ζb,iH
(i,m)
b (x)]. Hence we have, ΨH(i,m)

n
(R) = (1 \

ζn,i)[ζn,iRn−i + 2 ζb,iRb−i].
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Taking R = 1, then we get

ΨH(i,m)(1) = lim sup
n→∞

{ΨH(i,m)
2n+1

(1)}
1

2n+1 = 2 > 1,

and the HHDBSMPs {H(i,m)
n (x)} is not effective forM[B(1)].

For a simple base of SMPs (Dn = n) (see [1]), we obtain the following corollary.

Corollary 5.1. When the simple base {Q(m)
n (x)} of SMPs is effective forM[B(R)], so also will be the

HHDBSMPs {H(i,m)
n (x)}.

6. The order, type and the TρQ(m) -property of the HHDBSMPs

In [1, 23], the idea of the order and type of the base {Q(m)
n (x} of SMPs was introduced as follows:

ρQ(m) = lim
R→∞

lim sup
n→∞

log ΨQ(m)
n

(R)

n log n
. (6.1)

and

τQ(m) = lim
R→∞

e
ρQ(m)

lim sup
n→∞

{ΨQ(m)
n

(R)}
1

n ρ
Q(m)

n
. (6.2)

Importantly, if the base {Q(m)
n (x)} has finite order ρQ(m) and finite type τQ(m) , then it can represent

every ESMF of order less than 1
ρQ(m)

and type less than 1
τQ(m)

in any finite hyperball. Rich investigation
on the order of certain classes of bases can be found in [31, 32].

Now, we explore the relation between the order and type of SMPs {Q(m)
n (x)} and our constructed

base; {H(i,m)
n (x)} as follows.

Theorem 6.1. Let ρQ(m) and τQ(m) be the order and type of the base of SMPs {Q(m)
n (x)} satisfying the

condition (2.8). Then the HHDBSMPs {H(i,m)
n (x)} will be of order ρH(i,m) ≤ ρQ(m) and type τH(i,m) ≤ τQ(m)

whenever ρH(i,m) = ρQ(m) . The values of ρQ(m) and τQ(m) are attainable.

Proof. The proof of this theorem denoted on the inequality (5.2), since

ΨH(i,m)
n

(R) ≤
1

ζn,iRα
ζDn,i (ζDn,i + 1) ΨQ(m)

n
(R).

Then

lim
R→∞

lim sup
n→∞

log ΨH(i,m)
n

(R)

n log n
≤ lim

R→∞
lim sup

n→∞

log ζDn,i (ζDn,i + 1) + log ΨQ(m)
n

(R)

n log n
.

It follows, in view of (6.1), that the HHDBSMPs is at most ρQ(m) .
If ρH(i,m) = ρQ(m) , we have

lim
R→∞

e
ρH(i,m)

lim sup
n→∞

{Ψ
(i)
Hn

(R)}
1

n(ρ
H(i,m) )

n
≤ lim

R→∞

e
ρQ(m)

lim sup
n→∞

{ΨQn(R)}
1

n(ρ
Q(m) )

n
,

and the type of the HHDBSMPs is at most τQ(m) .
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Note that the upper bound given in this theorem is attainable. We will illustrate this fact by
introducing the following example:

Example 6.1. Let {Q(m)
n (x)} be the base of SMPs given by Q(m)

n (x) = nn + Q
(m)
n (x), Q(m)

0 (x) = 1, for
which

ΨQ(m)
n

(R) = nn

[
2 +

(R
n

)n]
.

It is easily seen that the base {Q(m)
n (x)} is of order ρQ(m) = 1 and type τQ(m) = e. Construct now the base

{H(i,m)
n (x)} such that

H(i,m)
n (x) = nn + ζn,i Q

(m)
n−i(x), Q(m)

0 (x) = 1.

Hence,

ΨH(i,m)
n

(R) =
nn

ζn,i

[
2 +

ζn,i

Ri

(R
n

)n]
.

Therefore, the base {H(i,m)
n (x)} is of order ρH(i,m) = 1 and type τH(i,m) = e.

The following example illustrates the best possibility of condition (2.8).

Example 6.2. Let the base {Q(m)
n (x)} of SMPs be defined by

Q(m)
n (x) =

Q(m)
n (x), n is even,

Q
(m)
n (x) +

µ

b2µ Q
(m)
2µ (x), n is odd and µ = nn, b > 1.

Hence,

Q(m)
n (x) = Q(m)

n (x) −
µ

b2µ Q(m)
2µ (x),

and

ΨQ(m)
n

(R) = Rn + 2µ
(R

b

)2µ

.

It is easy to see that the base Q(m)
n (x) is of order ρQ(m) = 1.

For the HHDBSMPs {H(i,m)
n (x)} it can verified that

H(i,m)
n (x) =

ζn,i Q
(m)
n−i(x), n is even,

ζn,i Q
(m)
n−i(x) +

µ

b2µ ζ2µ,i Q
(m)
2µ−i(x), n is odd.

Thus,

Q
(m)
n−i(x) =

1
ζn,i
H(i,m)

n (x) −
µ

b2µ

ζ2µ,i

ζn,i
H(i,m)

2µ (x).

Consequently,

ΨH(i,m)
n

(R) = Rn−i +
2µ
bi

ζ2µ,i

ζn,i

(R
b

)2µ−i

.

Therefore, ρH(i,m) = 2 and ρH(i,m) > ρQ(m) . This completes the proof.

�
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If the base of SMPs {Q(m)
n (x)} is simple base (Dn = n) (see [1]), then the following corollary is a

special case of Theorem 6.1.

Corollary 6.1. When the simple base {Q(m)
n (x)} of SMPs is of order ρQ(m) and type τQ(m) , then the

HHDBSMPs {H(i,m)
n (x)} will be of order ρH(i,m) ≤ ρQ(m) and type τH(i,m) ≤ τQ(m) whenever ρH(i,m) = ρQ(m) .

In the following, we determine the TρQ(m) -property of the HHDBs. The authors of [2] deduced TρQ(m) -
property of the base {Q(m)

n (x)} in Clifford analysis in open hyperball B(R), closed hyperball B(R) and at
the origin are defined as follows:

Definition 6.1. If the base {Q(m)
n (x)} represents all ESMFs of order less than ρQ(m) in B(R), B(R) or at

the origin, then it is said to have property TρQ(m) in B(R), B(R) or at the origin.

Let

ΨQ(m)(R) = lim sup
n→∞

log ΨQ(m)
n

(R)

n log n
.

The following theorem concerning the property TρQ(m) of the base {Q(m)
n (x)} (see [2]).

Theorem 6.2. A base {Q(m)
n (x)} to have the property TρQ(m) for all ESMF of order less than ρQ(m) in

closed hyperball B(R), open hyperball B(R) or at the origin iff, ΨQ(m)(R) ≤ 1
ρQ(m)

, ΨQ(m)(r) ≤ 1
ρQ(m)

for all

r < R or ΨQ(m)(0+) ≤ 1
ρQ(m)

.

Next, we construct the TρH(i,m) -property of the HHDBSMPs in the closed hyperball B(R), for R > 0.

Theorem 6.3. Let {Q(m)
n (x)} be the base of SMPs have TρQ(m)-property in B(R), where R > 0 and for

which the condition (2.9) is satisfied. Then the HHDBSMPs {H(i,m)
n (x)} have the same property.

Proof. Suppose that the function ΨH(i,m)(R) given by:

ΨH(i,m)(R) = lim sup
n→∞

log ΨH(i,m)
n

(R)

n log n
, (6.3)

where ΨH(i,m)
n

(R) is the Cannon sum of the HHDBSMPs {H(i,m)
n (x)}. Then by using (2.9), (5.2) and (6.3),

we obtain that

ΨH(i,m)(R) ≤ lim sup
n→∞

logζDn,i (ζDn,i + 1) + log ΨQ(m)
n

(R)

n log n
≤ ΨQ(m)(R). (6.4)

Since the base {Q(m)
n (x)} has the property TρQ(m) in B(R), R > 0. Hence by inequality (6.4) and

Theorem 6.2, we have

ΨH(i,m)(R) ≤ ΨQ(m)(R) ≤
1

ρQ(m)
,

and the base {H(i,m)
n (x)} has the property TρQ(m) in B(R), R > 0.

�

The fact that HHDBSMPs {H(i,m)
n (x)} does not have the property TρQ(m) in B(R) if the condition (2.9)

is not satisfied is illustrated by the following example.
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Example 6.3. Let {Q(m)
n (x)} be the base of SMPs, is defined by:

Q(m)
n (x) =

Q
(m)
n (x), n is even,

Q
(m)
n (x) +

Q
(m)
s(n)(x)

2(nn) , n is odd,

where s(n) is the nearest even integer to n log n + nn.

When n is odd, we obtain:

Q(m)
n (x) = Q(m)

n (x) −
Q(m)

t(n)(x)

2(nn) .

Hence,

ΨQ(m)
n

(R) = Rn + 2
Rt(n)

2(nn) .

Putting R = 2, it follows that
ΨQ(m)

n
(2) = 2n + 2n log n+1,

so that

ΨQ(m)(2) = lim sup
n→∞

log ΨQ(m)
n

(2)

n log n
≤ log 2.

It follows that, the base Q(m)
n (x) has the T 1

log 2
-property in B(2). The HHDBSMPs {H(i,m)

n (x)} is

H(i,m)
n (x) =

ζn,iQ
(m)
n−i(x), n is even,

ζn,iQ
(m)
n−i(x) + ζt(n),i

Q
(m)
t(n)−i(x)

2(nn) , n is odd.

Hence, when n is odd, we obtain

ΨH(i,m)
n

(R) = Rn−i + 2
ζt(n),i

ζn,i

Rt(n)−i

2(nn) ,

so that when R = 2,

ΨH(i,m)
n

(2) = 2n−i + 2
ζt(n),i

ζn,i

2t(n)−i

2(nn) .

Thus,

ΨH(i,m)(2) = lim sup
n→∞

log ΨH(i,m)
n

(2)

n log n
≤ 1 + log 2,

and the HHDBSMPs H(i,m)
n (x), does not have the T 1

log 2
-property in B(2) as required.

If the base of SMPs {Q(m)
n (x)} is simple base (Dn = n) (see [1]), then the following corollary is a

special case of Theorem 6.3.

Corollary 6.2. When the simple base {Q(m)
n (x)} of SMPs have TρQ(m)-property in B(R), R > 0. Then the

HHDBSMPs {H(i,m)
n (x)} is also have the TρQ(m)-property .
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In the following, we deduce that the base {Q(m)
n (x)} and the HHDBs {H(i,m)

n (x)} have the same TρQ(m)

in an open hyperball B(R), where R > 0 or at the origin.

Theorem 6.4. Let {Q(m)
n (x)} be a base of SMPs have the TρQ(m)-property in B(R), R > 0 or at the origin.

Then the HHDBs {H(i,m)
n (x)} have the same property.

Proof. Let {Q(m)
n (x)} be have the property TρQ(m) in B(R), R > 0, then

ΨQ(m)(r) ≤
1

ρQ(m)
∀r < R. (6.5)

It follows from (4.2) that

ΨH(i,m)(r) = lim sup
n→∞

log ΨH(i,m)
n

(r)

n log n
≤ ΨQ(m)(r1), (6.6)

such that r < r1 < R. Using (6.5) and (6.6), we have ΨH(i,m)
n

(r) ≤ 1
ρQ(m)
∀ r < R and the base {H(i,m)

n (x)}
has the property TρQ(m) in an open hyperball B(R), R > 0.

Suppose that the base {Q(m)
n (x)} has the property TρQ(m) at the origin, then we get

ΨQ(m)(o+) ≤
1

ρQ(m)
. (6.7)

Let r1 → 0+ in (6.6), then by (6.7), we have

ΨH(i,m)(o+) ≤ ΨQ(m)(o+) ≤
1

ρQ(m)
,

and the base {H(i,m)
n (x)} has the property TρQ(m) at the origin.

�

7. Applications

The problem of classical special functions can be considered as an application of bases of SMPs.
Recently, the authors in [19, 33] proved that the proper Bessel SMPs (PBSMPs) {P(m)

n (x)} and the
general Bessel SMPs (GBSMPs) {G(m)

n (x)} are effective for M[B(R)]. Furthermore, recently in [34],
the authors proved that the Chebyshev SMPs (CSMPs) {Tn(x)} is effective forM[B(1)].

The following results follows directly by applying Theorem 5.1.

Corollary 7.1. The base of PBSMPs {P(m)
n (x)} and the HHD of PBSMPs {P(i,m)

n (x)} have the same region
of effectiveness for the classM[B(R)].

Corollary 7.2. The base of GBSMPs {G(m)
n (x)} and the HHD of GBSMPs {G(i,m)

n (x)} have the same
region of effectiveness for the classM[B(R)].

Corollary 7.3. The base of CSMPs {Tn(x)} and the HHD of CSMPs {T(i,m)
n (x)} have the same region of

effectiveness for the classM[B(1)].

In [27] the authors proved that the Bernoulli SMPs (BSMPs) {B(m)
n (x)} is of order 1 and type 1

2π and
the Euler SMPs (ESMPs)) {E(m)

n (x)} is of order 1 and type 1
π
.

According to Theorem 6.1, we obtain the following corollaries:

AIMS Mathematics Volume 8, Issue 11, 26115–26133.



26130

Corollary 7.4. The base of BSMPs {B(m)
n (x)} and the HHD of BSMPs {B(i,m)

n (x)} are of the same order 1
and type 1

2π .

Corollary 7.5. The base of ESMPs {B(m)
n (x)} and the HHD of ESMPs {B(i,m)

n (x)} are of the same order 1
and type 1

π
.

Moreover, in [27], the BSMPs {B(m)
n (x)} and the ESMPs {E(m)

n (x)} have the property T1. According
to Theorem 6.3, we conclude directly the following corollary:

Corollary 7.6. If the BSMPs {B(m)
n (x)} and the ESMPs {E(m)

n (x)} have the property T1, then the HHD of
BSMPs {B(i,m)

n (x)} and ESMPs {E(i,m)
n (x)} have the same property, respectively.

Now, suppose that JN(H(i)) is a polynomial of the operator H(i) as given in (3.1) such that

JN(H(i)) =

N∑
j=1

λ j (H(i)) j, λi ∈ Cm,

where (H(i)) j = (H(i)) j−1H(i). Obviously that Theorems 4.1–4.4, 5.1, 6.1, 6.3 and 6.4 will be valid when
we replace the base {H(i)Q(m)

n (x)} by the base {JN(H(i))Q(m)
n (x)}

Similar results for the generalized hypercomplex Ruscheweyh derivative base {JN(R(i))Q(m)
n (x)},

where R(i) is the hypercomplex Ruscheweyh derivative. These results generalize the result in [22].

8. Conclusions

This work is mainly devoted to derive a generalized form for the Hasse operator in the Clifford
setting. Using the defined operator, we accordingly construct the hypercomplex Hasse derivative
bases (HHDBs). The approximation properties (effectiveness, order and type, the Property of TρQ(m))
have been describe for the derived HHDBSMPs in multiple regions in F-modules. Our results are
considered as a modified generalization to those given in [8–10]. It is clear that that when x ∈ C1 in
Theorems 4.1–4.4, 5.1, 6.1, 6.3 and 6.4 results obtained by [8–10] yield. Additionally considering x to
be an element of C2 in Theorems 4.1–4.4, 5.1, 6.1, 6.3 and 6.4, our results coincide with the quaternion
analysisH. Our results improve and extend the corresponding ones in the Clifford analysis with regards
to the region of effectiveness and the mode of increase of HDB (see [13, 14]).

As a result of the growing interest in fractional calculus and its numerous real-world applications,
recent contributions were placed on representing analytic functions in terms of complex conformable
fractional derivatives and integral bases in different domains in Fréchet spaces [35]. In [36], the authors
investigated uncertain barrier swaption pricing problems based on the fractional differential equation
in Caputo sense. Relevantly, the fraction Dirac operator constructed using Caput derivative in the
case of Clifford variables were studied in [37]. Furthermore, in [38], the authors introduced a new
class of time-fractional Dirac type operators with time-variable coefficients. It will be of great interest
in the future to explore the convergence properties of fractional derivative bases in the context of
Clifford analysis.
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