AIMS Mathematics, 8(11): 26045-26069.
DOI:10.3934/math.20231327
ATMS Mathematics Received: 29 June 2023

Revised: 25 August 2023

Accepted: 30 August 2023
http://www.aimspress.com/journal/Math Published: 08 September 2023

Research article

An efficient outer space branch-and-bound algorithm for globally
minimizing linear multiplicative problems

Xiaoli Huang'* and Yuelin Gao***

' School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China

2 Ningxia province cooperative innovation center of scientific computing and intelligent information
processing, North Minzu University, Yinchuan 750021, China

3 Nixngxia mathematics basic discipline research center, Ningxia University, Yinchuan 750021,
China

* Correspondence: Email: gaoyuelin@263.net.

Abstract: We propose an efficient outer space branch-and-bound algorithm for minimizing linear
multiplicative problems (LMP). First, by introducing auxiliary variables, LMP is transformed into an
equivalent problem (ELMP), where the number of auxiliary variables is equal to the number of linear
functions. Subsequently, based on the properties of exponential and logarithmic functions, further
equivalent transformation of ELMP is performed. Next, a novel linear relaxation technique is used to
obtain the linear relaxation problem, which provides a reliable lower bound for the global optimal value
of LMP. Once more, branching operation takes place in the outer space of the linear function while
embedding compression technique to remove infeasible regions to the maximum extent possible, which
significantly reduces the computational cost. Therefore, an outer space branch-and-bound algorithm
is proposed. In addition, we conduct convergence analysis and complexity proof for the algorithm.
Finally, the computational performance of the algorithm is demonstrated based on the experimental
results obtained by testing a series of problems.

Keywords: global optimization; linear multiplicative problem; linear relaxation; branch and bound
Mathematics Subject Classification: 90C26, 90C57

1. Introduction

We mainly consider the linear multiplicative problem of the following form:

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.20231327

26046

P
(LMP) : min S0 l;l(c,-Ty +d)",

s.t. yelY ={yeR"Ay < b},

where ¢; is an n-dimensional column vector, d; is a real number and a; is a real number different from
zero. T represents the transpose of a vector, A € R™" b € R™ and Y is a non-empty bounded set. In
this article, for any y € M, we suppose that cl.Ty +d; >0,i=1,..,p.

LMP is a typical non-convex optimization problem with important applications in real life. It and its
variants have been applied in various fields such as robust optimization [1], financial optimization [2],
VLSI chip design [3], decision tree optimization [4], network flow optimization [5], supply chain
problem [6], investment portfolio [7], etc. Moreover, LMP is an NP-hard problem [8] with multiple
local solutions rather than global solutions, which increases the computational complexity. Hence,
researching this problem holds great significance.

Various solution algorithms for LMP and its special forms have been proposed by numerous experts
and scholars. These algorithms can be broadly categorized into the following groups: branch-and-
bound algorithms [9-14], finite algorithm [15], heuristic method [16], approximation algorithm [17],
polynomial time algorithm [18], parameterized simplex method [19], cutting-plane method [20], level
set algorithm [21], etc. Despite the advancements made by these approaches, solving high-dimensional
LMP remains a challenging task. In the past 20 years, searching for global solutions of LMP in the
outer space using different relaxation methods has become a hot topic among scholars [22-29]. For
example, the authors in references [22, 27] used new convex relaxation techniques to put forward
different outer space branch-and-bound algorithms for solving LMP. References [23, 25, 26, 28-30]
adopted various linear relaxation programming problems and proposed novel outer space branch-and-
bound algorithms, respectively.

In this paper, an outer space branch-and-bound algorithm is designed to solve large-scale LMP.
The major characteristics of the algorithm are as follows: First, p auxiliary variables are introduced to
transform LMP into an equivalent problem, where p is the number of linear functions. Second, based
on the properties of exponential and logarithmic functions, the second equivalent problem (ELMP1)
is established. Third, a novel linear relaxation approach is employed to derive the linear relaxation
programming problem for ELMP1. Moreover, the branching rule in p-dimensional outer space is
given, and the corresponding outer space branch-and-bound algorithm is developed by embedding the
rectangular compression technique into the branch-and-bound framework. Finally, the computational
complexity of the algorithm is analyzed to estimate the number of iterations in the worst case, which
also implies that our algorithm is convergent.

Compared with existing methods [10, 23, 26, 28], the proposed algorithm has the following
advantages:

(1) The solved LMP is universal, and the exponents of its objective function are real numbers rather
than being limited to just 1 or only positive values.

(2) After the first equivalent conversion, the exponents of the objective function are all positive.
Therefore, when linearly approximating the objective function of equivalent problems, there is no need
to consider the case where the coeflicient is negative, which simplifies the implementation of linear
relaxation.

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26047

(3) The branching process takes place only in the p-dimensional outer space of the linear function.
This leads to cost savings compared to the branching operation in the n-dimensional decision variable
space, as p is often much smaller than 7 in practical problems.

(4) To demonstrate the efficiency of the algorithm, we compared it with the methods in
references [10,23,26,28], our algorithm is suitable for solving LMP with large-scale decision variables.

The rest of this paper is organized as follows: Section 2 presents the equivalent problems of LMP
and establishes its linear relaxation problem. In Section 3, the branching operation and compression
technology are discussed in detail. Moreover, the outer space branch-and-bound algorithm and its
properties are described. Section 4 provides numerical comparison results for some problems. Finally,
a brief summary of this paper is presented in Section 5.

2. Equivalent problem and its linear relaxation problem

In order to search the global optimal solution of LMP, we transform it into the equivalent problem
(ELMP). For convenience, we first define the following sets:

I' ={ile; > 0,i € {1,...,p}}, I ={ila; <0,i€{l,..,p}.

Forany i € {1, ..., p}, denote

. -0 .
()<g?:m5}1cfy+d,~, 3 :mflyXCiTy+di, iel:
ye ye
1 -0 1)
0<1= f, = iel.

s 4

maxyey ¢!y +d;’ minyey ¢’y +d;’

Since ¢!y + d; is a bounded linear function, by solving the above 2p linear programs, we can easily get
that g? and f?. Simultaneously, the initial hyper-rectangle

-0 .
H ={teRI)<t; <t;,i=1,...p}

is constructed. Thus, let us consider the following equivalent problem:

min rl 1 l—[(A

a;>0,ie{l,...,p} ;<0,i€{l,...,p}
s.t. ;= ClTy +d;, i€ I+,

: 1
(ELMP) : (=2 ierl,
i
Zi = ciTy+d,-, iel,
yel, teH°.

We denote the feasible region of ELMP as V = {f; = ¢/ y+d,,i e I, t; = %, z=cly+d, i€l ye

Y, t€ H°. Itis evident that V is a nonempty bounded compact set if and only if Y # (. Theorem 1
below explains the equivalence between LMP and ELMP.

Theorem 1. (y*,t*,7%) is a global optimal solution for ELMP if and only if y* is a global optimal
solution for LMP, where t; = ¢] y* + d; when i € I, {; = Zi and ;= cly* +d; whenie I".

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26048

Proof. We will develop our proof in two aspects. On one hand, for any y € Y, let ; = ¢!y + d; for
el t, = Zl and z; = cl.Ty +d; fori € I", thus (y,t,z) € V. If y* is a global optimal solution for LMP,
thenr; = cly* +d;forieI', 1 = Zl and z; = ¢]y* +d; fori € I, so (y*,1",z") € V, which shows that
(v, 1", z") 1s a feasible solution to ELMP, and by the optimality of y*, the following inequalities hold:

P
N\ - _ T, .« f E\NQA T %
[e[Jen =]l] e =] ey +d
ielt iel” ielt iel” i=1
N
<[ey +dy =] Tu] [
i=1 iel* iel~
= [] [
iel* iel~

Thus, (y*, t*,z") is a global optimal solution for ELMP.

On the other hand, if (y*,7*,z") is a global optimal solution of ELMP, where ¢, z* are satisfied: if
i€l thens =cly +djifiel, thent = Zi and z; = ¢]y* + d;. Suppose y is a global optimal
solution of LMP such that [T, (c]y + d)* < Hf’;l(ciTy* +d;)* holds, fori € I', let t; = c]y + d, for
iel,lett; = Zl and z; = ¢!y + d,, it follows that

[T [T <] Jane] Janr.

iel* iel~ iel* iel~
This contradicts the optimality of (y*, ¢, z*), thus y* is a global optimal solution of LMP.]
For the sake of convenience, we denote 8; = —a; > 0 for i € I”. In the meantime, In(e) and exp(e)

represent the logarithmic and the exponential functions, respectively. The objective function of ELMP
is further equivalently transformed according to the properties of the exponential and logarithmic

functions, namely,
i — __ aj @i __ @ i
[[a[[z=] e [a=]]e [] #

ielt i€l ielt iel~ ielt Bi>0,ie{l,...,p}

:ﬁwﬁng M ﬂ]

iel*t Bi>0,iefl,...,p}

= exp 2 a;Int; + Zp: ﬁilnti]

i=1,iel* i=k+1,8;>0

)4
= exp Z filnli] ,
i=1

where € R? and { = [a, a2, - , &, Bi+1,- -+ ,Bp]. Hence, ELMP is reformulated to the following
form:

p
min £(y,1,2) = Y lnt;
i=1

_ T A
(ELMP1):{ St fi=cy+d, i€l
1
%= =cly+d, iel,

yel, teH,

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26049

where H* represents H° or the sub-rectangle of H°. Obviously, the optimal solution for ELMP1 is
the same as that for ELMP. Therefore, we shift our focus to solving ELMP1, but ELMP1 cannot be
solved directly due to the nonlinearity of the objective function and the constraints z; = tl forieI". To
address this, we propose a linear relaxation technique to obtain the lower bound problem of ELMP1.

Theorem 2. Fori=1,..,p, t; € [gi,ii], define

p
g(ti) = lnti’ g(ti) = lnzi + ki(ti - Z,’)? é(y’ L, Z) = Z gig(ti),
i=1

Int;—Int.
where k; = t—' Then we have the following conclusions:

(i) g(t) < gt); (i) L 1,2) < L1, 2).

Proof. Since the function g(#;) is a monotonically increasing concave function on [z,, 7;] with respect to
t;, g(t;) 1s its secant approximation, so (i) and (ii) obviously hold. O
Theorem 3. For eachi € I, define
1 2 1 I 1
Y(t) = ——t;i+ ——, Y(t;) = ——t; + — + =.
- Z,‘tl l.t- L’ll Zi t

-1

Then the functions Y(t;) and U(t,) satisfy the conclusions below:

(i) y(t;) < ¢ < Y(t);
(ii) Denote At, =1 - t, then Alti_mo(w(t) =0, hm (1ﬁ(t) - —) =

Proof. (i) For eachi € I, since ¢; € [gi,i,-] and t; > 0, it follows from the definitions of g(t,-) and y¥(t,)

that
- - / 2
1 0 1 1 1 1 Lti—t fi— Zifi (i — 51D
t__g(’):_&ﬁt’_——_;_——Jrﬁti_ - - = T g titt;
i i Ll tt; tr Lt ti\JLti =it
and
) - -
J(ti) - l = —L_ti + l + _l - l = i liti_+ i ~ L = Ul ti)_(ti — L) > 0.
ti t L L L1t L tit

(i1) From (i), when At; — 0 for each i € I, the following inequalities are valid:

= Ahmo + -
t -
=0, i 11

1 L=t = ([t
lim (— - gb(t))

At;i—0\ T
It — 1] It,- -t
At,—>0 |l‘ / | |£iti|

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26050

. 1 1
= lim + — | At
At;—0 ’ - 1
1 |tl Zitil |£ltz|
2At;
< lim 2 .-
Ai—0 min{z;, 1.t;}
and
R 1 (=) —t) , AF?
lim (¢(t) — —| = lim ———"=" < lim —— =

Consequently, we obtain the linear relaxation program of ELMP1:

min £(y,1,2)
s.t. ;: cly+d;, iel,
Y1) <z < U(t), zi=cly+d;, iel,
vey, te HE,

(LRP) :

In the constraint of LRP, we substitute z; = cl.Ty + d; into the inequalities z; < J(ti) and ¥(t;) < z,
respectively, that is

1 2
_di’ —C,-Ty——_tisd,-——_, 1el.
Lt 11

-1

T 1 1 1
c;yt+—ti<—+ -
l

L Lt

1

Foreachi=1,..., p, {i > 0, LRP is reformulated as

p
min > &ng, + ki(t; - 1,))
i=1

s.t. - ClTy + 1 = di, i€ I+,

1 o
(LRP(?{")): ciTy+ﬁtiSf+?—di, iel,
T 2
~cy-—ti<di-——, iel,
Ziti Zizi
yel, teH"

We have derived the linear relaxation problem for ELMP1 through a series of relaxation processes.
This relaxation enables us to simplify the problem by loosening certain constraints while providing a
reliable lower bound for the global optimal value of ELMP1, facilitating informed decision-making in

subsequent optimization steps.

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26051

3. Branch-and-bound algorithm and its property analysis

In this section, we present an efficient deterministic algorithm for solving ELMP1 by combining the
linear relaxation problem proposed in Section 2 with subsequent branching operation in Section 3.1
and rectangle compression technique in Section 3.2. The algorithm requires solving a series of linear
relaxation problems on the subdivided rectangles of . Furthermore, we provide rigorous proofs for
the convergence and complexity of the algorithm based on the employed branching operation.

3.1. Branching operation

For any selected sub-rectangle H* = {t € R? It <t < t;} € HO, the following branching rules are
given:

(i) Let 7 = argmax({s; — t,,i = 1,..., p};

(ii) H* is divided into two sub-rectangles

t o+
k1 -1 =T
H :Hizlﬂix{gT, >]fo’m?{
[+t
k2 _ -1 =T T -
H _Hleﬂix{ 5 ,IT}XHf’m”H

where H; = [t; e Rlt, < t; < t;,i = 1,..,p,i # 7.

3.2. Compression technology

We introduce a compression technique to enhance the convergence speed of the algorithm. When
the algorithm iterates to the kth time, multiple sub-rectangles are obtained through rectangular
subdivision. For any sub-rectangle H H: C HE, we further investigate whether ELMP1 over H* has
a global minimum, where H* = H, x Hy X -+ X ?[and H; = {t; e Rlt, < t; < 1;,i = 1,..., p}. The
embedded compression technology in the algorithm involves replacing sub-rectangles with smaller
rectangles H*, while ensuring that the global optimal solution of ELMP1 remains intact and unaffected.

Theorem 4. When the algorithm iterates to the kth time, let UB be the current best upper bound of the
global optimum of ELMP1. Denote

)4
= Z {ilnt,, 7 = exp

i=1

[1]

[ﬁ\B —EZ+ {lIng,

Z), tef{l,2,---,p}.

For any sub- rectangle HEr C HE, it can be inferred that
(i) IfE > UB, then there is no global optimal solution over HE for ELMPI;
(ii) If 2 < UB, then ELMPI has no global optimal solution over H, where

H=Fx - XH_ xH,xHy X xH,

with H, = {t, e Rlm, < 1, < 1,} N H..

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26052

Proof. () If £ > UB, then
14 P
minz (int; = Zg’ilngi =X2> UB.
i=1 i=1

Therefore, H k/@es not contain a global optimal solution for ELMP1.
(i) If E < UB, for any t € ‘H,

P P
min Z {iInt; = min Z 4iInt; + min {Inz,
teH 1 teH vyl teH

p
> Z {ilng, + {Inm,

UB-Z+ {Ing,
Z {inz, + {In|exp

i=1,i#t 4

P
Z {ilng, + {Ing + UB-E

i=1,i#t

= UB.

Therefore, H does not contain a global optimal solution for ELMP1. O

3.3. Branch-and-bound algorithm

The branching operation proposed in Section 3.1 partitions the initial rectangle H° into smaller
sub-rectangles, enabling the algorithm to search for local optimal solutions of ELMP1 over V that
necessarily include the global minimal solution of ELMP1. During the kth iteration of the algorithm,
we provide some relevant notations. @y denotes the list of active nodes. For each branching node
H € O, (y(H),t(H)) and LB(H) represent the optimal solution and the optimal value of LRP(H),
respectively. The current best lower bound for ELMPI1 is noted as LB;, = min{LB(H),H € Q.}.
v, represents the objective function value corresponding to the best feasible solution of ELMPI,
and the current best upper bound of v; is denoted as UB. We choose a divided rectangle F*
from Q) that satisfies LB(H) = LB, and segment it into two sub-rectangles H*' and H** by
branching operation. These sub-rectangles are then added to the set 77, and the set 7 is updated as
T = {T\H}J{H, H*?}. Let F be the set of feasible points, and e denotes algorithmic tolerance.
In a more precise manner, we can describe the presented outer space branch-and-bound algorithm as
follows:

Step 0. Initialize the best known solution as null and the best known upper bound as infinity. Create a
root node and initialize the list of active nodes with this root node. Set the algorithmic tolerance to the
desired value.

F =0, UB=+00, Qy={H"}, €>0, k=0.

Step 1. Solve a relaxation problem LRP(H?) in order to get a lower bound (or prove infeasibility). If
problem is feasible, update the incumbent if necessary. Let

LBy = LB(H"), (°,1,2%) = G(H), t(H"), 2(H)).

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26053

If (°,1°,7°) is a feasible solution of ELMPI1, then let UB = £L(°,,2°), ¥ = F UH°, 1,). If
UB-LB, < e, the algorithm terminates and obtains the global e-optimal solution (y°, #°, z°) for ELMP1.
Otherwise, denote 7~ = {H"}.
Step 2. Split the current node H* into two new nodes H*/(j = 1,2) and reduce them by using
the compression technique, the reduced rectangle is still denoted as H*/(j = 1,2) and set 7 =
{TAH Y UHM, H?Y
Step 3. For each child node H* € 77(j = 1, 2), the corresponding optimal value LB(H*/) and optimal
solution (y(H*), t(H*/)) are obtained by solving LRP(H*). Set F = F J(HM), (H*), z2(HY)),
§F, #*,2") = argming,, L0, 1,2), set v, = LG ,2°. If vy < UB, then update the upper bound
UB = vy, the current best solution for ELMP1 is updated as (y*, £, z%) = (3%, %, 25), and set ¥ = 0. If
LB(HY) > UB, then remove it from 7, i.e. 7 = T\{H"}. Set Qr = (Q\H*) | JT and update the
lower bound LB;, = min{LB(H)|H € Qy}.
Step 4. Let the list of active nodes Q1 = {H|UB — LB(H) > €, H € Qi}. If Qi1 is empty,
return the best known solution as a global e-optimal solution. Otherwise select an active node
H ! € argmin{LB(H), H € Qi.1}. Set k = k + 1 and go back to Step 2.

Definition 1 provides the concept of the global e-optimal solution involved in the proposed
algorithm.

Definition 1. Given € > 0, the feasible solution (9,1,2) is considered a global e-optimal solution for
ELMPI, if £(9,1,2) < v + & where v represents the global optimal value of ELMP].

3.4. Convergence analysis

This subsection discusses the convergence analysis of the algorithm. Supposing the algorithm is
infinite, according to the branching operation, there exists an infinite rectangular sequence {H*}?,
such that for each k = 1,2, ..., we have H*! € H* C ... c HO, where H* € R”. The following
Lemma 1 provides a theoretical basis for Theorem 5.

Lemma 1. Foranyt € H, whent; —t, = 0, i = 1, ..., p, for which we have L(y,1,z) — L(y,1,2) — 0.
Proof. Tt follows from Theorem 2 that

p
Ly, 1,2) = LOs1,2) =) &illng = (ng, + kit = 1,)]
i=1

P
< max{) &lInt; - (Int, + ki(t; = 1)1}

i=1

P
< Zl max{Zi} max{ing = (ng, + ki(t; = 1))

_ Int; — Int. _
= " max{g){Ini; — Int, + ——— (7 - 1]
t

1 i

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26054

Therefore, for any t € H, L(y,,2) — L(y,t,2) — 0 holds while i — t.—>0,i=1,.,p. O

Theorem 5. Given € > 0, assuming that the feasible domain of ELMPI is non-empty, the algorithm
either obtains a global e-optimal solution of ELMP1 at a finite number of iterations, or produces a
sequence of feasible solutions {(y*,1*, ")}, each of whose accumulation points is a global e-optimal
solution of ELMP].

Proof. Assuming that the algorithm terminates within a finite number of iterations, without loss of
generality, let us assume that the algorithm terminates at the kth iteration, which gets UB — LBy, < €.
According to Step 3 in the algorithm, we have UB = v, = L(3*, #, £5), thus

LG5 7,2 - LB <e. 3.1

It follows from (3.1) that
L()A’k,fk,fk) < LBk +e<v+e.

Thereby, (3%, 7, 2*) is a global e-optimal solution to ELMP]1.

If the algorithm iterates an infinite number of times and produces an infinite sequence of rectangles
{H*2,, where H* = 7, [, ff] € R”. Without losing generality, suppose that]}im H* = H*™, then for
the subsequences K of sequence {1, 2, ...} we have

limH* = H*. (3.2)
keK
For any k € K, depending on Step 3 of the algorithm, the lower bound is updated to
LB(H") = min L0*,1,25) < v < LG 1,25 < LO5 1425,
eV —

For any k € K, it follows that /* € H* C H. Therefore, {} | exists a convergent subsequence {r}ex,
by formula (3.2), the limit of {f};cx is in H*, let

lim & =7, (3.3)

where 7 is a accumulation point of {*}rex. Since L(y, t,7) is continuous, combining with (3.3) we have

lim LO*, #,72% = LG, 1,2). (3.4)
keK
For any k € K, t* e H*, it follows from Lemma 1 that
%Clerlr(l(‘ﬁ(yk’ tk’ Zk) - é(yk’ tk’ Zk)) = 0. (35)
Hence, we have
lim LON 2 = L3012 (3.6)
=

Integrating (3.4)—(3.6), we obtain L(§,1,2) = limex LG, %, 2) = limyex LOF, *, 25). For each k € K
we get LG, #,25) = Y7 | £In(#h), therefore

k—o0

p
. k _ 12 : ky
lim v = lim Zl: LIn(t) = v. (3.7)

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26055

Because { f:l {iln(tf.‘)}ke,(is a subsequence of { f:l {iln(tf.‘)},‘:’:], following from (3.7), we then obtain
limyex Zle l, l-ln(tf‘) = v. From the continuity of £(y, ¢, z) and formula (3.5), we have

)4 p
i In(fX) = In(F*
lim Zl Zin(tf) Z; Zin(@).
So we get

Ln(®) = v. (3.8)

)4
i=1

Combining Eq (3.8), we conclude that (3%, #, 2) is a globally optimal solution to ELMP1. |

3.5. Complexity analysis
We use Q(H) to define the size of the sub-rectangle H = {t e R”,1, < 1; < t;,i = 1,..., p}, i.e.,

Q(H) =max{t;—t.,i=1,..,p}.

=i
In addition,

1
0=2max{{;,i=1,..,p}, A= max{t—,i =1, ...,p}.

-1

Lemma 2. Given any € > 0, for a sub-rectangle H C HC, if Q(H) < €, then for any optimal solution
(y,t) of LRP(H), we have
| L(y,t,2) = L(y,1,2)] < pdbae.

Proof. Clearly, (y,1, z) is a feasible solution to ELMP1, it follows from Lemma 1 that

p .
Ly, t,2) = Ly, 1,2) < Z W(Zi — 1) < pOAQ(H) < phae.

i=1 =t
O

The following Theorem 6 illustrates an estimation of the maximum number of iterations for the
proposed algorithm in the worst case, indirectly indicating that the algorithm will eventually find the
global optimal solution for LMP.

Theorem 6. For any €, € (0, 1), the algorithm iterates at most

pG/IQ((HO)“
-1

P
zzizl [1°g2 “

times to obtain a global €y-optimal solution in a worst case.

Proof. Let € = &), suppose that during the kth iteration, when the algorithm reaches Step 3, H < H" is
a rectangle selected by the branching rule to be dissected, which satisfies

- € .
tl_tsgq_(S_7 :1’.”3 ’
1, < Q(H) P p

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26056

then, the algorithm is terminated. In the worst case, when the algorithm terminates at Step 4 on the kth
iteration, splitting the initial rectangle H° results in k + 1 sub-rectangles, with the assumption that H*
is any one of these sub-rectangles and satisfies

— 1
-t < QH") < 59(7»(0), i=1,---,p,

e . . -0 e — .
here, ¢; denotes the initial interval [g?, t;] after ¢; subdivision to produce [z, ti-]. From Lemma 2, it
follows that

€

,i=1,---,p. 3.9
201 I p (3.9)

%9(7{0) <

Since the subdivision H° yields no more than [17.,2% sub-rectangles, if every sub-rectangle
satisfies (3.9), the algorithm must terminate. By Eq (3.9) we have

OAQH"
; > log, p—()’ i=1,.,p
€
Let y; = [log, %{@],i = 1, ..., p. The initial rectangle is split into k + 1 sub-rectangles and k + 1 =
620(HO)
[17., 2¥. At this point the algorithm terminates. Thus, the algorithm iterates at most pZiilon 5Ty

times. Furthermore, it can be derived that

€ =Ly, t,2) — LO,t, 2| > Ly, t,2) = LB(H) > L(y,t,2) — LO",1",2) > 0, (3.10)

where (y*,1*,7") is a global optimal solution of ELMP1. Fori € I', 1} = cl.Ty* +d;. Foriel, z; = ti
and 77 = cl.Ty* + d;. Based on the bounding process, let 5/" be the best feasible solution obtained so far,
and denote that { (%)} is the decreasing sequence such that f(3*) < f(y). Combined with (3.10) can

be obtained
&> f) - fO) = fG = FO).

Therefore, the algorithm terminates, and $* is a global &-optimal solution to LMP. O
4. Numerical experiments

In this section, several problems are employed to demonstrate the feasibility and effectiveness
of the proposed algorithm in this paper. All linear programming problems are solved by the dual-
simplex method, all tests of the algorithm are carried out using MATLAB9.2.0.538062 (R2017a) on an
Inter(R)Core(TM) 15-8250U, CPU @ 1.60GHz, 4GB memory and 64 bit Windows10 operating system.

Initially, we utilize the existing branch and bound algorithms [10, 23, 26, 28] and the proposed
algorithm to compute the deterministic Problems 1-8 with a predefined convergence tolerance. This
is to demonstrate the feasibility of our algorithm. To validate the efficiency of the proposed algorithm,
we conduct tests on random Problems 9—11 with a tolerance of 1075,

Problem 1 [10, 26, 28]

min (—=y; + 2y, + 2)(4y; — 3y, + By — dys + 5) =2y, +y, +3)7!
st. yj+y» <15 0<y;<1,0<y, < 1.

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26057

Problem 2 [10, 26, 28]

min (y; +y2)(1 —y2+7)

st. 2y1+ <14, yi+y, <10, —4y; +y, <0,
291+ 226, yi+2y,26, yi—y» <3,
Vi+y220, yi=y2+720, y,y»20.

Problem 3 [10, 26, 28]

min (y; +y, + D Qy; +y2 + DMy + 32 + DY
st. yi+2y, <6, 2y;+2y, <8, 1<y; <3,1<y,<3.

Problem 4 [26, 28]

min (3y; — 4y, + 5)(y1 +2y2 = D*Qy1 =2 + D1 = 2y2 +8) 2y + 32— 1)
s.t. Sy; — 8y, > 24, 5y; +8y, <44, 6y, —3y, <15,
4y1+5y, <44, 1<y;<3,0<y, > 1.

Problem 5 [10, 26, 28]

min 3y; — 2y, — 2)3(y1 + 2y, +2)3
st 2y1 =222, yi=2y2<2, y1+y»n <5, 3<y <5, 1<y, <3,

Problem 6 [26, 28]

min ()’1 + é)@) (}’2 + é)@ + 2)

s.t. 9y; + 9y, +2y; <81, 8y +y,+8y; <72
Vi+8y +8y3 <72, Tyi+y,+y; 29,
Vit +y3 29, yi+y+Ty329,
0<y1<8,0<y,59,0<y; <0.

Problem 7 [23,26,28]

min (—4y; —4ys + 3ys + 21)(4y1 + 2ys + 3y3 — 4ys + 4ys — 3)

X (By1 +4ys + 2y3 = 2y4 + 2ys — T)(=2y1 + y2 — 2y3 + 2ys + 11)

St. 4y +4y, +5y3 + 3y +y5 <25, —y; =5y, +2y3 +3y4 +y5 < 2,
Vi+2y+y3—2y4+2y5 26, 4y, +3y; — 8y, + 11y5 <8,
Vi+Y2+y3+ya+ys <6, yir+y+7y; 209,

Y1,¥2, Y3, Y4, Y5 = 1.

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26058

Problem 8 [23,26,28]

min (0.813396y; + 0.67440y, + 0.305038y; + 0.129742y, + 0.217796)
x (0.224508y, + 0.063458y, + 0.932230y; + 0.528736y, + 0.091947)
s.t. 0.488509y, + 0.063458y, + 0.945686y; + 0.210704y, < 3.562809,
—0.324014y, — 0.501754y, — 0.719204y; + 0.099562y, < —0.052215,
0.445225y, — 0.346896y, + 0.637939y; — 0.257623y, < 0.427920,
—0.202821y, + 0.647361y, + 0.920135y; — 0.983091y, < 0.840950,
— 0.886420y, — 0.802444y, — 0.305441y; — 0.180123y, < —1.353686,
—0.515399y, — 0.424820y, + 0.897498y; + 0.187268y, < 2.137251,
—0.591515y, + 0.060581y, — 0.427365y; + 0.579388y, < —0.290987,
0.423524y, + 0.940496y, — 0.437944y; — 0.742941y, < 0.373620,

Vi,Y2, 3, ¥4 = 0.

Problem 9 [10, 23]
2 n
i=1 \j=1

where ¢;; is generated randomly in the interval [0,1], 7 = 1,2,j = 1,...,n. All elements a;; of the
matrix A are randomly generated in the interval [-1,1], 1.e., 4;; = 21—1, where 11is randomly generated
in [0,1]. The components of b is set to Z?: L aij + 2%, where 7 is randomly generated at [0,1].

Problem 10 [23,26]
P n
min 1_[ZE i

i=1 j=1
n

s.t. Zﬁm]y] SZm,m = 1, ,M
j=1

0<y;<Lj=1.n

Avyhere Ej is randomly generated in [0,1]. Emj is randomly generated at [-1,1],m=1,...M,j=1,...,n.
by = ¥y Gmj + 21, where 7 is randomly generated at [0,1].
Problem 11 [26, 28]

P n @
min 1—[(Z Eijyj + d,)
i=1 \j=1
S.t. Zy < E,y > 0.

where ¢;;, and Ei are randomly generated in [0,1],i =1, ..., p, j = 1, ..., n. Each element of the matrix A
and @ are randomly generated in [-1,1]. The components of the vector b are generated by 21 Gij 28,
where 7 is generated randomly at [0,1].

Table 1 shows the numerical comparison between some algorithms and our algorithm on
Problems 1-8.

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26059

Table 1. Numerical comparisons among some other algorithms and our algorithm on
Problems 1-8.
Problems Algorithms Optimal solution Opt.val Iter Time Tolerance
1 Algorithm in [10] (0,0) 0.5333 290 41.4735 1073
Algorithm in [26] (0,0) 0.5333 68 1.1780 1076
Algorithm in [28] (0,0) 0.5333 67 1.2418 1076
Our algorithm (0,0) 0.5333 0.0350 10-6
2 Algorithm in [10] (1.9975,8) 9.9725 122 17.1740 1073
Algorithm in [26] (2,8) 10 4 0.05146 107°
Algorithm in [28] (2,8) 10 1 0.00003 1076
Our algorithm (2,8) 10 1 0.00004 107¢
3 Algorithm in [10] (1,1) 997.6613 29 4.0872 1073
Algorithm in [26] (1.0,1.0) 997.6613 1 0.0000351 107
Algorithm in [28] (1.0,1.0) 997.6613 1 0.0000403 107°
Our algorithm (1.0,1.0) 997.6613 1 0.0000389 107°
4 Algorithm in [26] (1.25,1.00) 263.78893 2 0.010338 10°°
Algorithm in [28] (1.25,1.00) 263.78893 2 0.013769 107
Our algorithm (1.25,1.00) 263.78893 2 0.00876 10°6
5 Algorithm in [10] (3.0000,1.9990) 5.01105 48 6.66627 1073
Algorithm in [26] (3,2) 5.00931 1 0.0000338 10°°
Algorithm in [28] (3,2) 5.00931 1 0.0000348 1076
Our algorithm (3,2) 5.00931 1 0.0000317 10°°
6 Algorithm in [26] (0,8,1) 0.90123 10 0.1977365 10°°
Algorithm in [28] (8,0,1) 0.90123 9 0.17455 107
Our algorithm (8,0,1) 0.90123 9 0.1405001 1076
7 Algorithm in [26] (1,2.000,1,1,1) 9504.0 5 0.0826865 107°
Algorithm in [28] (1,2,1,1,1) 9504.0 1 0.0000387 10°°
Algorithm in [23] (1,2,1,1,1) 9503.9999 2 0.069 107
Our algorithm (1,2,1,1,1) 9504.0 1 0.0000542 10°°
8 Algorithm in [26] (1.3148,0.1396,0,0.4233) 0.8902 2 0.0194 1076
Algorithm in [28] (1.3148,0.1396,0,0.4233) 0.8902 2 0.0394 107°
Algorithm in [23] (1.3148,0.1396,0,0.4233) 0.8902 1 0.0266 1076
Our algorithm (1.3148,0.1396,0,0.4233) 0.8902 2 0.0093 107°

For stochastic Problems 9-11, we solve 10 randomly generated problems for each set of parameters

(p, m, n) and place their average number of iterations and average CPU time in Tables 2—6. Specifically,
Problem 9 represents an LMP with only two linear functions and exponents of 1. Table 2 shows
the results of numerical comparisons between our algorithm and the algorithms proposed in [10, 23].
Problem 10 is an LMP with multiple linear functions and exponents of 1. Tables 3 and 4 display the
numerical results of our algorithm compared with the algorithms in [23,26]. Additionally, Figures 1
and 2 plot some of the data results in Table 3. Problem 11 is an LMP with real exponents and multiple
linear functions. Tables 5 and 6 show the numerical results of our algorithm compared with the

AIMS Mathematics Volume 8, Issue 11, 26045-26069.

26060

algorithms in [26, 28]. Figures 3—6 depict some of the data results from Tables 5 and 6.

For convenience, the symbols in the table headers in Tables 1-6 are specified as follows: Opt.val: the
global optimum of the tested problem; Iter: the number of iterations of the algorithm; Time: the CPU
time in seconds; Avg.Iter: the average number of iterations of the 10 randomly generated problems;
Std.Iter: the standard deviation of the number of iterations; Avg.Time: the average CPU time of the 10
randomly generated problems; Std.Time: the standard deviation of the average CPU time; p: the
number of linear functions; m: the number of constraints; n: the dimensionality of decision variables.

As can be seen from the numerical results in Table 1, our algorithm effectively calculates the
global optimal solutions and optimal values for low-dimensional Problems 1-8. In comparison to the
algorithms proposed in [10, 26, 28], our algorithm demonstrates shorter computation time and fewer
iterations. Most deterministic problems require only one iteration, with a maximum of nine iterations,
indicating the feasibility of our algorithm.

Upon observing Table 2, it is evident that our algorithm exhibits a lower average number of
iterations and shorter average CPU time compared to the algorithm proposed in [10] for medium-
scale Problem 9. The primary reason for this disparity is that our algorithm solves the problem in
the p-dimensional space, whereas the algorithm in [10] tackles it in the n-dimensional space. In
comparison to the algorithm presented in [23], it is apparent that the iterations of the algorithm in [23] is
generally lower than our algorithm. However, when considering the average CPU time, our algorithm
outperforms in terms of efficiency.

Table 2. Numerical comparisons among the algorithms in [10, 23] and our algorithm on

Problem 9.
(m.n) Our algorithm Algori