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Abstract: Using the elementary method of the classical Gauss sums and the properties of character

sums, we study a linear recurrence formula about the form G (n) = 1 +
∑p−1

a=1

(
a2+nā2

p

)
and about the

mean value of G(n). This is a further exploration of Yuan and Zhang’s research in 2022, which help us
to better understand the character sums wide range application.
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1. Introduction

The key to solving the general quadratic congruence equation is to solve the equation of the form
x2 ≡ a mod p, where a and p are integers, p > 0 and p is not divisible by a. For relatively large p, it
is impractical to use the Euler criterion to distinguish whether the integer a with (a, p) = 1 is quadratic
residue of modulo p. In order to study this issue, Legendre has proposed a new tool-Legendre’s symbol.

Let p be an odd prime, the quadratic character modulo p is called the Legendre’s symbol, which is
defined as follows:

(
a
p

)
=


1, if a is a quadratic residue modulo p;
−1, if a is a quadratic non-residue modulo p;
0, if p | a.

The Legendre’s symbol makes it easy for us to calculate the level of quadratic residues. The basic
properties of Legendre’s symbol can be found in any book on elementary number theory, such as [1–3].

The properties of Legendre’s symbol and quadratic residues play an important role in number
theory. Many scholars have studied them and achieved some important results. For examples, see
the [4–21].
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One of the most representative properties of the Legendre’s symbol is the quadratic reciprocal law:
Let p and q be two distinct odd primes. Then, (see Theorem 9.8 in [1] or Theorems 4–6 in [3])(

p
q

)
·

(
q
p

)
= (−1)

(p−1)(q−1)
4 .

For any odd prime p with p ≡ 1 mod 4 there exist two non-zero integers α (p) and β (p) such that

p = α2 (p) + β2 (p) . (1)

In fact, the integers α (p) and β (p) in the (1) can be expressed in terms of Legendre’s symbol modulo
p (see Theorems 4–11 in [3])

α (p) =
1
2

p−1∑
a=1

(
a3 + a

p

)
and β (p) =

1
2

p−1∑
a=1

(
a3 + ra

p

)
,

where r is any integer, and (r, p) = 1,
(

r
p

)
= −1,

(
∗

p

)
= χ2 denote the Legendre’s symbol modulo p.

Noting that Legendre’s symbol is a special kind of character. For research on character, Han [7]
studied the sum of a special character χ (ma + ā), for any integer m with (m, p) = 1, then∣∣∣∣∣∣∣

p−1∑
a=1

χ (ma + ā)

∣∣∣∣∣∣∣
2

= 2p +
(
m
p

) p−1∑
a=1

χ(a)
p−1∑
b=1

(
b(b − 1)(a2b − 1)

p

)
,

which is a special case of a general polynomial character sums
∑N+M

a=N+1 χ ( f (a)), where M and N are
any positive integers, and f (x) is a polynomial.

In [8], Du and Li introduced a special character sums C (χ,m, n, c; p) in the following form:

C (χ,m, n, c; p) =
p−1∑
a=0

p−1∑
b=0

χ
(
a2 + na − b2 − nb + c

)
· e

(
mb2 − ma2

p

)
,

and studied the asymptotic properties of it. They obtained

p−1∑
c=1

|C (χ,m, n, c; p)|2k =

 p2k+1 + k2−3k−2
2 · p2k + O

(
p2k−1

)
, if χ is the Legendre symbol modulo p;

p2k+1 + k2−3k−2
2 · p2k + O

(
p2k−1/2

)
, if χ is a complex character modulo p.

Recently, Yuan and Zhang [12] researched the question about the estimation of the mean value of
high-powers for a special character sum modulo a prime, let p be an odd prime with p ≡ 1 mod 6, then
for any integer k ≥ 0, they have the identity

S k (p) =
1
3
·

dk +

(
−d + 9b

2

)k

+

(
−d − 9b

2

)k ,
where

S k (p) =
1

p − 1

p−1∑
r=1

Ak (r) ,
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A (r) = 1 +
p−1∑
a=1

(
a2 + rā

p

)
,

and for any integer r with (r, p) = 1.
More relevant research on special character sums will not be repeated. Inspired by these papers, we

have the question: If we replace the special character sums with Legendre’s symbol, can we get good
results on p ≡ 1 mod 4?

We will convert β (p) to another form based on the properties of complete residues

β (p) =
1
2

p−1∑
a=1

(
a + nā

p

)
,

where ā is the inverse of a modulo p. That is, ā satisfy the equation x · a ≡ 1 mod p for any integer
a with (a, p) = 1.

For any integer k ≥ 0, G (n) and Kk(p) are defined as follows:

G (n) = 1 +
p−1∑
a=1

(
a2 + nā2

p

)
and Kk (p) =

1
p − 1

p−1∑
n=1

Gk (n) .

In this paper, we will use the analytic methods and properties of the classical Gauss sums and
Dirichlet character sums to study the computational problem of Kk (p) for any positive integer k, and
give a linear recurrence formulas for Kk (p). That is, we will prove the following result.

Theorem 1. Let p be an odd prime with p ≡ 1 mod 4, then we have

Kk (p) = (4p + 2) · Kk−2 (p) − 8
(
2α2 − p

)
· Kk−3 (p) +

(
16α4 − 16pα2 + 4p − 1

)
· Kk−4 (p) ,

for all integer k ≥ 4 with

K0 (p) = 1, K1 (p) = 0, K2 (p) = 2p + 1, K3 (p) = −3(4α2 − 2p),

where

α = α (p) =

p−1
2∑

a=1

(
a + ā

p

)
.

Applying the properties of the linear recurrence sequence, we may immediately deduce the
following corollaries.

Corollary 1. Let p be an odd prime with p ≡ 1 mod 4. Then we have

1
p − 1

p−1∑
n=1

1

1 +
∑p−1

a=1

(
a2+nā2

p

) = 16α2 p − 28α2 − 8p2 + 14p
16α4 − 16α2 p + 4p − 1

.

Corollary 2. Let p be an odd prime with p ≡ 1 mod 4. Then we have

1
p − 1

p−1∑
n=1

p−1∑
m=0

1 + p−1∑
a=1

(
a2 + nā2

p

) · e (
nm2

p

)
= −
√

p.
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Corollary 3. Let p be an odd prime with p ≡ 1 mod 4. Then we have

1
p − 1

p−1∑
n=1

p−1∑
m=0

1 + p−1∑
a=1

(
a2 + nā2

p

)
2

· e
(
nm2

p

)
=

(
4α2 − 2p

)
·
√

p.

Corollary 4. Let p be an odd prime with p ≡ 1 mod 8. Then we have

p−1∑
n=1

1 + p−1∑
a=1

(
a2 + nā2

p

) · p−1∑
m=0

e
(
nm4

p

)
=
√

p (−1 + B(1)) − p,

where

B(1) =
p−1∑
m=0

e
(
m4

p

)
.

If we consider such a sequence Fk (p) as follows: Let p be a prime with p ≡ 1 mod 8, χ4 be any
fourth-order character modulo p. For any integer k ≥ 0, we define the Fk (p) as

Fk (p) =
p−1∑
n=1

1
Gk(n)

,

we have

Fk (p) =
1

16α4 − 16α2 p + 4p − 1
Fk−4 (p) −

(4p + 2)
16α4 − 16α2 p + 4p − 1

Fk−2 (p)

+
4(4α2 − 2p)

16α4 − 16α2 p + 4p − 1
Fk−1 (p) .

2. Some lemmas

Lemma 1. Let p be an odd prime with p ≡ 1 mod 4. Then for any fourth-order character χ4 mod p,
we have the identity

τ2(χ4) + τ2(χ̄4) = 2
√

p · α,

where

τ(χ4) =
p−1∑
a=1

χ4(a)e
(

a
p

)
denotes the classical Gauss sums, e(y) = e2πiy, i2 = −1, and α is the same as in the Theorem 1.
Proof. See Lemma 2.2 in [9].

Lemma 2. Let p be an odd prime. Then for any non-principal character ψ modulo p, we have the
identity

τ(ψ2) =
ψ2(2)
τ(χ2)

· τ(ψ) · τ(ψχ2),

where χ2 =
(
∗

p

)
denotes the Legendre’s symbol modulo p.
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Proof. See Lemma 2 in [12].

Lemma 3. Let p be a prime with p ≡ 1 mod 4, then for any integer n with (n, p) = 1 and fourth-order
character χ4 mod p, we have the identity

p−1∑
a=1

(
a2 + nā2

p

)
= −1 − χ2(n) +

1
√

p
· (χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4)).

Proof. For any integer a with (a, p) = 1, we have the identity

1 + χ4(a) + χ2(a) + χ̄4(a) = 4,

if a satisfies a ≡ b4 mod p for some integer b with (b, p) = 1 and

1 + χ4(a) + χ2(a) + χ̄4(a) = 0,

otherwise. So from these and the properties of Gauss sums we have
p−1∑
a=1

(
a2 + nā2

p

)
=

p−1∑
a=1

(
a2

p

) (
a4 + n

p

)

=

p−1∑
a=1

χ2

(
a4

)
χ2

(
a4 + n

)
=

p−1∑
a=1

(1 + χ4(a) + χ2(a) + χ̄4(a)) · χ2(a) · χ2(a + n)

=

p−1∑
a=1

(1 + χ4(na) + χ2(na) + χ̄4(na)) · χ2(na) · χ2(na + n)

=

p−1∑
a=1

χ2(a)χ2(a + 1) +
p−1∑
a=1

χ4(na)χ2(a)χ2(a + 1) (2)

+

p−1∑
a=1

χ2(na)χ2(a)χ2(a + 1) +
p−1∑
a=1

χ̄4(na)χ2(a)χ2(a + 1)

=

p−1∑
a=1

χ2(1 + ā) +
p−1∑
a=1

χ4(na)χ2(a)χ2(a + 1)

+

p−1∑
a=1

χ2(n)χ2(a + 1) +
p−1∑
a=1

χ̄4(na)χ2(a)χ2(a + 1).

Noting that for any non-principal character χ,
p−1∑
a=1

χ(a) = 0

and
p−1∑
a=1

χ(a)χ(a + 1) =
1
τ(χ̄)

p−1∑
b=1

p−1∑
a=1

χ̄(b)χ(a)e
(
b(a + 1)

p

)
.
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Then we have
p−1∑
a=1

χ2(1 + ā) = −1,
p−1∑
a=1

χ2(a + 1) = −1,

p−1∑
a=1

χ4(a)χ2(a)χ2(a + 1) =
1

τ(χ2)

p−1∑
b=1

p−1∑
a=1

χ2(b)χ4(a)χ2(a)e
(
b(a + 1)

p

)

=
1

τ(χ2)

p−1∑
b=1

χ̄4(b)e
(

b
p

) p−1∑
a=1

χ4(ab)χ2(ab)e
(
ab
p

)
(3)

=
1

τ(χ2)
· τ(χ̄4) · τ(χ4χ2).

For any non-principal character ψ, from Lemma 2 we have

τ(ψ2) =
ψ2(2)
τ(χ2)

· τ(ψ) · τ(ψχ2). (4)

Taking ψ = χ4, note that

τ(χ2) =
√

p, τ(χ4) · τ(χ̄4) = χ4(−1) · p,

from (3) and (4), we have

p−1∑
a=1

χ4(a)χ2(a)χ2(a + 1) =
χ̄4

2(2) · τ(χ2
4) · τ(χ2) · τ(χ̄4)

τ(χ2) · τ(χ4)

=
χ2(2) · τ(χ2) · τ2(χ̄4)

τ(χ4) · τ(χ̄4)

=
χ2(2) ·

√
p · τ2(χ̄4)

χ4(−1) · p
(5)

=
χ2(2) · τ2(χ̄4)
χ4(−1) ·

√
p
.

Similarly, we also have

p−1∑
a=1

χ̄4(a)χ2(a)χ2(a + 1) =
χ2(2) · τ2(χ4)
χ4(−1) ·

√
p
. (6)

Consider the quadratic character modulo p, we have(
2
p

)
= χ2(2) =

 1, if p ≡ ±1 mod 8;
−1, if p ≡ ±3 mod 8.

(7)

And when p ≡ 1 mod 8, we have χ4(−1) = 1; when p ≡ 5 mod 8, we have χ4(−1) = −1.
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Combining (2) and (5)–(7) we can deduce that

p−1∑
a=1

(
a2 + nā2

p

)
= −1 − χ2(n) +

1
√

p
·
(
χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4)

)
.

This prove Lemma 3.

Lemma 4. Let p be an odd prime with p ≡ 1 mod 4. Then for any integer k ≥ 4 and n with (n, p) = 1,
we have the fourth-order linear recurrence formula

Gk(n) = (4p + 2) ·Gk−2(n) + 8(p − 2α2) ·Gk−3(n) + [(4α2 − 2p)2 − (2p − 1)2] ·Gk−4(n),

where

α = α(p) =
1
2

p−1∑
a=1

(
a3 + a

p

)
=

p−1
2∑

a=1

(
a + ā

p

)
,

(
∗

p

)
= χ2 denotes the Legendre’s symbol.

Proof. For p ≡ 1 mod 4, any integer n with (n, p) = 1, and fourth-order character χ4 modulo p, we
have the identity

χ4
4(n) = χ̄4

4(n) = χ0(n), χ2
4(n) = χ2(n),

where χ0 denotes the principal character modulo p.
According to Lemma 3,

p−1∑
a=1

(
a2 + nā2

p

)
= −1 − χ2(n) +

1
√

p
·
(
χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4)

)
,

G(n) = 1 +
p−1∑
a=1

(
a2 + nā2

p

)
.

We have

G(n) = −χ2(n) +
1
√

p
·
(
χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4)

)
, (8)

G2(n) =[−χ2(n) +
1
√

p
· (χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4))]2

=1 − 2χ2(n) ·
1
√

p
·
(
χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4)

)
+

1
p
·
(
χ2(n) · τ4(χ̄4) + χ2(n) · τ4(χ4) + 2p2

)
=1 − 2χ2(n) ·

1
√

p
·
(
χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4)

)
+

1
p
·
(
χ2(n) · (τ4(χ̄4) + τ4(χ4)) + 2p2

)
.
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According to Lemma 1, we have(
τ2(χ4) + τ2(χ̄4)

)2
= τ4(χ̄4) + τ4(χ4) + 2p2 = 4pα2.

Therefore, we may immediately deduce

G2(n) =1 − 2(χ2(n) · (G(n) + χ2(n))

+
1
p

(
χ2(n) · (τ4(χ̄4) + τ4(χ4)) + 2p2

)
=1 − 2χ2(n) · (G(n) + χ2(n)) (9)

+
1
p
·
[
χ2(n)((τ2(χ̄4) + τ2(χ4))2 − 2p2) + 2p2

]
=2p − 1 − 2χ2(n) ·G(n) +

(
4α2 − 2p

)
· χ2(n),

G3(n) =[−χ2(n) +
1
√

p
· (χ4(n) · τ2(χ̄4) + χ̄4(n) · τ2(χ4))]3

=
(
2p − 1 − 2χ2(n) ·G(n) +

(
4α2 − 2p

)
· χ2(n)

)
·G(n) (10)

=(4α2 − 2p)χ2(n) ·G(n) + (2p + 3)G(n) − (4p − 2)χ2(n) − 2(4α2 − 2p)

and [
G2(n) − (2p − 1)

]2
=

[
χ2(n) · (4α2 − 2p) − 2χ2(n) ·G(n)

]2
,

which implies that

G4(n) = (4p + 2) ·G2(n) + 8(p − 2α2) ·G(n) + [(4α2 − 2p)2 − (2p − 1)2]. (11)

So for any integer k ≥ 4, from (8)–(11), we have the fourth-order linear recurrence formula

Gk(n) = Gk−4(n) ·G4(n)
= (4p + 2) ·Gk−2(n) + 8(p − 2α2) ·Gk−3(n) + [(4α2 − 2p)2 − (2p − 1)2] ·Gk−4(n).

This proves Lemma 4.

3. Proof of the theorem

In this section, we will complete the proof of our theorem.
Let p be any prime with p ≡ 1 mod 4, then we have

K0(p) =
1

p − 1

p−1∑
n=1

G0(n) =
p − 1
p − 1

= 1. (12)

K1(p) =
1

p − 1

p−1∑
n=1

G1(n)

AIMS Mathematics Volume 8, Issue 11, 25804–25814.
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=
1

p − 1

p−1∑
n=1

(
−χ2(n) +

1
√

p
· (χ4(n)τ2(χ̄4) + χ̄4(n)τ2(χ4))

)
(13)

= 0,

K2(p) =
1

p − 1

p−1∑
n=1

G2(n)

=
1

p − 1

p−1∑
n=1

(
−χ2(n) +

1
√

p
· (χ4(n)τ2(χ̄4) + χ̄4(n)τ2(χ4))

)2

(14)

= 2p + 1,

K3(p) =
1

p − 1

p−1∑
n=1

G3(n)

=
1

p − 1

p−1∑
n=1

(
−χ2(n) +

1
√

p
· (χ4(n)τ2(χ̄4) + χ̄4(n)τ2(χ4))

)3

(15)

= −3(4α2 − 2p).

It is clear that from Lemma 4, if k ≥ 4, we have

Kk(p) =
1

p − 1

p−1∑
n=1

Gk(n)

=(4p + 2) · Kk−2(p) − 8
(
2α2 − p

)
· Kk−3(p) + (16α4 − 16pα2 + 4p − 1) · Kk−4(p). (16)

Now Theorem 1 follows (12)–(16). Obviously, using Theorem 1 to all negative integers, and that
lead to Corollary 1.

This completes the proofs of our all results.

Some notes:
Note 1: In our theorem, know n is an integer, and (n, p) = 1. According to the properties of

quadratic residual, χ2(n) = ±1, χ4(n) = ±1.
Note 2: In our theorem, we only discussed the case p ≡ 1 mod 8. If p ≡ 3 mod 4, then the result is

trivial. In fact, in this case, for any integer n with (n, p) = 1, we have the identity

G(n) = 1 +
p−1∑
a=1

(
a2 + nā2

p

)
= 1 +

p−1∑
a=1

(
a4

p

)
·

(
a4 + n

p

)

= 1 +
p−1∑
a=1

(
a
p

)
·

(
a + n

p

)
= 1 +

p−1∑
a=1

(
a2 + na

p

)

= 1 +
p−1∑
a=1

(
1 + nā

p

)
=

p−1∑
a=0

(
1 + na

p

)
= 0.

Thus, for all prime p with p ≡ 3 mod 4 and k ≥ 1, we have Kk(p) = 0.
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4. Conclusions

The main result of this paper is Theorem 1. It gives an interesting computational formula for Kk(p)
with p ≡ 1 mod 4. That is, for any integer k, we have the identity

Kk(p) = (4p + 2) · Kk−2(p) − 8
(
2α2 − p

)
· Kk−3(p) + (16α4 − 16pα2 + 4p − 1) · Kk−4(p).

Thus, the problems of calculating a linear recurrence formula of one kind special character sums
modulo a prime are given.
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