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1. Introduction

The fractional differential equations and delays arise naturally in a wide range of real-world
phenomena and processes. Theory and applications of fractional differential system in different areas
were considered by many researchers. For more details one can refer the books [1–3]. Some real-world
models by fractional derivatives in engineering systems are presented in the book [4]. HIV/AIDS
transmission models are investigated in [5]. Accelerated mass-spring systems are studied in [6].
Biochemical reaction models are studied in [7]. Chemical graph theory is given in [8,9]. During the last
few decades, a lot of papers have been devoted to investigate the positive solutions of boundary value
problems for fractional differential equations, such as [10–18]. The systems they studied are delay-free
and most of them investigated the existence of positive solutions by using the classical fixed pointed
methods. However, to our knowledge, on account of the need for resolving the difficulties caused
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by both the delays and the boundary value conditions, few results on the boundary value problems
for fractional differential equations with time delays are appeared. For example, Qiao and Zhou [18]
studied a class of boundary value problems for a fractional differential equation with integral boundary
conditions but without time delays Dp

0+ x(t) + p(t) f (t, x(t)) + q(t) = 0, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) =

∫ 1

0
l(s)x(s)ds,

(1.1)

where f : [0, 1] × R → (0,+∞) is continuous, q(t), l(t) ∈ C((0, 1), [0,+∞)). Liao and Ye [19]
investigated the existence and uniqueness of positive solutions for a class of nonlinear delay fractional
differential equations {

L(D)[x(t) − x(0)] = f (t, xt), t ∈ (0,T ],
x(t) = φ(t), t ∈ [−r, 0],

(1.2)

where f : [0, 1] × C → R+ is continuous, in which R+ = [0,+∞),C = C([−r, 0],R+) is the space of
continuous functions from [−r, 0] to R+, r > 0, L(D) = Dsn − an−1Dsn−1 − · · · − a1Ds1 ,0 < s j < s j+1 <

1, a j > 0, j = 1, 2, · · · , n − 1. Ds j denotes the standard Riemann-Liouville fractional derivative. Using
Krasnosel’skii fixed point theorem, Su in [20] examined the positive solutions to the singular delay
fractional differential equations with easy boundary data

Dd x(t) + f (t, x(t − τ)) = 0, t ∈ (0, 1)\{τ},
x(t) = η(t), t ∈ [−τ, 0],
x(1) = 0,

(1.3)

where f : (0, 1) × R+ → R is continuous and may be singular at t = 0, t = 1, x = 0, 1 < d ≤ 2
is a real number, Dd is the Riemann-Liouville fractional derivative, R+ = [0,+∞). Li et al. [21] and
Agarwal and Hristova [22] studied boundary value problems of some fractional functional differential
equations involving the Caputo fractional derivative. However, the boundary value conditions in the
above mentioned results for delay fractional differential equations are not concerned with the integral
data. Despite many excellent works on integral boundary value problems for ordinary differential
equations are available, there are only relatively scare results on the integral boundary value problems
for delay fractional differential equations.

Inspired by the works mentioned above, the present paper is related to studying the existence and
uniqueness of positive solutions for the following delay fractional differential equations

Dd
0+ x(t) + f (t, x(t − τ)) = 0, t ∈ (0, 1)\{τ} (1.4)

with the more complicated integral boundary value conditions x(t) = p(t), t ∈ [−τ, 0],
x′(0) = 0, x(1) =

∫ 1

0
q(s)x(s)ds,

(1.5)

where Dd
0+ is a standard Riemann-Liouville fractional derivative and d is a real number with 2 < d ≤ 3.

The time delay τ is a constant which admits 0 < τ < 1. Throughout the present paper, the integral
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boundary value problems (IBVPs) (1.4) and (1.5) refers to the Eq (1.4) with boundary data (1.5). The
functions f , p, q involved in IBVPs (1.4) and (1.5) are assumed to satisfy the following conditions:

(H1) f : (0, 1) × R+ → R+ is continuous, may be singular at t = 0, t = 1 and x = 0.
(H2) p(t) ∈ C([−τ, 0]), p(t) > 0 for t ∈ [−τ, 0), and p(0) = 0, p′−(0) = 0, where p′−(0) denotes the left

derivative of p at t = 0.
(H3) q : (0, 1)→ R+ is continuous, and satisfies

0 ≤ Q :=
∫ 1

0
td−1q(t)dt < 1.

A function x is said to be a positive solution of IBVPs (1.4) and (1.5) if x(t) is nonnegative on
[−τ, 1], x(t) > 0 for t ∈ [−τ, 1]\{0} and it admits the Eq (1.4).

The novelty of the present paper is twofold. First, IBVPs (1.4) and (1.5) under consideration involve
not only the past time delay but also the fractional derivative with the order 2 < d ≤ 3. Second,
the technique used in this paper is to construct a u0-positive operator as to overcome the difficulties
caused by the singularity of the function f . Based on a fixed point theorem, some new existence and
uniqueness criteria of positive solutions are established.

The rest of this study is organized as follows. In Section 2, some definitions and lemmas are
reviewed. In Section 3, we construct a u0-positive operator to demonstrate our main results. Then, the
criteria to existence and uniqueness of positive solutions for IBVPs (1.4) and (1.5) can be established.
We make a conclusion in Section 4.

2. Preliminaries

In this section, we resume with several necessary definitions and lemmas from fractional
calculus theory.

Definition 2.1. (e.g., [1–3]) The Riemann-Liouville fractional integral of a function u : (0,+∞) → R
with order d > 0 is given by

Id
0+u(t) =

1
Γ(d)

∫ t

0
(t − s)d−1u(s)ds,

provided that the right-hand side is pointwise defined on (0,+∞).

In this section, we resume with several necessary definitions and lemmas from fractional
calculus theory.

Definition 2.2. (e.g., [1–3]) The Riemann-Liouville fractional integral of a function u : (0,+∞) → R
with order d > 0 is given by

Id
0+u(t) =

1
Γ(d)

∫ t

0
(t − s)d−1u(s)ds,

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.3. (e.g., [1–3]) The Riemann-Liouville fractional derivative of a continuous function u :
(0,+∞)→ R with order d > 0 is given by

Dd
0+u(t) =

1
Γ(n − d)

dn

dtn

∫ t

0
(t − s)n−d−1u(s)ds,

where n − 1 ≤ d < n, provided that the right-hand side is pointwise defined on (0,+∞).
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The definition of a u0-positive operator is given as follows.

Definition 2.4. (e.g., [23]) Let X be a Banach space, and P a cone in X. A bounded linear operator
S : X → X is said to be a u0-positive operator on the cone P if there exists u0 ∈ P\{θ} such that
for every u ∈ P\{θ}, there exists a natural number n and positive constants α(x), β(x) such that the
following symmetric inequality is satisfied

α(x)u0 ≤ S nu ≤ β(x)u0.

Lemma 2.5. ( [24]) Let d > 0 and u(t) be an integrable function. Then,

Id
0+ Dd

0+u(t) = u(t) + c1td−1 + c2td−2 + · · · + cntd−n,

where ci ∈ R(i = 1, 2, · · · , n), and n is the smallest integer greater than or equal to d.

The following is an existence and uniqueness result of solutions for a linear boundary value problem,
which is paramount for us in the following analysis.

Lemma 2.6. Assume that ρ ∈ C(0, 1) ∩ L(0, 1), 2 < d ≤ 3. Then, the unique solution of the following
BVPs  Dd

0+ x(t) + ρ(t) = 0, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) =

∫ 1

0
q(s)x(s)ds,

(2.1)

is described by

x(t) =

∫ 1

0
G(t, s)ρ(s)ds −

∫ 1

0
(
∫ 1

s
q(t)(t − s)d−1ρ(s)dt)ds

(1 − Q)Γ(d)
td−1, (2.2)

in which the constant

Q :=
∫ 1

0
td−1q(t)dt ∈ [0, 1),

and

G(t, s) =


1

Γ(d) [
td−1(1−s)d−1

1−Q − (t − s)d−1], 0 ≤ s ≤ t ≤ 1

1
Γ(d)

td−1(1−s)d−1

1−Q , 0 ≤ t ≤ s ≤ 1
(2.3)

is called the Green function of the BVPs (2.1).

Proof. Deduced from Lemma 2.5, we have

x(t) = −Id
0+ρ(t) + c1td−1 + c2td−2 + c3td−3.

So, the solution of Eq (2.1) is

x(t) = −
1

Γ(d)

∫ t

0
(t − s)d−1ρ(s)ds + c1td−1 + c2td−2 + c3td−3,
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where 2 < d ≤ 3. By the conditions x(0) = x′(0) = 0, we have that c2 = c3 = 0. On the other hand, the
condition x(1) =

∫ 1

0
q(s)x(s)ds yields

−
1

Γ(d)

∫ 1

0
(1 − s)d−1ρ(s)ds + c1 =

∫ 1

0
q(s)[−

1
Γ(d)

∫ s

0
(s − τ)d−1ρ(τ)dτ + c1sd−1]ds.

By swapping the upper and lower limits, we have

c1 =

∫ 1

0
(1 − s)d−1ρ(s)ds −

∫ 1

0
[
∫ 1

t
q(s)(s − t)d−1ρ(t)ds]dt

(1 − Q)Γ(d)
,

where Q :=
∫ 1

0
td−1q(t)dt ∈ [0, 1).

Therefore, the solution of BVPs (2.1) is

x(t) = −
1

Γ(d)

∫ t

0
(t − s)d−1ρ(s)ds +

td−1

(1 − Q)Γ(d)

∫ 1

0
(1 − s)d−1ρ(s)ds

−

∫ 1

0
[
∫ 1

t
q(s)(s − t)d−1ρ(t)ds]dt

(1 − Q)Γ(d)
td−1

=

∫ t

0

1
Γ(d)

[
td−1(1 − s)d−1

(1 − Q)
− (t − s)d−1]ρ(s)ds +

∫ t

t

1
Γ(d)

td−1(1 − s)d−1

(1 − Q)
ρ(s)ds

−

∫ 1

0
[
∫ 1

t
q(s)(s − t)d−1ρ(t)ds]dt

(1 − Q)Γ(d)
td−1

=

∫ 1

0
G(t, s)ρ(s)ds −

∫ 1

0
[
∫ 1

s
q(t)(t − s)d−1ρ(s)dt]ds

(1 − Q)Γ(d)
td−1.

This completes the proof.
Setting

L(s) =

∫ 1

s
q(t)(t − s)d−1dt

(1 − Q)Γ(d)
. (2.4)

Then, the solution of the BVPs (2.1) can be written as

x(t) =

∫ 1

0
[G(t, s) − L(s)td−1]ρ(s)ds.

We enjoy the following Lemma.

Lemma 2.7. The Green function G(t, s) defined by (2.3) admits the following inequality

G(t, s) − L(s)td−1 ≥ 0, f or t, s ∈ (0, 1).

Proof. From (2.3) and (2.4), for 0 ≤ s ≤ t ≤ 1, one can calculate directly that

G(t, s) − L(s)td−1 =
1

Γ(d)
[
td−1(1 − s)d−1

1 − Q
− (t − s)d−1] −

∫ 1

s
q(t)(t − s)d−1dt

(1 − Q)Γ(d)
td−1
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≥
1

Γ(d)
[
td−1(1 − s)d−1

1 − Q
− (t − ts)d−1] −

∫ 1

s
q(t)(t − s)d−1dt

(1 − Q)Γ(d)
td−1

=
td−1

(1 − Q)Γ(d)
[(1 − s)d−1Q −

∫ 1

s
q(t)(t − s)d−1dt]

≥
td−1

(1 − Q)Γ(d)
[
∫ 1

0
q(t)td−1(1 − s)d−1dt −

∫ 1

0
q(t)(t − s)d−1dt]

≥ 0.

On the other hand, for 0 ≤ t ≤ s ≤ 1, noticing that 0 ≤ Q < 1, one can deduce that

G(t, s) − L(s)td−1 =
1

Γ(d)
td−1(1 − s)d−1

1 − Q
−

∫ 1

s
q(t)(t − s)d−1dt

(1 − Q)Γ(d)
td−1

>
td−1

(1 − Q)Γ(d)
[(1 − s)d−1Q −

∫ 1

s
q(t)(t − s)d−1dt]

≥
td−1

(1 − Q)Γ(d)
[
∫ 1

0
q(t)td−1(1 − s)d−1dt −

∫ 1

0
q(t)(t − s)d−1dt]

≥ 0.

Hence, for any t, s ∈ (0, 1), we have G(t, s) − L(s)td−1 ≥ 0, which is the desired results.
To proceed, we recall a result in [23].

Lemma 2.8. (e.g., [23]) Let X be a Banach space, and P a cone in X. Suppose that S : X → X
is a completely continuous linear operator and S (P) ⊂ P. If there exists ψ ∈ X\(−P) and a constant
c > 0 such that cSψ ≥ ψ, then the spectral radius r(S ) , 0, and S has a positive eigenfunction ϕ
corresponding to its first eigenvalue λ1 = 1

r(S ) , that is, ϕ = λ1Sϕ.

3. Main results

In this section, we begin with constructing a u0-positive operator; followed by the obtained results,
the existence and uniqueness of positive solutions for IBVPs (1.4) and (1.5) is discussed in the
succeeding subsection.

3.1. Construction of u0-positive operators

We also need to define a space

E = {x(t) : x ∈ C([−τ, 1],R+), x(t) = 0 f or t ∈ [−τ, 0]}, (3.1)

with the norm
‖ x ‖= sup

t∈[−τ,1]
| x(t) |= sup

t∈[0,1]
| x(t) | .

Then, it is not difficult to find that (E, ‖ · ‖) is a Banach space. A cone in the space E can be described
as

P = {x ∈ E : x(t) ≥ 0 f or t ∈ [−τ, 1]}.
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Let ρ ∈ C(0, 1) ∩ L(0, 1) be a nonnegative function. We define the functions

p(t) =


p(t), t ∈ [−τ, 0],

0, t ∈ [0, 1],

ν(t) =


0, t ∈ [−τ, 0],∫ 1

0
[G(t, s) − L(s)td−1]ρ(s)ds, t ∈ [0, 1],

and, for any x ∈ P,

x∗(t) = max{x(t) + p(t) − ν(t), 0} =


p(t), t ∈ [−τ, 0],

max{x(t) − ν(t), 0}, t ∈ [0, 1].

The following is naturally followed by Lemma 2.6.

Remark 3.1. The restriction of the function ν on [0, 1]

ν |[0,1]=

∫ 1

0
[G(t, s) − L(s)td−1]ρ(s)ds

is exactly the solution of the BVPs (2.1).

To proceed, define an operator A in P as

(Ax)(t) =


0, t ∈ [−τ, 0],∫ 1

0
[G(t, s) − L(s)td−1][ f (s, x∗(s − τ)) + ρ(s)]ds, t ∈ (0, 1].

(3.2)

Lemma 2.6 means that if x̃ is a fixed point of the operator A, then x̃ is the solution of the following
integral BVPs 

Dd
0+ x̃(t) + f (t, x̃∗(t − τ)) + ρ(t) = 0, t ∈ (0, 1)\{τ},

x̃(t) = 0, t ∈ [−τ, 0],

x̃′(0) = 0, x̃(1) =
∫ 1

0
q(s)x̃(s)ds.

Hence, if the following inequality x̃(t − τ) + p(t − τ) − ν(t − τ) ≥ 0 fulfills for t ∈ [0, 1], then

x̃∗(t − τ) = x̃(t − τ) + p(t − τ) − ν(t − τ).

Let

x(t) = x̃(t) + p(t) − ν(t), (3.3)

where x̃(t) is a fixed point of the operator A.
By the definitions of the functions p(t), ν(t), it is easy to conclude that x(t) = x̃(t)+ p(t)−ν(t) = p(t),

for any t ∈ [−τ, 0]. By Remark 3.1, ν(1) =
∫ 1

0
q(s)ν(s)ds. Then, from the variable substitution (3.3)
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we have x(1) = x̃(1) + p(1) − ν(1) =
∫ 1

0
q(s)x̃(s)ds −

∫ 1

0
q(s)ν(s)ds =

∫ 1

0
q(s)x(s)ds. Hence, by

the condition p′−(0) = 0 in (H2), we conclude that the function x defined in (3.3) is the solution of
IBVPs (1.4) and (1.5). As a result, in what follows one can just need to focus our study on finding the
fixed points of the operator A defined by (3.2).

Define another operator T be defined in P by

(Ty)(t) =


0, t ∈ [−τ, 0],∫ 1

0
[G(t, s) − L(s)td−1]y(s − τ)ds, t ∈ (0, 1].

(3.4)

By Lemma 2.7, it is not difficult to see that T : E → E is a linear completely continuous operator and
T (P) ⊂ P.

The u0-positive operator of the operator T defined by (3.4) can be constructed in the following
theory.

Theorem 3.2. The operator T defined by (3.4) is a u0-positive operator with u0(t) = td−1.

Proof. First, by the definition of the constant Q and the function L(s) defined in Lemma 2.6, we easily
possess

Q(1 − s)d−1

(1 − Q)Γ(d)
− L(s) =

(1 − s)d−1

(1 − Q)Γ(d)

∫ 1

0
td−1q(t)dt −

∫ 1

s
(t − s)d−1q(t)dt

(1 − Q)Γ(d)

=
1

(1 − Q)Γ(d)
[
∫ 1

0
td−1(1 − s)d−1q(t)dt −

∫ 1

s
(t − s)d−1q(t)dt]

≥
1

(1 − Q)Γ(d)
[
∫ 1

0
(t − s)d−1q(t)dt −

∫ 1

s
(t − s)d−1q(t)dt]

≥ 0,

for t, s ∈ (0, 1). Notice that 0 ≤ Q < 1. Thus, the following inequality

(1 − s)d−1

(1 − Q)Γ(d)
− L(s) ≥

Q(1 − s)d−1

(1 − Q)Γ(d)
− L(s) ≥ 0

holds for t, s ∈ (0, 1).
For any y ∈ P \ {θ}, by (3.4) and (2.3), one can calculate that

(Ty)(t) =

∫ t

0
{

1
Γ(d)

[
td−1(1 − s)d−1

1 − Q
− (t − s)d−1] − L(s)td−1}y(s − τ)ds

+

∫ 1

t
[

1
Γ(d)

td−1(1 − s)d−1

1 − Q
− L(s)td−1]y(s − τ)ds

=

∫ t

0

td−1(1 − s)d−1

(1 − Q)Γ(d)
y(s − τ)ds −

∫ t

0

(t − s)d−1

Γ(d)
y(s − τ)ds

−

∫ t

0
L(s)td−1y(s − τ)ds +

∫ 1

t

td−1(1 − s)d−1

(1 − Q)Γ(d)
y(s − τ)ds
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−

∫ 1

t
L(s)td−1y(s − τ)ds

≤

∫ 1

0

td−1(1 − s)d−1

(1 − Q)Γ(d)
y(s − τ)ds −

∫ 1

0
L(s)td−1y(s − τ)ds

=

∫ 1

0
[

(1 − s)d−1

(1 − Q)Γ(d)
− L(s)]y(s − τ)ds · td−1, t, s ∈ (0, 1).

On the other hand, for 0 ≤ Q < 1, one can deduce that

(Ty)(t) =

∫ t

0
{

1
Γ(d)

[
td−1(1 − s)d−1

1 − Q
− (t − s)d−1] − L(s)td−1}y(s − τ)ds

+

∫ 1

t
[

1
Γ(d)

td−1(1 − s)d−1

1 − Q
− L(s)td−1]y(s − τ)ds

≥

∫ t

0
{

1
Γ(d)

[
td−1(1 − s)d−1

1 − Q
− (t − ts)d−1] − L(s)td−1}y(s − τ)ds

+

∫ 1

t
[

1
Γ(d)

td−1(1 − s)d−1

1 − Q
− L(s)td−1]y(s − τ)ds

=

∫ t

0
[
Qtd−1(1 − s)d−1

(1 − Q)Γ(d)
− L(s)td−1]y(s − τ)ds

+

∫ 1

t
[
td−1(1 − s)d−1

(1 − Q)Γ(d)
− L(s)td−1] · y(s − τ)ds

≥

∫ 1

0

Qtd−1(1 − s)d−1

(1 − Q)Γ(d)
y(s − τ)ds −

∫ 1

0
L(s)td−1y(s − τ)ds

=

∫ 1

0
[

Q(1 − s)d−1

(1 − Q)Γ(d)
− L(s)]y(s − τ)ds · td−1, t, s ∈ (0, 1).

Therefore, for any y ∈ P \ {θ}, one can deduce that

α(y) · u0 ≤ (Ty)(t) ≤ β(y) · u0,

where

α(y) =

∫ 1

0
[

Q(1 − s)d−1

Γ(d)(1 − Q)
− L(s)]y(s − τ)ds,

β(y) =

∫ 1

0
[

(1 − s)d−1

Γ(d)(1 − Q)
− L(s)]y(s − τ)ds.

This implies that the operator T is a u0-operator with u0(t) = td−1.
By the proof of Theorem 3.2 and Lemma 2.8, we have the following lemma.

Lemma 3.3. The spectral radius of the operator T admits r(T ) , 0 and T has a positive eigenfunction
ϕ∗(t) corresponding to its first eigenvalue λ1 = (r(T ))−1.

Proof. Let

ψ(t) =


0, t ∈ [−τ, 0],

td−1, t ∈ [0, 1],
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and a constant

c = {

∫ 1

0
[

Q(1 − s)d−1

Γ(d)(1 − Q)
− L(s)]ψ(s − τ)ds}−1 > 0.

Then, from the proof of Theorem 3.2, we find that

c(Tψ)(t) ≥ ψ(t).

Thus, by Lemma 2.8, the spectral radius r(T ) , 0 and T has a positive eigenfunction ϕ∗(t)
corresponding to its first eigenvalue λ1 = (r(T ))−1, that is ϕ∗(t) = λ1(Tϕ∗)(t).

The following result can be used in the proof of the main result in this paper.

Remark 3.4. Let ϕ∗(t) be the positive eigenfunction of operator T corresponding to λ1, that is,

λ1(Tϕ∗)(t) = ϕ∗(t).

Then, by Theorem 3.2 and Definition 2.4, there exists k1(ϕ∗), k2(ϕ∗) such that

k1(ϕ∗) · u0 ≤ Tϕ∗ =
1
λ1
ϕ∗ ≤ k2(ϕ∗) · u0, ϕ

∗ ∈ P \ {θ}.

Hence, we obtain that T defined by (3.4) is a u0-positive operator with u0(t) = ϕ∗(t).

3.2. Existence and uniqueness of positive solutions

In this subsection, based on a fixed point theorem, we study the existence and uniqueness of positive
solutions for IBVPs (1.4) and (1.5) by using the u0-positive operators. The following theorem is the
main result in this paper.

Theorem 3.5. Assume that conditions (H1)–(H3) hold and there exists a constant k ∈ [0, 1) such that

| f (t, u) − f (t, v) |≤ kλ1 | u − v |, f or any t ∈ [0, 1], u, v ∈ R, (3.5)

where λ1 is the first eigenvalue of the operator T defined by (3.4). Then, IBVPs (1.4) and (1.5) has a
unique positive solution x∗. Moreover, for any x0 ∈ P, the iterative sequence xn = Axn−1(n = 1, 2, . . .)
converges to x∗.

Proof. Owing to the continuity of f and the fact that T is a linear completely continuous operator, it
is not difficult to verify that the operator A : E → E defined by (3.2) is completely continuous and
satisfies A(P) ⊂ P.

For any given x0 ∈ P, define the iterative sequence xn = Axn−1(n = 1, 2, . . .). Since A(P) ⊂ P, it
follows that {xn} ⊂ P.

Since λ1 is the first eigenvalue of T , that is T (ϕ∗(t)) = 1
λ1
ϕ∗(t), by the linearity of the operator T ,

stepwise recursive yields

T n−1(ϕ∗(t)) = T n−2(
1
λ1
ϕ∗(t)) =

1
λ1

T n−2(ϕ∗(t)) = . . . =
1
λn−1

1

ϕ∗(t).

Thus, for n ∈ N+, by (3.5), one can deduce that

| xn+1(t) − xn(t) | =| (Axn)(t) − (Axn−1)(t) |
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=|

∫ 1

0
[G(t, s) − L(s)td−1][ f (s, x∗n(s − τ)) + ρ(s)]ds

−

∫ 1

0
[G(t, s) − L(s)td−1][ f (s, x∗n−1(s − τ)) + ρ(s)]ds |

≤

∫ 1

τ

[G(t, s) − L(s)td−1] | f (s, xn(s − τ) − ν(s − τ))

− f (s, xn−1(s − τ) − ν(s − τ)) | ds

≤ kλ1

∫ 1

τ

[G(t, s) − L(s)tα−1] | xn(s − τ) − xn−1(s − τ) | ds

≤ kλ1T (| xn − xn−1 |)(t) ≤ . . . ≤ knλn
1T n(| x1 − x0 |)(t).

By Theorem 3.2 and Remark 3.4, there is a constant δ1 = δ1(| x1 − x0 |) > 0 such that

T (| x1 − x0 |)(t) ≤ δ1ϕ
∗(t), t ∈ [0, 1],

where ϕ∗(t) is the positive eigenfunction of operator T corresponding to λ1. Then, for n ∈ N+, we have

| xn+1(t) − xn(t) | ≤ knλn
1T n−1(δ1ϕ

∗(t)) = δ1knλn
1T n−1(ϕ∗(t))

= δ1knλn
1 ·

1
λn−1

1

ϕ∗(t) = δ1λ1knϕ∗(t).

It follows that for any m ∈ N+

| xn+m(t) − xn(t) | ≤| xn+m(t) − xn+m−1(t) | + . . .+ | xn+1(t) − xn(t) |
≤ δ1λ1(kn+m−1 + . . . + kn)ϕ∗(t)

= δ1λ1
kn(1 − km)

1 − k
ϕ∗(t)

≤ δ1λ1
kn

1 − k
ϕ∗(t),

which means that
‖ xn+m − xn ‖≤ δ1λ1

kn

1 − k
‖ϕ∗‖.

Note that lim
n→∞

β1λ1
kn

1−kϕ
∗(t) = 0. Thus, {xn} is a Cauchy sequence. Therefore, from the completeness

of the space E and the closeness of the operator P, there exists x∗ ∈ P such that

lim
n→∞

xn = x∗.

Since the operator A is continuous, taking the limit into xn = Axn−1 demonstrate that x∗ is a fixed point
of A in P.

Next, we demonstrate that A has at most one fixed point in P. Suppose that there exist two elements
x, y ∈ X with x = Ax and y = Ay. Then, by the condition (3.5), for any n ∈ N+, one can calculate

| x(t) − y(t) | =| (Anx)(t) − (Any)(t) |
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=| [A(An−1x)](t) − [A(An−1y)](t) |

=|

∫ 1

0
[G(t, s) − L(s)td−1][ f (s, (An−1x)∗(s − τ)) + ρ(s)]ds

−

∫ 1

0
[G(t, s) − L(s)td−1][ f (s, (An−1y)∗(s − τ)) + ρ(s)]ds |

≤

∫ 1

τ

[G(t, s) − L(s)td−1] | f (s, (An−1x)(s − τ) − ν(s − τ))

− f (s, (An−1y)(s − τ) − ν(s − τ)) | ds

≤ kλ1

∫ 1

τ

[G(t, s) − L(s)td−1] | (An−1x)(s − τ) − (An−1y)(s − τ) | ds

≤ kλ1T (| An−1x − An−1y |)(t) ≤ . . . ≤ knλn
1T n(| x − y |)(t).

Invoking again Theorem 3.2 and Corollary 3.4, there exists a constant δ2 = δ2(| x − y |) > 0 such that

T (| x − y |)(t) ≤ δ2ϕ
∗(t), t ∈ [0, 1].

Hence, we obtain

| x(t) − y(t) | ≤ knλn
1T n(| x − y |)(t) ≤ knλn

1T n−1(δ2ϕ
∗(t))

= δ2knλn
1 ·

1
λn−1

1

ϕ∗(t) = δ2λ1knϕ∗(t),

T (| x1 − x0 |)(t) ≤ δ1ϕ
∗(t), t ∈ [0, 1],

where ϕ∗(t) is the positive eigenfunction of operator T corresponding to the first eigenvalueλ1. It
follows that

‖ x − y ‖≤ δ2λ1kn‖ϕ∗‖.

Observing that k ∈ [0, 1), we have
lim

n→+∞
δ2λ1kn‖ϕ∗‖ = 0,

so ‖ x − y ‖≤ 0, and thus x = y.
Based on the above analysis, x∗ is a unique fixed point of A in P, i.e., x∗ is the unique positive

solution of IBVP (1.4) and (1.5).

4. Conclusions

In this paper, a novel technique of u0-positive operator is invoked to establish the existence and
uniqueness of positive solutions for a class of the singular delay fractional differential equations with
integral boundary, that is, IBVPs (1.4) and (1.5), which involves not only the past time delay but also
the fractional derivative with the order 2 < d ≤ 3. We first get the corresponding Green’s function.
Consequently, the u0-positive operator T is derived by the equivalent integral equation of IBVP (1.4)
and (1.5). Hence, the sufficient conditions for the existence and uniqueness of positive solutions of the
problem is proved by using the fixed point theorem in cone.

On open questions for further research, it would be interesting to see what happen when the equation
includes this term x(t) in the function f , i.e., f (t, x(t), x(t−τ)). Another potentially interesting research
direction would be to take d ∈ (1, 2].

AIMS Mathematics Volume 8, Issue 11, 25550–25563.



25562

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was supported by the University Science Research Key Project of Anhui Province
under Grant No. KJ2021A1000 and No. KJ2021A0996, Talent Research Fund of Hefei University
under Grant No. 20RC26.

Conflict of interest

The authors declare no conflicts of interest regarding this article.

References

1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Elsevier, B. V. Amsterdam, 2006.

2. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

3. A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integral and derivatives: Theory and
applications, Gordon and Breach, Yverdon, 1993.

4. R. L. Magin, Fractional calculus in bioengineering, Begell House Publishers, Redding, CT, USA,
2006.

5. D. Baleanu, M. Hasanabadi, A. M. Vaziri, A. Jajarmi, A new intervention strategy for an HIV/AIDs
transmission by a general fractional modeling and an optimal control approach, Chaos Soliton.
Fract., 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078

6. O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh, J. H. Asad, Fractional treatment:
An accelerated mass-spring system, Romanian Rep. Phys., 74 (2022), 122.

7. A. Akgül, S. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction
models, Int. J. Intell. Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001
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