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Abstract: This paper is devoted to the lifespan estimates of small classical solutions of the initial
value problems for one dimensional wave equations with semilinear terms of the spatial derivative of
the unknown function. It is natural that the result is same as the one for semilinear terms of the time-
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1. Introduction

In this paper, we consider the initial value problems{
utt − uxx = |ux|

p in R × (0,T ),
u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ R,

(1.1)

where p > 1, and T > 0. We assume that f and g are given smooth functions of compact support and a
parameter ε > 0 is “small enough”. We are interested in the lifespan T (ε), the maximal existence time,
of classical solutions of (1.1). Our result is that there exists positive constants C1, C2 independent of ε
such that T (ε) satisfies

C1ε
−(p−1) ≤ T (ε) ≤ C2ε

−(p−1). (1.2)

We note that, even if |ux|
p is replaced with |ut|

p, (1.2) still holds. Such a result is due to Zhou [18] for
the upper bound of T (ε), and Kitamura, Morisawa and Takamura [7] for the lower bound of T (ε).
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As model equations to ensure the optimality of the general theory for nonlinear wave equations
by Li, Yu and Zhou [8, 9], the nonlinear term |ut|

p is sufficient to be studied except for the
“combined effect” case. See Morisawa, Sasaki and Takamura [10, 11] and Kido, Sasaki, Takamatsu
and Takamura [6] for this direction with a possibility to improve the general theory. See also
Takamatsu [17] for such an improvement. But it is quite meaningful to deal with also |ux|

p because their
proofs are technically different from each others. Moreover, there is no result on its blow-up boundary
due to lack of the monotonicity of the solution, while the one for |ut|

p is well-studied by Sasaki [14,15],
and Ishiwata and Sasaki [2,3]. See Remark 2.1 below. It is also remarkable that it can be studied if the
nonlinear term has a special form of both ut and ux. See Sasaki [16] for this direction. Our research
may help us to study the blow-up boundary for the equation in (1.1) near future.

This paper is organized as follows. In the next section, the preliminaries are introduced. Moreover,
(1.2) is divided into two theorems. Section 3 is devoted to the proof of the existence part, the lower
bound of T (ε), of (1.2). The main strategy is the iteration method for the system of integral equations
for (u, ux), which is essentially due to Kitamura, Morisawa and Takamura [7]. They employed it
for the system of integral equations for (u, ut) to construct a classical solution of the wave equation
with nonlinear term |ut|

p, which is originally introduced by John [4]. In the Section 4, following
Rammaha [12, 13], we prove the blow-up part, the upper bound of T (ε), of (1.2). We note that
the method to be reduced to u-closed integral inequality by Zhou [18] for the nonlinear term |ut|

p

cannot be applicable to (1.1) because a time delay appears in the reduced ordinary differential
inequality. Rammaha [12,13] overcomes this difficulty by employing weighted functionals along with
the characteristic direction in studying two or three dimensional wave equations with nonlinear terms
of spatial derivatives.

2. Preliminaries and main results

Throughout this paper, we assume that the initial data ( f , g) ∈ C2
0(R) ×C1

0(R) satisfies

supp f , supp g ⊂ {x ∈ R : |x| ≤ R}, R ≥ 1. (2.1)

Let u be a classical solution of (1.1) in the time interval [0,T ]. Then the support condition of the initial
data, (2.1), implies that

supp u(x, t) ⊂ {(x, t) ∈ R × [0,T ] : |x| ≤ t + R}. (2.2)

For example, see Appendix of John [5] for this fact.
It is well-known that u satisfies the integral equation

u(x, t) = εu0(x, t) + L(|ux|
p)(x, t), (2.3)

where u0 is a solution of the free wave equation with the same initial data

u0(x, t) :=
1
2
{ f (x + t) + f (x − t)} +

1
2

∫ x+t

x−t
g(y)dy, (2.4)

and a linear integral operator L for a function v = v(x, t) in Duhamel’s term is defined by

L(v)(x, t) :=
1
2

∫ t

0
ds

∫ x+t−s

x−t+s
v(y, s)dy. (2.5)
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Then, one can apply the time-derivative to (2.3) to obtain

ut(x, t) = εu0
t (x, t) + L′(|ux|

p)(x, t) (2.6)

and
u0

t (x, t) =
1
2
{ f ′(x + t) − f ′(x − t) + g(x + t) + g(x − t)}, (2.7)

where L′ for a function v = v(x, t) is defined by

L′(v)(x, t) :=
1
2

∫ t

0
{v(x + t − s, s) + v(x − t + s, s)}ds. (2.8)

Therefore, ut is expressed by ux. On the other hand, applying the space-derivative to (2.3), we have

ux(x, t) = εu0
x(x, t) + L′(|ux|

p)(x, t), (2.9)

and
u0

x(x, t) =
1
2
{ f ′(x + t) + f ′(x − t) + g(x + t) − g(x − t)}, (2.10)

where L′ for a function v = v(x, t) is defined by

L′(v)(x, t) :=
1
2

∫ t

0
{v(x + t − s, s) − v(x − t + s, s)}ds. (2.11)

Remark 2.1. In view of (2.9), it is almost impossible to obtain a point-wise positivity of ux. This fact
prevents us from studying its blow-up boundary as stated in Introduction.

Moreover, applying one more time-derivative to (2.9) yields that

uxt(x, t) = εu0
xt(x, t) + L′(p|ux|

p−2uxuxt)(x, t), (2.12)

and
u0

xt(x, t) =
1
2
{ f ′′(x + t) − f ′′(x − t) + g′(x + t) + g′(x − t)}. (2.13)

Similarly, we have that

utt(x, t) = εu0
tt + |ux|

p(x, t) + L′(p|ux|
p−2uxuxt)(x, t).

Therefore, utt is expressed by ux, uxt and so is uxx.
First, we note the following fact.

Proposition 2.1. Assume that ( f , g) ∈ C2
0(R) × C1

0(R). Let w be a C1 solution of (2.9) in which ux is
replaced with w. Then,

u(x, t) :=
∫ x

−∞

w(y, t)dy

is a classical solution of (1.1) in R × [0,T ].

Proof. This is easy along with the computations above in this section. □

Our results are divided into the following two theorems.
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Theorem 2.1. Assume (2.1). Then, there exists a positive constant ε1 = ε1( f , g, p,R) > 0 such that a
classical solution u ∈ C2(R × [0,T ]) of (1.1) exists as far as T satisfies

T ≤ C1ε
−(p−1), (2.14)

where 0 < ε ≤ ε1, and C1 is a positive constant independent of ε.

Theorem 2.2. Assume (2.1) and

f (x), g(x) ≥ 0, and f (x) . 0. (2.15)

Then, there exists a positive constant ε2 = ε2( f , p,R) > 0 such that any classical solution of (1.1) in
the time interval [0,T ] cannot exist as far as T satisfies

T > C2ε
−(p−1), (2.16)

where 0 < ε ≤ ε2, and C2 is a positive constant independent of ε.

The proofs of above theorems are given in following sections.

3. Proof of Theorem 2.1

According to Proposition 2.1, we shall construct a C1 solution of (2.9) in which ux = w is the
unknown function. Let {w j} j∈N be a sequence of C1(R × [0,T ]) defined by{

w j+1 = εu0
x + L′(|w j|

p),
w1 = εu0

x.
(3.1)

Then, in view of (2.12), (w j)t has to satisfy{
(w j+1)t = εu0

xt + L′(p|w j|
p−2w j(w j)t),

(w1)t = εu0
xt,

(3.2)

so that the functional space in which {w j} converges is

X := {w ∈ C1(R × [0,T ]) : ∥w∥X < ∞, supp w ⊂ {(x, t) ∈ R × [0,T ] : |x| ≤ t + R}},

which is equipped with a norm
∥w∥X := ∥w∥ + ∥wt∥,

where
∥w∥ := sup

(x,t)∈R×[0,T ]
|w(x, t)|.

We note that (2.9) implies that

supp w j ⊂ {(x, t) ∈ R × [0,T ] : |x| ≤ t + R} =⇒ supp w j+1 ⊂ {(x, t) ∈ R × [0,T ] : |x| ≤ t + R}.

The following lemma provides us a priori estimate.
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Proposition 3.1. Let w ∈ C(R × [0,T ]) and supp w ⊂ {(x, t) ∈ R × [0,T ] : |x| ≤ t + R}. Then, the
following a priori estimate holds:

∥L′(|w|p)∥ ≤ C∥w∥p(T + R), (3.3)

where C is a positive constant independent of T and ε.

Proof. The proof of Proposition 3.1 is completely same as the one of Proposition 3.1 in Morisawa,
Sasaki and Takamura [10]. □

Let us continue to prove Theorem 2.1. Set

M :=
2∑
α=0

∥ f (α)∥L∞(R) +

1∑
β=0

∥g(β)∥L∞(R).

The convergence of the sequence {w j}

First we note that ∥w1∥ ≤ Mε by (2.10). (3.1) and (3.3) yield that

∥w j+1∥ ≤ Mε +C∥w j∥
p(T + R)

because it is trivial that
|L′(v)| ≤ L′(|v|).

Therefore, the boundedness of {w j}, i.e.,

∥w j∥ ≤ 2Mε ( j ∈ N), (3.4)

follows from
C(2Mε)p(T + R) ≤ Mε. (3.5)

Assuming (3.5), one can estimate ∥w j+1 − w j∥ as follows:

∥w j+1 − w j∥ = ∥L′(|w j|
p − |w j−1|

p)∥ ≤ ∥L′(||w j|
p − |w j−1|

p|)∥
≤ 2p−1 p∥L′((|w j|

p−1 + |w j−1|
p−1)|w j − w j−1|)∥

≤ 2p−1 pC(∥w j∥
p−1 + ∥w j−1∥

p−1)(T + R)∥w j − w j−1∥

≤ 2p pC(2Mε)p−1(T + R)∥w j − w j−1∥.

Therefore, the convergence of {w j} follows from

∥w j+1 − w j∥ ≤
1
2
∥w j − w j−1∥

provided (3.5) and

2p pC(2Mε)p−1(T + R) ≤
1
2

(3.6)

are fulfilled.
The convergence of the sequence {(w j)t}

First we note that ∥(w1)t∥ ≤ Mε by (2.13). Assume that (3.5) and (3.6) are fulfilled. Since (3.2)
and (3.3) yield that

AIMS Mathematics Volume 8, Issue 11, 25477–25486.



25482

∥(w j+1)t∥ ≤ Mε + ∥L′(p|w j|
p−2w j(w j)t)∥

≤ Mε + ∥L′(p|w j|
p−1|(w j)t|)∥

≤ Mε + pC∥w j∥
p−1(T + R)∥(w j)t∥

≤ Mε + pC(2Mε)p−1(T + R)∥(w j)t∥,

the boundedness of {(w j)t}, i.e.,
∥(w j)t∥ ≤ 2Mε,

follows as long as it is fulfilled that

pC(2Mε)p−1(T + R) ≤ 1. (3.7)

Assuming (3.7), one can estimate {(w j+1)t − (w j)t} as follows. Noting that

||w j|
p−2w j − |w j−1|

p−2w j−1| ≤

{
(p − 1)2p−2(|w j|

p−2 + |w j−1|
p−2)|w j − w j−1| for p ≥ 2,

2|w j − w j−1|
p−1 for 1 < p < 2,

we have

∥(w j+1)t − (w j)t∥ = ∥L′(p|w j|
p−2w j(w j)t − p|w j−1|

p−2w j−1(w j−1)t)∥
≤ p∥L′(|w j|

p−1|(w j)t − (w j−1)t|)∥ + p∥L′(||w j|
p−2w j − |w j−1|

p−2w j−1||(w j−1)t|)∥
≤ pC∥w j∥

p−1(T + R)∥(w j)t − (w j−1)t∥

+

{
L′(p(p − 1)2p−2(|w j|

p−2 + |w j−1|
p−2)|w j − w j−1||(w j−1)t| for p ≥ 2,

L′(2p|w j − w j−1|
p−1|(w j−1)t|) for 1 < p < 2,

≤ pC∥w j∥
p−1(T + R)∥(w j)t − (w j−1)t∥

+

{
p(p − 1)2p−2C(∥w j∥

p−2 + ∥w j−1∥
p−2)∥w j − w j−1∥∥(w j−1)t∥ for p ≥ 2,

2pC∥w j − w j−1∥
p−1∥(w j−1)t∥ for 1 < p < 2,

≤ pC(2Mε)p−1(T + R)∥(w j)t − (w j−1)t∥ + O
(

1
2 j min(p−1,1)

)
.

Therefore, we obtain the convergence of {(w j)t} provided

pC(2Mε)p−1(T + R) ≤
1
2
. (3.8)

Continuation of the proof
The convergence of the sequence {w j} to w in the closed subspace of X satisfying ∥w∥, ∥wt∥ ≤ 2Mε

is established by (3.5)–(3.8), which follow from

2p+1 pC(2M)p−1εp−1(T + R) ≤ 1.

Therefore, the statement of Theorem 2.1 is established with

ε1 := (2p+2 pC(2M)p−1R)−1/(p−1), C1 := 2p+1 pC(2M)p−1

because R ≤ (2C1)−1ε−(p−1) holds for 0 < ε ≤ ε1. □
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4. Proof of Theorem 2.2

Following Rammaha [12], set

H(t) :=
∫ t

0
(t − s)ds

∫ s+R

s+R0

u(x, s)dx,

where R0 is some fixed point with 0 < R0 < R. We may assume that there exists a point x0 ∈ (R0,R)
such that f (x0) > 0 because of the assumption (2.15) and of a possible shift of x-variable.

Then it follows that

H′′(t) =
∫ t+R

t+R0

u(x, s)dx =
ε

2

∫ t+R

t+R0

{
f (x + t) + f (x − t) +

1
2

∫ x+t

x−t
g(y)dy

}
dx +

1
2

F(t), (4.1)

where

F(t) :=
∫ t+R

t+R0

dx
∫ t

0
ds

∫ x+t−s

x−t+s
|ux(y, s)|pdy.

By virtue of (2.15) and (4.1), we have that

H′′(t) ≥
ε

2

∫ t+R

t+R0

f (x − t)dx ≥ 2C fε,

where

C f :=
1
4

∫ R

R0

f (y)dy > 0.

Integrating this inequality in [0, t] twice and noting that H′(0) = H(0) = 0, we have

H(t) ≥ C fεt2. (4.2)

On the other hand, F(t) can be rewritten as

F(t) =
∫ t

0
ds

∫ t+R

t+R0

dx
∫ x+t−s

x−t+s
|ux(y, s)|pdy.

From now on, we assume that

t ≥ R1 :=
R − R0

2
> 0. (4.3)

Then, inverting the order on (y, x)-integral, for 0 ≤ s ≤ t − R1, we have that∫ t+R

t+R0

dx
∫ x+t−s

x−t+s
|ux(y, s)|pdy

=

(∫ s+R

s+R0

∫ y+t−s

t+R0

+

∫ 2t−s+R0

s+R

∫ t+R

t+R0

+

∫ 2t−s+R

2t−s+R0

∫ t+R

y−t+s

)
|ux(y, s)|pdxdy

≥

∫ s+R

s+R0

dy
∫ y+t−s

t+R0

|ux(y, s)|pdx.
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Similarly, for t − R1 ≤ s ≤ t, we also have that∫ t+R

t+R0

dx
∫ x+t−s

x−t+s
|ux(y, s)|pdy

=

(∫ 2t−s+R0

s+R0

∫ y+t−s

t+R0

+

∫ s+R

2t−s+R0

∫ y+t−s

y−t+s
+

∫ 2t−s+R

s+R

∫ t+R

y−t+s

)
|ux(y, s)|pdxdy

≥

∫ 2t−s+R0

s+R0

dy
∫ y+t−s

t+R0

|ux(y, s)|pdx +
∫ s+R

2t−s+R0

dy
∫ y+t−s

y−t+s
|ux(y, s)|pdx.

Hence, we obtain that

F(t) ≥
∫ t−R1

0
ds

∫ s+R

s+R0

(y − s − R0)|ux(y, s)|pdy

+

∫ t

t−R1

ds
∫ 2t−s+R0

s+R0

(y − s − R0)|ux(y, s)|pdy

+

∫ t

t−R1

ds
∫ s+R

2t−s+R0

2(t − s)|ux(y, s)|pdy.

Therefore, it follows from (4.3) and

1 =
y − s − R0

y − s − R0
≥

y − s − R0

R − R0
≥

y − s − R0

2t

that

F(t) ≥
∫ t−R1

0

t − s
t

ds
∫ s+R

s+R0

(y − s − R0)|ux(y, s)|pdy +
∫ t

t−R1

t − s
t

ds
∫ 2t−s+R0

s+R0

(y − s − R0)|ux(y, s)|pdy

+

∫ t

t−R1

2(t − s)ds
∫ s+R

2t−s+R0

y − s − R0

2t
|ux(y, s)|pdy

=
1
t

∫ t

0
(t − s)ds

∫ s+R

s+R0

(y − s − R0)|ux(y, s)|pdy.

In this way, (2.15), (4.1) and the estimate of F(t) above yield that

H′′(t) ≥
1
2

F(t) ≥
1
2t

∫ t

0
(t − s)ds

∫ s+R

s+R0

(y − s − R0)|ux(y, s)|pdy for t ≥ R1.

Moreover, it follows from (2.2), integration by parts and Hölder’s inequality that

|H(t)| =

∣∣∣∣∣∣
∫ t

0
(t − s)ds

∫ s+R

s+R0

∂y(y − s − R0)u(y, s)dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ t

0
(t − s)ds

∫ s+R

s+R0

(y − s − R0)ux(y, s)dy

∣∣∣∣∣∣
≤

∫ t

0
(t − s)ds

∫ s+R

s+R0

(y − s − R0)|ux(y, s)|dy

≤

(∫ t

0
(t − s)ds

∫ s+R

s+R0

(y − s − R0)|ux(y, s)|pdy
)1/p

I(t)1−1/p,
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where

I(t) :=
∫ t

0
(t − s)ds

∫ s+R

s+R0

(y − s − R0)dy =
1
4

t2(R − R0)2 = t2R2
1.

Hence, we obtain that

H′′(t) ≥
1
2

R−2(p−1)
1 t1−2p|H(t)|p for t ≥ R1. (4.4)

Therefore, the argument in Rammaha [12] can be applied to (4.2) and (4.4) to ensure that there exist
positive constants ε2 = ε2( f , p,R) and C2 independent of ε such that a contradiction appears provided

T > C2ε
−(p−1)

holds for 0 < ε ≤ ε2. The proof is now completed. □

5. Conclusions

Our theorems could be extended to higher dimensional case basically along with our method, but
we have to assume that the solution is radially symmetric at least, which is closely related to “Glassey’s
conjecture” for nonlinear term of |ut|

p. See Hidano, Wang and Yokoyama [1] for this direction.
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