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Abstract: The economic improvements of a queueing system with two types of customers achieved
by service decomposition are examined. The service process for a Type 2 customer can be split into
two phases: a basic service and an additional service. The basic service rate is equal to that of the
Type 1 customer. Additional services can be viewed as orders stored in inventory and processed
when the server is idle. Once a new customer arrives during idle time, the server will provide a
basic service to the customer upon his/her arrival. That is, customers have preemptive priority for
orders stored in inventory. We obtain a two-dimensional unbounded Markov process and apply the
multivariate generating function to derive the stationary probability of the proposed model as well
as some performance measures. The condition under which performing service decomposition can
improve economic efficiency is also obtained. Both the optimal inventory capacity and the minimum
system cost are obtained numerically. Numerical experiments demonstrate the impact of optimal
inventory setting on economic improvement efficiency. Finally, simulation experiments prove the
correctness of our theoretical analysis.
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1. Introduction

Classical queueing-inventory systems often assume that when customer service is complete, the
system inventory level decreases accordingly. When inventory is depleted, replenishment orders are
then triggered. This replenishment is provided by an external supplier. We recommend Marand
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et al. [1] to readers interested in a comprehensive look at the queueing-inventory system. Furthermore,
the service system can also produce the products by itself. We want to highlight the preliminary
service (PS) that is performed by servers during idle periods to generate stockable inventory items and
consumed as the customer’s service is completed. PS is first introduced in Hanukov et al. [2], which is
executed when the server is empty for the customer. The authors gave several cases where executing
PS during the server’s idle time can increase the idle time fraction of the system. Hanukov et al. [3]
extended the research of Hanukov et al. [2] and analyzed the performance improvement of the PS
on the service system in which the inventory produced by PS deteriorates while in storage, creating
spoilage costs. The other one is a complementary service that can be conducted without customers.
Complementary service is presented for the first time in Hanukov [4]. The service is divided into
two phases: the opening service and the complementary service. The customer’s complementary
service is stored in the inventory as a pending order that is processed when the server is dormant.
They compared the proposed model with the status quo model under different cost scenarios regarding
efficiency improvement. The above two services can reduce the overall sojourn time of the customer
by performing a part of the service when the server is dormant.

Malachowski and Simonini [5] pointed out that time wasted by employees at work was still costing
companies billions, which further emphasized the importance of improving the efficiency of service
systems. Using the system’ idle time to perform other services is prevalent for service systems
to improve efficiency. Many authors proposed “vacation” models to address the service system
issue. When the system is empty, the server does not remain dormant but handles service-related
or other auxiliary tasks (e.g., maintenance, repair, or organization). Doshi [6] gave some methods and
decomposition results of the queueing systems with vacation. Ke [7] investigated an M/G/1 queueing
system in which the authors analyzed the optimal setting of thresholds for the server to take vacations.
Zhang et al. [8] studied a queueing-inventory system with server vacations. The authors assumed that
the server goes for multiple vacations once the system inventory is depleted. Due to vacations, the
servers are not immediately available to serve customers who arrive during vacations. To reduce the
impact of vacations on the system’s primary services, many authors have addressed this by limiting
the number of vacations (Meena et al. [9] and Ke [10]) or introducing working vacations to queueing
systems (Laxmi et al. [11] and Tian [12]). The above articles all assumed that the tasks performed
by the server during the vacation periods are not related to the primary task. Hanukov et al. [2–4]
also studied the utilization of the idle time to improve the efficiency of service systems. In contrast, the
work done by the server during idle periods is related to the primary task and can reduce the customer’s
overall sojourn time.

In this article, we study queueing systems with two types of customers. There are already well-
established theoretical results for queueing systems with multiple classes of customers. Blanc et al. [13]
described an M/M/c queueing system with two arrival streams. One type of customer can be rejected
for entry. They also obtained a stationary admission policy to maximize the discounted cost function.
Turhan et al. [14] also studied the optimal admission policy for a queueing system with two types of
customers. When the system is full, the arrival of a Type 1 customer terminates the service of a Type 2
customer. The authors gave the admission policy for Type 2 customers in a threshold style. Kim
and Kim [15] investigated a retrial queueing system with two classes of customers in which class-2
customers enter the retrial orbit when the system is busy, and class-1 customers form an infinite queue
in the system. Both the waiting time distributions of class-1 and class-2 customers are obtained. We
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place particular emphasis on Hanukov [16]. The author studied a queueing-inventory model with
two types of customers: skeptical and trusting customers. In this article, the trusting customer’s
service is divided into two phases: opening service and complementary service. A complementary
service is stored in the system to be processed when the server is idle. Customers who insist on
receiving the complete service are defined as skeptical customers. The system stores a finite number
of complementary services. Once the system is fully stocked, both types of customers receive full
services with the same service rate. The author compared the proposed model with a classical M/M/1
model regarding economic efficiency.

In this work, we investigate improving the efficiency of a service system with two types of customers
by service decomposition. Hanukov [16] also studied a queueing system with two types of customers
and finite inventory capacity. The author assumed that skeptical customers refuse to decompose their
services when the inventory is not full. Once the inventory is full, all customers are considered skeptical
and served at the same rate. In this article, we also investigate a queueing model with limited inventory
capacity and two types of customers, Model 3. We assume that the complete service rate differs for
the two customer types. Before the system inventory is full, all customers are served at the same rate.
After a Type 2 customer leaves, the system inventory increases by one. Once the inventory is full,
the service process of Type 2 customers is no longer decomposed. Both types of customers leave the
system after receiving the complete service with different service rates. The whole model becomes
a queueing-inventory model. Our model is mostly motivated by the following examples. Customers
choose the necessary products in a furniture company and settle at the cashier. Customers who only
purchase small items leave the system after checkout (Type 1 customers); customers who purchase
large items need the merchant to provide delivery service after checkout (Type 2 customers). The
service of Type 2 customers can be divided into two phases: one is the checkout process and the other is
delivery. Another example of service decomposition is ultrasound in hospitals. The whole ultrasound
process includes the examination and the report’s writing afterward. In some primary hospitals, the
doctor writes a report immediately after examining the patient. The patient can leave the hospital at
once with the report. In some tertiary hospitals, however, the doctor will finish the examination for all
waiting patients and then write the report at leisure.

The major scientific contributions made in this paper can be summarized in the following:

(1) We study a queueing system with two types of customers. In this case, the service for Type 2
customers can be decomposed into two phases. We obtain closed-form expressions for the
stationary distribution of the queueing system with service decomposition applied and explicit
expressions to the system performance measures.

(2) Model 1 is a two-unbounded queueing system, which is rare in the literature. Combing the
probability generating function method with the multivariable L′Hôpital rule, we derive the
explicit expression of the mean number of stored orders in the system. This approach has been
introduced for the first time in [4].

(3) The performance measures for the queueing model without service decomposition are derived by
the probability generating function. After constructing an appropriate cost function, we obtain the
condition for determining the adoption of the service decomposition. Under this condition, service
decomposition should be provided for all Type 2 customers. In addition, the fraction of system idle
time can become larger under a specific condition by service decomposition.
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(4) We propose a queueing system with service decomposition and finite inventory capacity. Taking
the inventory capacity as the independent variable and using an optimization algorithm, we
can obtain the optimal inventory capacities and the minimum system cost under different
parameter settings. Moreover, we also show the effect of each parameter on the optimal values
through numerical examples. The economic improvements of the queueing system with service
decomposition and optimal capacity are also analyzed numerically.

The rest of this paper is organized as follows. In Section 2, we give a brief description of the
proposed model and obtain the closed-form expressions for the stationary probabilities and some
system performance measures. In Section 3, we obtain the performance measures of the original
system. An analysis of model selection in extreme cases is obtained by employing the constructed
cost function. Section 4 includes a steady-state analysis of the limited capacity queueing model and
an economic comparison with the previous two models. In order to validate our analysis results,
comparisons of simulation and theoretical results are presented in Section 5. Finally, a summary is
given in Section 6.

2. Model description

In this section, we thoroughly examine the Model 1 obtained by performing the service
decomposition for all Type 2 customers. Furthermore, we obtain the system performance measures
explicitly.

We consider an M/M/1 queueing system with two types of customers. The customers’ arrival
process is a Poisson process with rate λ. The service time of Type 1 customers is exponentially
distributed with mean 1/α. The full service time of Type 2 customers follows an exponential
distribution with mean 1/µ. In the previous literature, customer service is continuous. Even with staged
service, customers are served on a global first-come, first-served order. However, we split the service
of Type 2 customers into two phases: basic service and additional service. The basic service rate is
equal to the service rate of Type 1 customers α. Additional services are stored in inventory as pending
orders, waiting to be processed when the server is idle. After performing service decomposition for
all Type 2 customers, a Type 2 customer receives a basic server and leave the system ( so effectively
acting as a Type 1 customers). The difference is that the departure of a Type 1 customer does not
result in an increase in the number of additional services stored in inventory. Therefore, all customers
can be seen as leaving the system immediately after receiving the basic service. Additionally, we
assume that the proportion of Type 2 customers among all customers is q. Thus, after the customer’s
basic service is completed, the system inventory is increased by 1 with probability q. The additional
service time is assumed to be exponentially distributed with rate β. We do not assume that the total
mean duration of a decomposed service 1/α + 1/β equals to the average full service time for a Type 2
customer 1/µ. See Section 3.1.2. The stored orders are executed only when no customers are in
the system. Otherwise the server delays additional services and holds the orders in the inventory. In
addition, when a customer arrives at a busy server processing the additional services, the undergoing
service is interrupted immediately and the newly arriving customer receives service instead. In other
words, customers have preemptive priority over stored orders. Therefore, the queueing behavior of
customers in the system is consistent with the conventional M/M/1 queueing model with the traffic
intensity λ/α.
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Denote the number of customers and the stored orders in the system at time t by N1(t) and I1(t),
respectively. Then, X1(t) = {(N1(t), I1(t)), t ≥ 0} is a two-dimensional continuous-time Markov process
with the state space Ω1 = {(n, i), n, i ∈ N}. The transition situations between the states are shown in
Figure 1. When the traffic intensity ρ = λ

α
+

λq
β

=
λβ+λαq
αβ

< 1, the two-unbonded Markov process
{X1(t), t ≥ 0} is irreducible and recurrent with invariant probability p1

n,i, (n, i) ∈ Ω1.
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Figure 1. The state-transition diagram of the queueing inventory system.

2.1. Stationary analysis

The steady-state probability p1
n,i is defined as

p1
n,i = lim

t→∞
Pr(N1(t) = n, I1(t) = i), (n, i) ∈ Ω1. (2.1)

The balance equations between the states are as follows:

λp1
0,0 = βp1

0,1 + pαp1
1,0, (2.2)

(α + λ)p1
n,0 = pαp1

n+1,0 + λp1
n−1,0, n ≥ 1, (2.3)

(λ + β)p1
0,i = βp1

0,i+1 + pαp1
1,i + qαp1

1,i−1, i ≥ 1, (2.4)

(λ + α)p1
n,i = λp1

n−1,i + pαp1
n+1,i + qαp1

n+1,i−1, n ≥ 1, i ≥ 1. (2.5)

The probability generating function is defined as H(z,w) =
∑∞

n=0
∑∞

i=0 p1
n,iz

nwi, which is a
multivariate function. The corresponding partial probability generating function is defined as
Hi(z) =

∑∞
n=0 p1

n,iz
n, i ≥ 0. We can obtain a set of equations in the following by multiplying the

Eqs (2.2)–(2.5) by zn and summing over all n.

[(λ + α − λz)z − pα]H0(z) = (αz − pα)p1
0,0 + βzp1

0,1, (2.6)

[(α + λ − λz)z − pα]Hi(z) − qαHi−1(z) = (αz − βz − pα)p1
0,i − qαp1

0,i−1 + βzp1
0,i+1, i ≥ 1. (2.7)
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We also define a generating function of boundary probabilities p1
0,i, i ≥ 0 as B0(w) =

∑∞
i=0 p1

0,iw
i.

Same as before, we multiply the Eq (2.6) by w0 and Eq (2.7) by wi. Then, after arranging, we get the
probability generating function has the following form:

H(z,w) =
[(αz − βz − pα − qαw)w + βz]B0(w) + βz(w − 1)p1

0,0

w[(α + λ(1 − z))z − pα − qαw]
. (2.8)

Note that there are two unknowns in Eq (2.8): B0(w) and p1
0,0. In order to calculate p1

0,0, we should first
point out that when the system is stable, the inflow and outflow between the two state sets are balanced.
Then, we focus on the transitions between rows in Figure 1. The balance equations between rows can
be summarized as follows:

λp1
n,. = qαp1

n+1,. + pαp1
n+1,. = αp1

n+1,., n = 0, 1, 2, · · · , (2.9)

where p1
n,. =

∑∞
i=0 p1

n,i. Summing the Eq (2.9) over all n, we obtain p1
0,. = 1 − λ

α
. Then, we focus on the

transitions between volumes. Same as the previous operation, the balance equations between volumes
can be summarized as follows:

qα(p1
.,i − p1

0,i) = βp1
0,i+1, i = 0, 1, 2, · · · , (2.10)

Summing the Eq (2.10) over all i, we obtain

p1
0,0 =

(α − λ)β − qαλ
αβ

. (2.11)

It should be reminded that we cannot get the explicit expression of B0(w). However, we will prove that
any order partial derivatives of B0(w) can be derived in a particular procedure which will be shown
later. Although B0(w) is an unknown function, we still give the expression for H(z,w) as follows by
substituting Eq (2.11) into Eq (2.8):

H(z,w) =
[(αz − βz − pα − qαw)w + βz]αB0(w) + z(w − 1)((α − λ)β − λqα)

αw[(α + λ(1 − z))z − pα − qαw]
. (2.12)

Under the stability condition, we can derive several performance measures in following.

Theorem 2.1. The mean number of customers in the system E(N1) is

E(N1) =
λ

α − λ
. (2.13)

Proof. The probability generating function is defined as H(z,w) =
∑∞

n=0
∑∞

i=0 p1
n,iz

nwi. The mean
number of customers in the system can be calculated by ∂H(z,w)

∂z |z=1,w=1. It leads to 0
0 . We apply the

multivariable L′Hôpital rule developed by Lawlor [17] to it at the fixed direction v = (1, 0). The result
is obvious. �

Remark 1. Actually, as the server stop processing the stored orders when the customers arrive at the
system, the queueing behavior of customers in this system is no different from the conventional M/M/1
queueing system with service intensity λ/α. Therefore, E(N1) is equal to the mean queue length of
conventional M/M/1 queueing system with traffic intensity λ

α
.
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Theorem 2.2. The mean number of stored orders in the system E(I) is

E(I1) =
∂H(z,w)
∂w

∣∣∣∣
z=1,w=1

=
λq(λβ + α2 − λαp)

(α − λ)(αβ − λ(β + qα))
. (2.14)

Proof. According to the properties of multivariate probability generating function, the mean number
of stored orders in the system E(I1) =

∂H(z,w)
∂w

∣∣∣∣
z=1,w=1

. Obviously, the partial derivative of the numerator

with respect to w needs to use the expression of B
′

0(w). Since B0(w) is not an explicit expression, we
first need to obtain the expression of B

′

0(w).
As mentioned before, we use the multivariable L′Hôpital rule to calculate E(N1) by taking

derivations with respect to a fixed direction −→v1 = (1, 0). We can also apply the multivariable L′Hôpital
to obtain E(N1) via a different direction −→v2 = (0, 1). The following symbols are used to simplify the
expression: H(z,w) = B+C

A , where

A = αw[(α + λ(1 − z))z − pα − qαw], (2.15)

B = [(αz − βz − pα − qαw)w + βz]αB0(w), (2.16)

C = z(w − 1)((α − λ)β − λqα). (2.17)

Then, we apply the multivariable L′Hôpital rule twice to
∂(B+C)
∂z A− ∂A

∂z (B+C)
A2 via the fixed direction −→v2=(0, 1),

which is the partial derivative of the above numerator and denominator with respect to w. After
substituting z = 1, w = 1 into the result, the mean number of customers in the system E(N1) also
has the following expression:

E(N1) =
(αβ − λβ − λαq)B

′

0(w = 1) + λq(λ − αp)
q2α2 . (2.18)

By comparing the Eqs (2.13) and (2.18), we can derive that

B
′

0(w = 1) =
λq[(α − λ)2 + λqα]

(α − λ)[αβ − λ(β + qα)]
. (2.19)

Then, E(I1) =
∂H(z,w)
∂w

∣∣∣∣
z=1,w=1

also leads to 0
0 . Applying the multivariable L′Hôpital rule twice to the

equation in direction −→v2 = (0, 1), the mean number of stored orders in the system E(I1) is given by

E(I1) =
(β + qα)B

′

0(w = 1) − λq
qα

. (2.20)

Finally, by substituting the Eq (2.19) into Eq (2.20), the proof is concluded. �

Denote the mean sojourn time of a customer in the system by E(S 1). Using the Little’s law, we
can obtain E(S 1) as: E(S 1) = E(N1)/λ. Similarly, we can obtain the mean sojourn time of a stored
order in the system E(S o) = E(I1)/αe, where αe represents the actual arrival rate of the stored orders.
Obviously, αe = qα(1 − p1

0,.) = λq is also the arrival rate of the Type 2 customers when the system is
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stable. As for the steady-state probabilities p1
n,i, (n, i) ∈ Ω1, we can calculate them according to the

properties of the multivariate probability generating function H(z,w) as follows:

p1
n,i =

∂n+iH(z,w)
∂nz∂iw

∣∣∣∣
z=0,w=0

· (n!i!)−1. (2.21)

It should be noted that the values of derivatives of B0(w) at w = 0: B(k)
0 (w = 0), k = 0, 1, 2, · · · , i

must be known before calculating p1
n,i. We have obtained B0(w = 0) = p1

0,0. In Theorem 2.2, we
apply the multivariable L′Hôpital rule to calculate B

′

0(w = 1). Similarly, we can obtain B(k)
0 (w = 0),

k = 0, 1, 2, · · · , i by applying the multivariable L′Hôpital rule. Although this method is cumbersome,
it is feasible.

Now, we focus on the conditional expected sojourn time T (k, j) for a stored order when it enters the
inventory with k customers in the system and another j − 1 orders queueing before it. We denote this
order as a tagged order. Based on the transition diagram, we can obtain the following theorem.

Theorem 2.3. If the system state is (k, j−1) when this tagged order is created, its conditional expected
sojourn time T (k, j) can be obtained as

T (k, j) =
k

α − λ
+

j · α
β(α − λ)

, k ≥ 0, j ≥ 1. (2.22)

Proof. Before proving this theorem, we first introduce the concept of k-order busy period Mk for a
classical M/M/1 queueing system. Mk refers to the duration from when there are K customers in the
system to when there are no customers in the system. From Cohen [18], the Mk has the following
expression: Mk = k

α−λ
, k = 1, 2, 3, · · · . The conditional sojourn time of an order, given that it sees the

state (0, j − 1) when it enters the inventory, can be calculated in the following. For j = 1, this order
will be processed at first when the server is idle. Since the customer’s basic service has preemptive
priority over the additional service of the orders stored in inventory, additional service is interrupted
by the arrival of a customer. Customers arriving during this basic service time will also be served. The
time period from an order is interrupted until the server resumes additional service for the order can
be viewed as the 1-order busy period M1 of the M/M/1 queueing system. We obtain the T (0, 1) as
follows:

T (0, 1) =
1

λ + β
+

λ

λ + β
(M1 + T (0, 1)) =

1
β

+
λ

β
M1 =

α

β(α − λ)
.

If arrival occurs before service completion with probability λ
λ+β

, the order must wait an entire busy
period M1 before being served again. If no customer arrives while the order is being processed, then
the order is directly served without interruption.

For j ≥ 2, the average sojourn time T (0, j) is obtained as

T (0, j) =
1

λ + β
+

λ

λ + β
(M1 + T (0, j)) +

β

λ + β
T (0, j − 1) = j ·

α

β(α − λ)
. (2.23)

When the tagged order is created, there are k customers present in the system. Then, these k customers,
as well as new arrivals during the service period, will be served before the server can process the
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inventory orders. This period can be regarded as the k−order busy period Mk of the classical M/M/1
queueing model. We can use the same method to obtain T (k, j), k ≥ 1, j ≥ 1.

T (k, j) = Mk + T (0, j) =
k

α − λ
+

j · α
β(α − λ)

. (2.24)

The proof is completed. �

Remark 2. The conditional expected sojourn time for an order can help Type 2 customers understand
the status of the order. Type 2 customers are homogeneous and risk neutral. A risk neutral customer
will maximize his/her revenue by considering the waiting costs of additional services. Excessive
inventory orders will delay the completion of additional service for Type 2 customers. Therefore,
the inventory capacity of the system is limited when Type 2 customers can choose whether to accept
the service decomposition or not.

3. Model 2: the original queueing model without service decomposition

In order to determine whether performing service decomposition for Type 2 customers improves
the economic efficiency of the system, we further investigate the original model without service
decomposition. If we do not split the service of Type 2 customers into two phases, the system is
simplified to a classical M/M/1 queueing system with two types of customers in which all customers
join a single waiting queue. Finally, we will compare the cost functions of the two models and obtain
the condition for performing the service decomposition. Unlike Model 1, the customers’ service in
this system is continuous. The service time of the Type 1 customer follows an exponential distribution
with parameter α. The service time of the Type 2 customer is exponentially distributed with mean 1/µ.
Since all customers join a single waiting queue, the server can only recognize the type of the customer
at the head of the queue. The probability that the customer at the head of the queue is a Type 1 customer
is p. Denote the number of customers in the system at time t by N2(t). Denote the state of server at
time t by I2(t), where

I2(t) =


0, the server is idle at time t,
1, the server is busy with a Type 1 customer at time t,
2, the server is busy with a Type 2 customer at time t.

(3.1)

The process X2(t) = {(N2(t), I2(t)), t ≥ 0} is also a continuous-time Markov process with the state space
Ω2 = (0, 0) ∪ {(n, i), n = 0, 1, 2, · · · , i = 1, 2}. The transitions between states are shown in Figure 2.

(0,0)

(1,1)

(1,2)

(2,1)
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(3,1)
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l
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l
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l
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a
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qa
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...

...

Figure 2. The state-transition diagram of the original queueing system.
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The steady-state probability p2
n,i is defined by

p2
n,i = lim

t→∞
Pr(N2(t) = n, I2(t) = i), (n, i) ∈ Ω2. (3.2)

Arranging the Markov process in lexicography sequence, we obtain the following infinitesimal
generator:

G =


M0 N0

L0 M N
L M N

. . .
. . .

. . .

 , (3.3)

where

L =

(
αp αq
µp µq

)
, M =

(
−(λ + α)p 0

0 −(λ + µ)

)
, N =

(
λ 0
0 λ

)
, (3.4)

M0 = −λ, N0 = (λp λq), L0 = (α µ)′. (3.5)

Applying the mean drift method, we can obtain the steady state condition for Model 2 as: λ < µα

αq+µp .
The steady condition can be rewritten as 1

λ
> q

µ
+

p
α
, which can be interpreted as the arrival interval ( 1

λ
)

is greater than the average service time ( q
µ

+
p
α
). The balance equations between the above states can

be written as follows:
λp2

0,0 = µp2
1,2 + αp2

1,1, (3.6)

(λ + α)p2
1,1 = λpp2

0,0 + µpp2
2,2 + αpp2

2,1, (3.7)

(λ + µ)p2
1,2 = λqp2

0,0 + µqp2
2,2 + αqp2

2,1, (3.8)

(λ + α)p2
n,1 = λp2

n−1,1 + µpp2
n+1,2 + αpp2

n+1,1, n ≥ 2, (3.9)

(λ + µ)p2
n,2 = λp2

n−1,2 + µqp2
n+1,2 + αqp2

n+1,1, n ≥ 2. (3.10)

Define the partial generating function of the states as: Gi(z) =
∑∞

n=1 p2
n,iz

n, z ∈ (0, 1) i = 1, 2. By
simple algebraic manipulation, the partial generating function Gi(z) have the following expression:

G1(z) = −p2
0,0 ·

λp(1 − z)z
(
(λ + µ)z − λz2)

(−λz2 + (λ + µ)z − µq)(−λz2 + (λ + α)z − αp) − αµpq
, (3.11)

G2(z) = −p2
0,0 ·

λq(1 − z)z
(
(λ + α)z − λz2)

(−λz2 + (λ + µ)z − µq)(−λz2 + (λ + α)z − αp) − αµpq
. (3.12)

Combining with the nominal condition G1(1) + G2(1) + p2
0,0 = 1, the probability that the system is idle

without customers can be obtained as

p2
0,0 =

µα − λ(αq + µp)
µα

. (3.13)

In order to compare the original system with Model 1, it is also necessary to give the expression of the
expected queue length. According to the properties of the generating function, the number of customers
in the system can be expressed as

E(N2) =

2∑
i=1

∞∑
n=1

np2
n,i = G

′

1(1) + G
′

2(1) =
λ[λpq(α − µ)2 + αµ(αq + µp)]

αµ(αµ − λ(αq + µp))
. (3.14)
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3.1. The effect of service decomposition

In this part, we mainly focus on analyzing the effect of service decomposition among Models 1&2.
We should emphasize that both the stationary condition of the two models should be satisfied
λ < min( αβ

qα+β
, αµ

qα+pµ ). Another condition that should be provided is α > µ. Otherwise, service
decomposition has only negative effects. Under the above two conditions, we compare the cost function
of Models 1&2 and give the condition under which the manager prefers to adopt the idea of service
decomposition.

3.1.1. Cost function

Two cost components are considered: the waiting cost rate of customers in the system, c and the
inventory holding cost rate, h. It is evident that the Model 2 does not have the inventory holding cost.
The total expected cost of the queueing-inventory system (Model 1) and the queueing system (Model 2)
are denoted by C1 and C2

C1 = cE(N1) + hE(I1), (3.15)

C2 = cE(N2). (3.16)

Proposition 3.1. Considering the above two cost components, management with Model 1 is more
profitable if and only if the following condition is satisfied

κ1 ≡
h
c
<

E(N2) − E(N1)
E(I1)

=
(α − µ)

(
(α − λ)(α − µ)λp + α2µ

)(
αβ − λ(αq + β)

)
αµ

(
αµ − λ(αq + µp)

)
(λβ + α2 − λαp)

≡ ∆1. (3.17)

From Proposition 3.1, if ∆1 > 0, we can conclude that applying service decomposition to Type 2
customers reduces the queue length but simultaneously increases the holding cost of inventory orders.
Moreover, whether to adopt the service decomposition strategy proposed in Model 1 depends only on
Eq (3.17). We further examine the improvement achieved by Model 1 compared with Model 2. The
improvement is evaluated in terms of the percentage reduction in the total expected cost and is given
by

ε1 =
C2 −C1

C2
=

cE(N2) − cE(N1) − hE(I1)
cE(N2)

. (3.18)

Proposition 3.2. The percentage reduction ε1 in the total cost of Model 1 can be written in the following
form:

ε1 =
(
1 −

αµ[αµ − λ(qα + pµ)]
(α − λ)[λpq(α − µ)2 + αµ(αq + µp)]

)
(1 −

κ1

∆1
).

Proof.

ε1 =
E(N2) − E(N1)

E(N2)
−

h
c

E(I1)
E(N2)

=
E(N2) − E(N1)

E(I1)
E(I1)
E(N2)

− κ1
E(I1)
E(N2)

=
E(I1)
E(N2)

(∆1 − κ1) = ∆1
E(I1)
E(N2)

(1 −
κ1

∆1
) =

E(N2) − E(N1)
E(N2)

(1 −
κ1

∆1
)

=
(
1 −

αµ[αµ − λ(qα + pµ)]
(α − λ)[λpq(α − µ)2 + αµ(αq + µp)]

)
(1 −

κ1

∆1
)

�
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To investigate the influence of the system’s parameters on model selection, we give the trend of ∆1

in some extreme cases.

Corollary 3.1. (1) as λ → 0, ∆1 →
β(α−µ)
αµ

; (2) when 1
µ
< 1

α
+ 1

β
, as λ → αβ

αq+β

−
, ∆1 → 0; (3)

when 1
µ
> 1

α
+ 1

β
, as λ→ αµ

αq+µp
−, ∆1 → ∞.

Proof. Under the assumption α > max(µ, λ), (α − µ), [(α − λ)(α − µ)λ + α2µ] and (λβ + α2 − λαp) in
the expression of ∆1 are always positive.

(1) This conclusion is obvious when we substitute λ→ 0 into the expression for ∆1 in Eq (3.17). It
can be verified in Figure 3(a) and 3(b).

(2) When 1
µ
< 1

α
+ 1

β
, we can conclude that αβ

αq+β
< αµ

αq+µp . Then if λ → αβ

αq+β
, (αµ − λ(αq + µp)) is

positive and ∆1 → 0.
(3) When 1

µ
> 1

α
+ 1

β
, we can conclude that αβ

αq+β
> αµ

αq+µp . Then if λ → αµ

αq+µp , (αβ − λ(αq + β)) is
positive and ∆1 → ∞. �

Remark 3. Corollary 3.1 gives the values of ∆1 for the three extreme cases. (1)When the customer
arrival rate λ is low(λ → 0+), ∆1 tends to a constant with fixed α, β and µ. This suggests that the
manager’s decision, in this case, depends mainly on the relationship between h

c and ∆1. If Model 1

is more profitable, the percentage reduction in the total cost is given by ε1
λ→0+

−→
q(β(α−µ)−κ1αµ)

β(αq+µp) . (2)
When 1

µ
< 1

α
+ 1

β
, the average full service time for Type 2 customers is smaller than the total average

decomposed service time. Model 2 is beneficial as λ → αβ

αq+β

−
regardless of the ratio of c,h; see

Figure 3(a). This is in line with our intuitive guess. In Model 1, when the customer arrival rate is high
(λ→ αβ

αq+β

−
), there are two queues in the system. One is the customers’ waiting queue, and the other is

for stored orders. Service decomposition reduces customers’ waiting time while increasing the cost of
maintaining the stored orders. Conversely, the increased sojourn time of Type 2 customers is less than
the processing time of stored orders. Then Model 2 is preferable even for a low but positive h. See
Figure 3(a). (3) When 1

µ
> 1

α
+ 1

β
, the total average decomposed service time is shorter than the average

continuous service time. If the customer arrival rate is high (λ→ αµ

αq+µp
−), the customer average sojourn

time is high. Service decomposition can largely reduce the queue length and lower costs even for a

large but finite h. In this case, the economic improvement is ε1

λ→
αµ

αq+µp
−

−→ 1. See Figure 3(b).

Corollary 3.2. (1) As β→ λαq
α−λ

+
, ∆1 → 0; (2) As β→ ∞, ∆1 →

(α−µ)
(

(α−λ)(α−µ)λp+α2µ
)

(α−λ)

αµλ
(
αµ−λ(αq+µp)

) .

Proof. Straightforward by substituting in Eq (3.17) and rearranging items. �

Remark 4. Corollary 3.2 indicates that ∆1 tends to zeros for a low additional service rate (β→ λαq
α−λ

+
).

This can help managers make quick decisions on model selection: if the additional service β rate is less
than λαq

α−λ
, retain the full service for Type 2 customer instead of service decomposition. See Figure 3(c).

When the system processes pending orders in inventory at a high rate (β → ∞), a new arrival can
preempt the current service. In this case, ∆1 tends to be a positive constant. This implies that the
manager may retain the full service of Type 2 customers (Model 2) even for a high additional service
rate. See Figure 3(c).

Corollary 3.3. (1) As α → max(µ, λβ

β−λq )+, ∆1 → 0; (2) As α → λµp
µ−λq , ∆1 → ∞;(3) As α → ∞,

∆1 →
(λp+µ)(β−λq)
µ(µ−λq) .

AIMS Mathematics Volume 8, Issue 11, 25382–25408.



25394

Proof. Straightforward by substituting in Equation (3.17) and rearranging items. �

Remark 5. Corollary 3.3 summarizes the values of ∆1 for extreme values of the basic service rate α.
In the first case, ∆1 tends to zeros when the basic service rate α is small (α → max(µ, λβ

β−λq )+). This
situation is consistent with our intuitive inference. If the basic service rate α gradually approaches the
full service rate µ for Type 2 customers, the system will process pending orders in inventory during
idle time. This situation does not reduce the customer’s waiting cost while increasing the system’s
inventory holding cost. Therefore Model 2 is more profitable than Model 1; see Figure 3(e). In the
second case, ∆1 tends to be infinite when the basic service rate is small α → λµp

µ−λq . It seems that
Model 1 is more appropriate in this case. See Figure 3(e). However, this occurs only when the basic
service rate is smaller than the full service rate of Type 2 customers (α < µ). This contradicts our
previous assumptions (α > µ), so we exclude this extreme case in the following discussion. In the
last case, for a large basic service rate (α → ∞), ∆1 tends to a finite constant. This means that
Model 2 is preferable regardless of the ratio of h and c. If the basic service rate α is large, only the
pending orders queue in the inventory. Compared to Model 2, Model 1 is more profitable when the
cost of Model 1 to hold inventory is less than the customers’ waiting cost in Model 2. Also known as
κ1 < ∆1 =

(λp+µ)(β−λq)
µ(µ−λq) . Regarding economic improvement, the percentage reduction in the total cost of

this case can be obtained by ε1 = 1 − κ1
µ(µ−λq)

(λp+µ)(β−λq) . Figure 3(d) illustrates the trend of ∆1.

Corollary 3.4. (1) As {α, β} → {µ+,∞}, ∆1 → 0; (2) As {α, β} → {∞, λq+}, ∆1 → 0; (3) As {α, β} →
{∞,∞}, ∆1 → ∞.

Proof. Straightforward by substituting in Eq (3.17) and rearranging items. �

Remark 6. Corollary 3.4 shows that Model 2 is preferable if the basic service rate α is small (α→ µ+),
even for a high additional service rate (β → ∞). It is easy to explain that as α → µ, the service rates
of the two types of customers gradually equalize. It would only increase the cost of the system to split
the Type 2 customer’s service into two phases, even if the additional service rate is infinite. The same
outcome holds when the additional service rate β is low (β → λq+), even for a large basic service
rate (α → ∞). This result is intuitive. When the additional service rate is low, many pending orders
accumulate in the inventory, significantly increasing the system holding cost. Conversely, when the
basic service rate α and the additional service rate β are significant, ∆1 tends to infinity. At this point,
Model 1 is beneficial for almost all values of c and h. The economic improvement for the case with
high values of the basic service rate and the additional service rate ({α, β} → {∞,∞}) is given by
ε1 → 1. Figure 3(f) shows the trends of the values of ∆1.
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(a) µ = 10, α = 20, β = 15, p = 0.3.
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(b) µ = 10, α = 20, β = 25, p = 0.3.
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(c) µ = 10, α = 20, λ = 8, p = 0.3.
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(d) µ = 10, β = 25, λ = 8, p = 0.3.
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(e) Partial enlarged view of Figure 3(d). (f) λ = 8, µ = 10.

Figure 3. The effects of different parameters on ∆1.
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3.1.2. System idle time

We now examine the impact of service decomposition on system idle time. The idle probability can
be used to represent the average idle fraction. In Model 1, the server is dormant only when there are
no customers in the system and no stored orders in the inventory. Thus, the idle probability of Model 1
is p1

0,0. The idle probability of Model 2 is p2
0,0. Obviously, we can obtain the following proposition.

Proposition 3.3. The idle fraction of Model 1 to be larger than Model 2, if 1
µ
> 1

α
+ 1

β
is satisfied.

Proof. Directly substitute the two probability expressions to complete the proof.

p1
0,0 =

(α − λ)β − λαq
αβ

>
αµ − λ(αq + µp)

αµ
= p2

0,0

µ((α − λ)β − λαq) > β(αµ − λ(αq + µp))
1
µ
>

1
α

+
1
β

�

Remark 7. The total time of decomposed services is generally longer than the average time
of continuous complete services 1

µ
< 1

α
+ 1

β
, due to the additional work resulting from service

decomposition: e.g., allocation management of pending orders, confirmation of order information, etc.
However, in some cases the opposite ( 1

µ
> 1

α
+ 1
β
) also exists. It is also inevitable that customers interfere

with the service process during service. It can lead to a lower actual service rate. In addition, when
performing additional service, the server can process similar orders in bulk, increasing the additional
service rate. Proposition 3.3 implies that under condition 1

µ
> 1

α
+ 1
β
, service decomposition can increase

the idle time of the system. Using system idle time to process orders in inventory does not reduce the
idle fraction of the system, which seems contrary to our common sense.

4. Numerical results

4.1. Model 3: the queueing-inventory system with finite capacity

In Remark 2, we mentioned that a Type 2 customer might request a full service due to the excessive
waiting time for a stored order. The system inventory level would then be a finite value, which is
also more in line with the actual situation. In this subsection, we focus on another queueing-inventory
model in which the service of a Type 2 customer is split into two parts only when the inventory level
is less than N. That means the inventory capacity is limited and only allows a maximum of N orders
to be stored. If the inventory level is less than N, the system operates as Model 1. Conversely, if the
inventory capacity is N, a Type 2 customer will receive a full service. At this point, the system operates
in line with Model 2. Therefore, Model 3 can be seen as a mixture of Models 1&2.

Denote the number of customers in the system, the server’s state and the inventory level at time t by
N3(t), S (t) and I3(t), respectively, where

S (t) =



0, the server is idle,
1, the server is busy with a Type 1 customer,
2, the server is busy with a Type 2 customer,
3, the server is in the basic service,
4, the server is in the additional service.

(4.1)
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The state space Ω3 = ∪∞n=0{Hn}, where

H0 = {(0, 0, 0), (0, 4, 1), (0, 4, 2), · · · , (0, 4,N)},
{Hn}n≥1 = {(n, 3, 0), (n, 3, 1), (n, 3, 2), · · · , (n, 3,N − 1), (n, 1,N), (n, 2,N)}.

The transitions between all the states can be illustrated in Figure 4.

(0,0,0) (0,4,1) (0,4,N-1) (0,4,N)

(1,3,0) (1,3,1) (1,3,N-1) (1,1,N)

(2,3,0) (2,3,1) (2,3,N-1) 2,1,N

b b b

qa qa qa qa
l pa l pa pl al pa

qa qa qa qpa
l pa l pa ll pa

qa qa qa qa
l p l p ll p

...

...

...

...

...

...

...

...

pa

m

(1,2,N)

(2,2,N)

...

ql
m

2
qa

l qm

qa pm

Figure 4. The state-transition diagram of Model 3.

Arranging the Markov process X3(t) = {(N3(t), S (t), I3(t)), t ≥ 0} in lexicography sequence, we can
obtain the following infinitesimal generator:

Q =



B00 C01

A10 B C
A B C

A B C
. . .

. . .
. . .


, (4.2)

where

B00 =



−λ

β −(λ + β)
β −(λ + β)

. . .
. . .

β −(λ + β)


(N+1)×(N+1)

,C01 =



λ

λ
. . .

λ

λp λq


(N+1)×(N+2)

,

(4.3)

A10 =



αp αq
αp αq

. . .
. . .

αp αq
α

µ


(N+2)×(N+1)

, A =



αp αq
αp αq

. . .
. . .

αp αq
αp αpq αq2

αp αq
µp µq


(N+2)×(N+2)

,

(4.4)
and

B = diag(−(λ + α),−(λ + α), · · · ,−(λ + α),−(λ + µ)), C = diag(λ, λ, · · · , λ). (4.5)
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B and C are both square arrays of order N +2. The steady condition for Model 3 can be obtained by the
mean drift method. Let ξ = (ξ0, ξ1, · · · , ξN−1, ξN,1, ξN,2) be te invariant probability vector of the matrix:

D = A + B + C =



−αq αq
−αq αq

. . .
. . .

−αq αq
−αq αpq αq2

−αq αq
µp −µp


. (4.6)

We can obtain vector ξ from ξD = 0 and ξe = 1 (e represents the all-1 vector of the corresponding
order) as: 

ξk = 0, k = 0, 1, · · · ,N − 1,

ξN,1 =
µp

αq + µp
,

ξN,2 =
αq

αq + µp
.

(4.7)

According to the mean-drift method, the stationary condition of Model 3 is ξAe > ξCe, which can
be rewritten as λ < αµ

αq+µp . When the number of customers in the system accumulates to a certain
number, the inventory level will reach the maximum capacity N. After that, the service rules of system
customers are the same as Model 2, so the steady-state conditions are also the same.

Next, we analyze this queueing-inventory system with limited capacity under the stability condition.
The Matrix-Geometric method developed by Neuts [19] is applied to derive the stationary distribution
of Model 3. First, we define the stationary joint probability p3

n,s,i as

p3
n,s,i = lim

t→∞
Pr[N3(t) = n, S (t) = s, I3(t) = i], (n, s, i) ∈ Ω3,

p3
0 = (p3

0,0,0, p3
0,4,1, · · · , p3

0,4,N)
p3

n = (p3
n,3,0, p3

n,3,1, · · · , p3
n,3,N−1, p3

n,1,N , p3
n,2,N), n ≥ 1

p3 = (p3
0, p3

1, ; · · · , p3
n, · · · )

(4.8)

We should emphasize that the stationary joint probability p3 must satisfy the following equations:
p3Q = 0 and p3e = 1, which equal to

p3
0B00 + p3

1A01 = 0, (4.9)
p3

0C01 + p3
1B + p3

2A = 0, (4.10)
p3

n−1C + p3
nB + p3

n+1A = 0, n ≥ 2. (4.11)

If we assume that the stationary p3
n have the following expression:

p3
n = p3

1Rn−1, n ≥ 2, (4.12)

AIMS Mathematics Volume 8, Issue 11, 25382–25408.



25399

where R is a matrix of order (N + 2) × (N + 2) satisfying C + RB + R2A = 0. The boundary probability
vectors p3

0, p3
1 can be determined by Eqs (4.9) and (4.10) and the normalizing condition as follows:

p3
0B00 + p3

1A01 = 0,
p3

0C01 + p3
1(B + RA) = 0,

p3
0e + p3

1(I − R)−1e = 1.
(4.13)

Since R cannot be computed explicitly, we can obtain a numerical result for R with the algorithms
devised by Latouche and Ramaswami [20]. Then, we list two performance measures of Model 3.

(1) The average number of customers in the system is denoted by L:

L =

∞∑
n=0

np3
ne = p3

1[I − R]−2e; (4.14)

(2) Let Iq denote the mean number of stored orders in inventory. We have

Iq = p3
0v +

∞∑
i=1

p3
i w = p3

0v + p3
1(
∞∑

i=1

Ri−1)w = p3
0v + p3

1[I − R]−1w, (4.15)

where v = (0, 0, 1, 2, · · · ,N − 1)T and w = (0, 1, 2, 3, · · · ,N − 1,N,N)T .

4.2. Managerial implications

In this subsection, we consider determining the optimal inventory capacity N to reduce system costs
under different parameter settings. The performance measures can be expressed as a function of the
maximum inventory capacity N, i.e., L(N) and Iq(N). First, we should establish a total cost function
for the queueing-inventory system with limited capacity as

Tc(N) = cL(N) + hIq(N), (4.16)

where c and h are defined as Section 2. Without loss of generality, we set the customer’s sojourn time
cost rate to 1, i.e., c = 1. Also, set h to 0.6. This means that the unit cost of maintaining an inventory
order costs is less than that of making a customer wait for service.
Example 1. According to the previous discussion in Section 2, the relationship between 1

µ
and 1

α
+ 1

β

will affect the numerical results, so we discuss the effect of N on the total cost function Tc(N) in two
cases. The curves of case 1 : 1

µ
< 1

α
+ 1

β
and case 2: 1

µ
> 1

α
+ 1

β
are displayed in Figure 5. The figure

indicates that when case 2 holds, the total cost function decreases as N increases. This implies that
performing service decomposition for all Type 2 customers is profitable. According to our intuitive
conjecture, the queue length L(N) decreases as N increases, which is consistent with the numerical
results in Figure 6. However, the trend of the average inventory level Iq(N) against N in Figure 6 is
opposite to our conjecture, which can be explained as follows. When N tends to infinity, the system can
store sufficient orders. Therefore, the average queue length L(N) gradually tends to a constant value
(queue length of the classical M/M/1 queueing system λ

α−λ
). However, the system inventory level does

not keep growing but tends to stabilize. According to Proposition 3.3, the idle fraction is increased due
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to service decomposition in case 2. The customer leaves the system immediately after receiving the
basic service. Thus, the pending orders in the inventory can be processed during the idle time, so the
system inventory level does not keep growing. Therefore, in case 2, performing service decomposition
for all Type 2 customers is beneficial. As for case 1, the blue curve in Fig. 5 demonstrates the variation
of the cost function as N increases. The point (4, 2.1146) is the optimal value point, indicating that the
minimum total cost can be obtained when the maximum inventory capacity of the system is set to 4 at
this parameter setting. According to the previous analysis, in case 1, an optimal solution of the cost
function Tc(N) with respect to N exists. A simple algorithm can be used to search the optimal values
over a small set of integer values of the maximum inventory level N. This suggests that, in some cases,
providing service decomposition for all Type 2 customers is not optimal. Managers can set an optimal
inventory capacity to obtain the optimal cost.
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Figure 5. Cost function Tc(N) as a function of N, for λ = 8, µ = 10, α = 20, p=0.3.
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Figure 6. L(N)&Iq(N) as functions for case 2: λ = 8, µ = 10, α = 20, β = 25, and p=0.3.

Example 2. In this numerical example, we focus on the effect of some parameters on the optimal
values N∗ and Tc∗(N).
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(1) Figure 7(a) shows that the system optimal inventory capacity N∗ decreases as λ increases. This
result contradicts our intuitive guesses, which can be explained as follows. An increase in λ leads
to an increase in the number of customers arriving in the system. After the system inventory
reaches a set level (maximum inventory capacity), it operates in line with Model 2. This results in
the inventory level not decreasing while the queue length increases. As a result, the system cost
will increase rapidly, so that N∗ is reduced to reduce the inventory maintenance cost. As for the
system, total cost Tc∗(N) increases with the increase of λ. When λ > 8, the growth rate of Tc∗(N)
also becomes larger. This is because the system is gradually saturated if λ > 8. A slight increase
in λ leads to a significant increase in the queue length and the total cost Tc∗(N).

(2) Figure 7(b) displays the curves of N∗ and Tc∗(N) with respect to α. As we can see from the blue
curve, the optimal inventory capacity N∗ increases as α increases. When α is small, the customer
queue length increases, resulting in an increase in customer waiting costs. As the service rate α
increases, the number of customers waiting in the system decreases. What is more, the customer
waiting cost decreases, and the system idle time increases. The orders stored in the inventory
can be processed during the idle time. An increase in N∗ allows the system to provide service
decomposition for more Type 2 customers, thus reducing system costs which can be confirmed
by the orange curve in Figure 7(b). In the previous discussion, we have assumed that the ratio of
h to c is 0.6. When α increases, Tc∗(N) decreases even though N∗ is increasing. This implies that
cL(N) outperforms hIq(N).

(3) Figure 7(c) illustrates the effect of β on the optimal values (N∗,Tc∗(N)). The customer waiting
cost is constant since β does not affect the system queue length. Managers need only consider
the cost of maintaining inventory in this case. When β takes a smaller value, the average time
to execute the additional service is longer. During the idle period, the additional service is
more likely to be interrupted by the arrival of a new customer. Therefore, providing service
decomposition for Type 2 customers is not recommended. Conversely, when β > 18, providing
service decomposition to more Type 2 customers is recommended. This is because the additional
service rate β is much greater than the customer arrival rate λ. During the customer arrival interval,
the number of stored orders in inventory decreases even though N∗ is large. The change in β

only directly affects the system’s inventory level. An increase in N∗ means that more orders
can be stored but does not represent an increase in the system’s average inventory level since
the inventory is not always full. Instead, the optimal inventory capacity N∗ increases due to
the additional service rate β increases. More Type 2 customers can leave the system immediately
after receiving basic services, which reduces the waiting time for all customers. Thus, the optimal
total cost Tc∗(N) decreases as β increases even though N∗ is increasing, implying that cL(N) is
outperforming hIq(N).

(4) Figure 7(d) describes the trends of N∗ and Tc∗(N) with respect to q. The increase in q represents
an increase in the number of Type 2 customers arriving in the system. The blue curve indicates that
the optimal inventory capacity N∗ decreases as q increases. This result may be considered counter
intuitive. Due to the increase in q, the system inventory level will reach the maximum inventory
capacity more quickly. After this point, the system no longer provides service decomposition for
Type 2 customers. Since the full service rate for Type 2 customers is less than that of Type 1
customers (µ < α), the waiting cost of Type 1 customers increases. In this way, the system
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inventory is kept at a high level while the queue length increases, which leads to a higher total
cost. Thus, providing service decomposition for more Type 2 customers is not beneficial, and
vice versa; when q is small, if the inventory capacity is set smaller, more Type 2 customers will
need to receive full service. This will increase the waiting cost for Type 1 customers. Therefore,
in this case, providing service decomposition for more Type 2 customers is recommended, which
means setting the inventory capacity N higher.
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(a) Optimal values N∗ and Tc∗(N) vs λ, for µ = 10, α = 20,
β = 15, p = 0.3.
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(b) Optimal values N∗ and Tc∗(N) vs α, for µ = 10, λ = 8,
β = 15, p = 0.3.
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(c) Optimal values N∗ and Tc∗(N) vs β, for µ = 10, λ = 8,
α = 20, p = 0.3.
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(d) Optimal values N∗ and Tc∗(N) vs q, for µ = 10, λ = 8,
α = 20, β = 15.

Figure 7. The effect of different parameters on optimal values N∗ and Tc∗(N).

Example 3. In this example, we investigate the economic improvement of the optimal capacity setting
with respect to the two extreme capacities (n = ∞ for Model 1 and n = 0 for Model 2). First, we define
the improvement achieved by Model 3 as evaluated in terms of the percentage reduction in the total
expected cost of Model 1 as

γ =
C1 − Tc∗(N)

C1
. (4.17)

The economic improvement achieved by Model 3 is evaluated as the percentage reduction in the total
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average cost of Model 2, which is defined as

η =
C2 − Tc∗(N)

C2
. (4.18)

Figure 8 presents the effect of system parameters on the economic percentage improvements γ and η.
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Figure 8. The effect of different parameters on γ and η.

(1) From Figure 8(a), we can observe that both the optimal decision N∗ and the monetary
improvement η (compared with Model 2) decrease with λ. As N∗ decreases, Model 3 gradually
converges to Model 2. So η has the same trend as N∗. γ decreases as λ increases when λ < 7.
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However, once λ > 7, there is a rapid increase in γ. The former result may be the opposite of our
conjecture. Nevertheless, it can be explained as follows. γ can be rewritten as 1 − Tc∗(N)

C1
. When

λ < 7, Tc∗(N) increases at a greater rate than C1, so γ shows a decreasing trend.

(2) Figure 8(b) displays the curves of (N∗, γ, η) against α. It can be observed that N∗ increases rapidly,
and η increases with α. As for γ, it shows a trend of decreasing first and then increasing with the
increase of α. The increasing trend of γ can be explained as the rate at which Tc∗(N) approaches
C1 is smaller than the rate at which C1 grows, for a large α, although the N∗ is large (N∗ > 80).

(3) Figure 8(c) indicates that both the optimal decision N∗ and the monetary improvement η increase
with β, which are consistent with our conjectures. We notice that the economic improvement γ
decreases with β. What is more, when β < 13, the percentage reduction γ is large, especially for
β = 10. This result is consistent with the first case in Corollary 3.2. Therefore, managers are
advised to provide only service decomposition for some Type 2 customers in this case.

(4) Figure 8(d) presents the effect of q on (γ, η,N∗). Intuitively, as q increases, γ increases and
N∗ decreases. The latter has been explained in Example 2(4). For a large q, Model 1 will
store many orders in the inventory, accompanied by high inventory maintenance costs. Since
the economic improvement γ increases at this point, providing service decomposition for fewer
Type 2 customers is more beneficial. When q > 0.3, η has the same trend as N∗, which is
understandable. Conversely, γ increases with q for q < 0.3 implying that Tc∗(N) is more affected
by q than C2.

5. Comparisons of simulation and theoretical results

In this section, we compare the theoretical results with the simulation results to verify the
correctness of the analysis. We consider the case of Model 1 and Model 2 for different values of
p. Some results of the simulations are given in Figure 9, in which, we assume that λ = 2, µ = 2,
α = 4, β = 6 and p = 0.7. We summarize in Table 1 the comparison between the theoretical and
simulation values of the performance measures for Model 1 and Model 2. The parameters are set as
follows: λ = 10, µ = 10, α = 20 and β = 25. The notations of the performance measures in Table 1 are
described as follows. S denotes the average sojourn time of a stored additional service. I denotes the
average number of additional services stored in inventory. W represents the average waiting time of
customers. N represents the queue length of customers. We can see in Table 1, the relative differences
in the system performances are less than 8%. These numerical results imply the reliability of our
proposed model and the derived performance measures.
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(f) Simulation of the number of customers in Model 2.

Figure 9. Some simulation results of Model 1 & Model 2.
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Table 1. The performance of theoretical and simulation results.

Performance measure Theoretical result Simulation result Relative diff.

Model 1

p=0.2

S 0.6778 0.7191 0.059130933
I 5.4222 5.3724 0.009226836
W 0.05 0.0469 0.063983488
N 1 0.9955 0.004510148

p=0.4

S 0.4385 0.4186 0.046435655
I 2.6308 2.4767 0.060342633
W 0.05 0.0477 0.047082907
N 1 1.0196 0.019409784

p=0.6

S 1.2471 1.3405 0.072190447
I 0.3118 0.3190 0.022828155
W 0.05 0.0465 0.07253886
N 1 1.0072 0.007174173

Model 2

p=0.2
W 0.1357 0.1338 0.014100186
N 2.0071 1.9890 0.009058832

p=0.4
W 0.35 0.3512 0.003422704
N 4.3 4.3407 0.009420533

p=0.6
W 0.35 0.3435 0.018745494
N 4.3 4.2573 0.009979783

6. Conclusions

In this article, we investigated the efficiency improvement problem of a queueing system with two
types of customers through service decomposition. The service of Type 2 customers can be split into
two parts. One part is the basic service with the same service rate as the Type 1 customers. When no
customers are waiting, additional services are executed after the last customer leaves the system. An
additional service can be seen as a pending order stored in the system inventory. The matrix geometric
method and the probability generating function were used to perform stationary analysis.

Due to the existence of explicit expressions for the performance measures of Model 1 and Model 2,
the impact of service decomposition was also discussed categorically. We demonstrated that the
proposed service decomposition is more favorable when Eq (3.17) holds. The idle fraction of the
server in Model 1 is shown to be larger than that in Model 2 when the total average time of the
split service is less than the average full service time of Type 2 customers. This yields a paradox,
where performing additional services during server idle time will increase the fraction of time the
server is idle. As for some cases (the total average time of the split service is longer than the average
continuous service time of Type 2 customers), the proposed decomposition of services is not beneficial.
Therefore, we considered limiting the number of pending orders stored in the system. Similarly, we
numerically investigated the improvement of Model 3 versus Models 1&2 in terms of economic lift.
The numerical examples indicated that when the total average time of the split service is less than the

AIMS Mathematics Volume 8, Issue 11, 25382–25408.



25407

average continuous service time of Type 2 customers, the total cost function decreases as N increases.
This means that managers should provide split services for more Type 2 customers. An intelligent
algorithm is used to obtain the optimal inventory capacity and the minimum system cost. The economic
improvement achieved by applying the optimal capacity to Model 3 was also graphically presented.

In the future, many interesting directions can be investigated. An interesting direction is that the
customer has non-preemption priority to the stored orders. Another direction for future investigation is
taking the vacation or working vacation into account when the system is empty. In addition, considering
the online shopping model in the context of today’s developments, Type 3 customers can be defined as
those who place their orders online without basic services.
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