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Abstract: Aczel-Alsina t-norm and t-conorm are great substitutes for sum and product and recently 

various scholars developed notions based on the Aczel-Alsina t-norm and t-conorm. The theory of 

bipolar complex fuzzy set that deals with ambiguous and complex data that contains positive and 

negative aspects along with a second dimension. So, based on Aczel-Alsina operational laws and the 

dominant structure of the bipolar complex fuzzy set, we develop the notion of bipolar complex fuzzy 

Aczel-Alsina weighted geometric, bipolar complex fuzzy Aczel Alsina ordered weighted geometric 

and bipolar complex fuzzy Aczel Alsina hybrid geometric operators. Moreover, multi-attribute border 

approximation area comparison technique is a valuable technique that can cover many decision-

making situations and have dominant results. So, based on bipolar complex fuzzy Aczel-Alsina 

aggregation operators, we demonstrate the notion of a multi-attribute border approximation area 

comparison approach for coping with bipolar complex fuzzy information. After that, we take a 

numerical example by taking artificial data for various types of operating systems and determining the 

finest operating system for a computer. In the end, we compare the deduced multi-attribute border 

approximation area comparison approach and deduced aggregation operators with numerous 

prevailing works. 
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1. Introduction 

The first and most important product created by researchers at the dawn of modern technology is 

the computer. The computer is currently regarded as a high-level technology worldwide. Most of the 

technologies that humans develop will demand us to do things that are outside of our normal 

capabilities. Inventions like computers allowed for the quick automation of mathematical 

computations that were beyond the capabilities of even the smartest minds. Computers are a new tool 

being used in research. Regardless of whether it is being used for academic or commercial research, it 

is a crucial tool. Researchers in the fields of computing and information build creative applications for 

both new and old technologies. For use in business, science, health, and other disciplines, they research 

and address challenging computing-related issues. Computers are used to enter, update and manage 

data effectively, including taking follow-up activities, etc. Additionally, computers enable more 

flexibility in the data sets, allowing for easier data processing as well as more flexible data recording. 

In addition to having the ability to handle enormous amounts of data, it can also analyze data using a 

variety of statistical techniques. Statistics-based operations are performed by the computer. Computers 

process and analyze data quickly and accurately. The statistical analysis that used to take weeks or 

even months now just takes a few seconds or minutes. The operating system (OS) is crucial to the 

computer processing system, just as computers are essential in every aspect of life. The core of a 

computer is its OS. The computer cannot operate correctly and efficiently without it. A boot program 

loads an OS into the system, which then manages all other application programs in the computer. The 

OS is the most important application that runs on a computer. In a typical computing environment, 

many applications are running simultaneously and need access to the CPU, memory, and storage. So, 

OS is a key factor in the computer system. An OS is extremely beneficial to the creation of software 

and computer applications. Without an OS, each application would need to control all computer 

activities and other features, as well as its user interface and the whole amount of code necessary to do 

so. With the vast range of underlying technologies available, this would be challenging. Hansen [1] 

proposed the principal OS. Silberschatz et al. [2] introduced the applied OS concept. Comer [3] presented 

the idea of OS design. Klein and Sadhana [4] elaborated on an overview of OS verification. There are 

various applications of the OS which is used in many systems. Mercer [5] deduced OS support for 

multimedia. The idea of OS support for virtual machines was first suggested by King et al. [6]. The design 

and development of an OS to handle distributed multimedia applications were suggested by Leslie et 

al. [7]. Singh [8] provided a summary of the security features of the Android OS.  

Among the most useful and trustworthy methods now employed in several fields is without a 

doubt the multi-attribute decision-making (MADM) methodology. A common real-world technique is 

the MADM technique, in which the decision-maker chooses the optimal opinion (alternative). MADM 

is widely used, has a wide range of applications and includes both qualitative and quantitative 

characteristic values. As complexity and uncertainty grow more and more every day. Therefore, it is 

challenging for experts or decision-makers to use crisp data to make the optimal judgment due to the 

complexity, ambiguity and uncertainty in the data. It is because, in a crisp set, there is only two types 

of option yes or no, include or not included, and true or false. This means that there are only two 

number options, 0 and 1. Yes, include and true means 1, and 0 means false, not included and no. So, 

due to these restrictions and limitations in crisp data, it is not suitable for experts and decision-makers to 

make the best solution using crisp information. To overcome these hurdles and complexities, vagueness 

and uncertainties in data, a fuzzy set (FS) was proposed by Zadeh [9]. Each element is given a degree of 

support (DS) in the range [0, 1] and an FS is an extension of the crisp set. The applications of FS were 

discussed by Zimmermann [10]. Riaz et al. [11] developed the concept of spherical linear Diophantine 



25222 

AIMS Mathematics  Volume 8, Issue 10, 25220–25248. 

FS (LDFS)with modeling uncertainties in multi-criteria DM (MCDM). Ayub et al. [12] introduced the 

concept of LDF rough sets. A new rough set approach with DM Riaz and Hashmi. [13] Riaz et al. 

developed linear LDF and its applications toward MADM problems. Tolga et al. [14] investigated the OS 

selection process by employing the fuzzy AHP technique. Balli and Korukoglu [15] studied the OS 

selection process by employing the fuzzy TOPSIS approach. Kandel et al. [16] discussed fuzzy logic 

in OS. The aggregation operators (AOs) for fuzzy DM were deduced by Mardani et al. [17]. 

Each of the object’s properties has a corresponding counter property, it was observed i.e., effect 

and side effect, positive and negative, fair and unfair, pass and fail, satisfactory and unsatisfactory, 

good and bad, healthy and unhealthy, pure and impure, correct and incorrect, etc. Thus, the concept of 

bipolar FS (BFS), which is a generalization of FS, was introduced by Zhang [18] by converting the 

range from [𝟶, 1] to [-1, 1]. In BFS there are two types of membership for each element i.e., positive 

degree of support (PDS) and negative degree of support (NDS). The PDS and NDS both fall inside the 

enclosed range [𝟶, 1] and [-1, 𝟶] respectively. Computational psychiatry, biosystem control and bipolar 

quantum logic-based computing are several areas where BF is applied. Furthermore, the concept of 

BF Hamacher AOs in MADM was presented by Wei et al. [19]. Jana et al. [20] introduced the concept 

of BF Dombi AOs and their use in MADM processes. The BF graphs were deduced by Akram [21] 

and applications of BF graphs were also described by Akram [22]. Samanta and Pal [23] deduced 

irregular BF graphs and Rashmanlou et al. [24] discussed the product of BF graphs. The DM technique 

under BF information was deduced by Alghamdi et al. [25]. Akram et al. [26] proposed a method for 

solving BF complex linear systems with real and complex coefficients. Moreover, Akram et al. [27] 

established DM analysis based on BF N-soft information. Also, Akram and Al-Kenani [28] developed 

the concept of multi-criteria group DM (MCGDM) for the selection of green suppliers under the BF 

PROMETEE process. Akram et al. [29] introduced the concept of BF TOPSIS and BF ELECTRIC-I 

methods. Furthermore, Akram et al. [30] established group DM based on the VIKOR method with 

trapezoidal BF information. Akram and Arshad [31] proposed a novel trapezoidal BF TOPSIS method 

for group DM. Also, Akram et al. [32] provide the solution of a complex BF linear system, in progress 

in intelligence decision science. Jana et al. [33] proposed BF Dombi prioritized AOs in MADM. Riaz 

and Tehrim [34] introduced MAGDM based on cubic BF information using averaging AO.  

Ramot et al. [35] deduced the model of complex FS (CFS) which is also the generalization of FS 

and transform in FS by setting the phase term in DS equal to zero. The DS of each element of CFS is 

in polar form and is a place in the unit disc of a complex plane. Subsequently, Tamir et al. [36] invented 

the CFS in a cartesian model and modified the range of the DS from a unit disc to a unit square in a 

complex plane. Moreover, Tamir et al. [37] interpreted CF logic. The CF geometric AOs were exhibited 

by Bi et al. [38]. The CF arithmetic AOs were prepared by Bi et al. [39]. 

The data analyst expertly employed BFS when they have to make decisions regarding both 

negative and positive features of an object or element and CFS when they have to make decisions on 

two-dimensional information. But when face two-dimensional information that has both good and bad 

features, what do data analysts and specialists do? So, motivated by the aforementioned theory, 

Mahmood and Ur Rehman [40] invented a structure of bipolar complex FS (BCFS). BCFS is more 

generalized, efficient and dominant as compared to FS, BFS and CFS. BCFS has the effective expertise 

to tackle the uncertainty, ambiguity and inconsistency which appear in genuine-life dilemmas. The 

Dombi AOs under the environment of BCFS were investigated by Mahmood and Ur Rehman [41]. 

Mahmood et al. [42] deduced Aczel-Alsina averaging AOs for BCFS. 

Pamucar and Cirovic [43] deduced a technique named multi-attribute border approximation area 

comparison (MABAC) which is a unique technique for tackling MADM dilemmas. It relies on the 

distance among alternatives and the border approximation area (BAA) for every attribute. The biggest 
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benefit of the MABAC technique is its straightforward calculation and stability of the solution. The 

technique of MABAC has more strength for the modification of the criterion measurement scale and 

the formulation of the criteria, compared to other techniques of MADM and is more sensitive to the 

modification of the criteria weights. The structure of MABAC takes into account the benefits merely 

of BAA to consider the immateriality of experts and decision-makers as well as the complexity of the 

decision-theoretic environment to establish more effective and practical aggregate data. The 

calculation based on the MABAC technique is reliable, uses a straightforward equation and considers 

inactive values of losses and profits. The MABAC method's main advantage is that it may be used in 

conjunction with several other strategies. Due to these advantages and superiority, researchers are paying 

a lot of attention to the MABAC technique, which has been widely used in numerous MADM dilemmas. 

As a result, the MABAC technique provides a useful model for the outcomes of DM. Verma [44] deduced 

the technique of MABAC for FS. Zhao et al. [45] investigated the MABAC technique of IFS. Jiang et 

al. [46] studied MABAC for picture FS (PFS). Jana [47] deduced the technique of MABAC for bipolar 

fuzzy information. Some other methods proposed by other researchers for MADM/MCDM such as the 

ELECTRIC II method based on the cosine similarity measures (CSMs) in the setting of a double 

hierarchy hesitant fuzzy (HF) linguistic environment were developed by Zhang et al. [48]. An 

improved VIKOR method in the setting of a probabilistic double hierarchy linguistic term set was 

introduced by Gou et al. [49]. Also, for MCDM in the setting of HF linguistic entropy and cross-

entropy measures were established by Gou et al. [50]. If we talk about the ORESTE method, Gou et 

al. [51] proposed medical health resource allocation evaluation in public health emergencies by an 

improved ORESTE method with linguistic preferences.  

Aczel and Alsina [52] modified the algebraic t-norm and t-conorm by providing Aczel-Alsina 

(AA) t-norm and t-conorm which are more flexible as compared to other t-norms and t-conorms. AA 

t-norm and t-conorm have a significant influence because of the variableness of the parameters and 

have great applications in the theory of FS. Numerous scholars employed AA t-norm and t-conorm to 

interpret AA AOs in various modifications of FS such as Senapati et al. [53] investigated AA AOs for 

IFS, Senapati et al. [54] deduced AA AOs for interval-valued IFS, AA AOs for PFS were investigated 

by Senapati [55], Hussain et al. [56] interpreted AA AOs for spherical FS. AA-based AOs for 

intuitionistic hesitant FS environment and their application to the MADM process were proposed by 

Ali et al. [57]. Palanikumar et al. [58] proposed a Fermatean normal different AOs framework for the 

robot sensors process. Some average AOs based on spherical fuzzy soft sets were proposed by 

Ahmmad et al. [59]. 

The point-wise motivation and contribution of the developed study are given by 

1) As we know, BCFS is a more generalized, efficient, loyal and dominant version of information 

than FS, BFS and CFS.  

2) There is less and a rare chance of losing the information in BCFS as compared to the prevailing 

sets and also data analysts and experts feel comfortable making better decisions in the 

environment of a BCF setting. 

3) AA t-norm and t-conorm have a significant influence because of the variableness of the 

parameters and have great applications in the theory of FS. 

4) Moreover, there is no research on AA geometric AOs in the setting of BCFS. So, based on the 

valuable feature of both BCFS and AA operations, we study geometric AOs by employing AA 

operations to diagnose AOs such as BCFAAWG, BCFAAOWG and BCFAAHA operators. 

5) The calculation based on the MABAC technique is reliable, uses a straightforward equation 

and considers inactive values of losses and profits.  
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6) Moreover, there is no investigation of the MABAC technique for BCFNs in the prevailing 

literature to overcome MAGDM difficulties. Thus, we also interpret the MABAC technique in 

the setting of BCFNs. We solve a MAGDM numerical example associated with the OS of a 

computer and find the finest OS for a computer through the interpreted MABAC technique. 

The remaining script is constructed as  

• In Section 2, we study t-norm and t-conorm, AA t-norm and t-conorm, BCFS and associated 

definitions, AA operations and AA averaging operator for BCFS.  

• In Section 3, we deduce the BCFAAWG, BCFAAOWG and BCFAAHA operators in the setting 

of BCFS.  

• In Section 4, we create a technique of MABAC based on the investigated operators for BCF 

information and examine a numerical example related to the OS of a computer.  

• In Section 5, the comparison of the proposed work with prevailing theories is discussed to 

reveal the dominance and benefits of the initiated work.  

• Section 6 contains the concluding remarks.  

• The pictorial representation of the introduced work is given in Figure 1. 

 

Figure 1. Frame diagram for proposed work. 

2. Preliminaries  

To discuss the application given in Section 4.1, we need some mathematical tools and we will 

first discuss the basic notions that we will have to use to develop these tools. Here, we study AA t-

norm and t-conorm, BCFS and associated definition and AA operations and AA averaging operator for 

BCFS.  

The AA t-norm and t-conorm invented by Aczél and Alsina [52] in 1982 is demonstrated in the 

next definition. 

Definition 1. [52] AA t-norm and t-conorm are deduced as  

ΘÅ
ℰ(𝒷1, 𝒷2) = {

ΘÅ(𝒷1, 𝒷2)                                 if ℇ = 𝟶    

min(𝒷1, 𝒷2)                               if ℇ = ∞   

𝕖−((− log𝒷1)ℇ+(− log𝒷2)ℇ)
1

ℇ ,        otherwise

     (1) 
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𝔛Å
ℰ(𝒷1, 𝒷2)   = {

𝔛Å(𝒷1, 𝒷2)                                                  if ℇ = 𝟶         

max(𝒷1, 𝒷2)                                                if ℇ = ∞        

1 − 𝕖−((− log(1−𝒷1))ℇ+(− log(1−𝒷2))ℇ)
1

ℇ ,    otherwise     

,    (2) 

where ℇ ∈ [𝟶,∞].  
Definition 2. [40] The theory of BCFS is deduced as  

⊮= {(𝔬, 𝛽+(𝔬), 𝛾−(𝔬))| 𝔬 ∈ V} 

= {(𝔬, 𝜁+(𝔬) + 𝜄𝜍+(𝔬), 𝜁−(𝔬) + 𝜄𝜍−(𝔬))| 𝔬 ∈⋓ },     (3) 

where ⋓  is the universal set, 𝛽+(𝔬) = 𝜁+(𝔬) + 𝜄 𝜍+(𝔬)  represents the positive degree of support 

(PDS) and 𝛾−(𝔬) = 𝜁−(𝔬) + 𝜄𝜍−(𝔬)  represents the negative degree of support (NDS) 

along  𝜁+(𝔬), 𝜍+(𝔬)  ∈ [𝟶, 1]  and 𝜁−(𝔬), 𝜍−(𝔬)  ∈ [−1, 𝟶].  The format ⊮= {(𝜁+ + 𝜄𝜍+, 𝜁− + 𝜄𝜍−) } 

represents the BCFNs, which will be applied to all manuscripts.  

In the next two definitions, we review the definition of score and accuracy values for BCFN.  

Definition 3. [41] The score function's value is described as follows: 

ℷ𝕊𝔽(⊮) =
1

4
(2 + 𝜁+(𝔬) + 𝜍+(𝔬) + 𝜁−(𝔬) + 𝜍−(𝔬)), ℷ𝕊𝔽 ∈ [𝟶, 1].   (4) 

Definition 4. [41] The accuracy function's value is described as follows: 

ℸ𝔸𝔽(⊮) =
𝜁+(𝔬)+𝜍+(𝔬)−𝜁−(𝔬)−𝜍−(𝔬)

4
, ℸ𝔸𝔽(⊮)  ∈ [𝟶, 1].     (5) 

We presented certain properties for Eqs (4) and (5), such as  if ℷ𝕊𝔽(⊮1) < ℷ𝕊𝔽(⊮2), then ⊮1<
⊮2;  if ℷ𝕊𝔽(⊮1) > ℷ𝕊𝔽(⊮2), then ⊮1>⊮2;  if ℷ𝕊𝔽(⊮1) = ℷ𝕊𝔽(⊮2), then ⊮1=⊮2;  if ℸ𝔸𝔽(⊮1) <

ℸ𝔸𝔽(⊮2), then ⊮1<⊮2;  if ℸ𝔸𝔽(⊮1) > ℸ𝔸𝔽(⊮2), then ⊮1>⊮2;  if ℸ𝔸𝔽(⊮1) = ℸ𝔸𝔽(⊮2), then,⊮1=
⊮2.  

Definition 5. [41] For two BCFNs ⊮ 1 = (𝜁1
+ + 𝜄𝜍1

+, 𝜁1
− + 𝜄𝜍1

−)  and ⊮ 2 = (𝜁2
+ + 𝜄𝜍2

+, 𝜁2
− + 𝜄𝜍2

−) 

along 𝜕 > 𝟶 we have some basic binary operation of addition, multiplication, scalar multiplication 

and power for BCFNs which is stated as follows: 

⊮ 1 ⊕⊮ 2 = (
𝜁1

+ + 𝜁2
+ − +𝜄 (𝜍1

+ + 𝜍2
+ − 𝜍1

+𝜍2
+)

−(𝜁1
−𝜁2

−) + 𝜄(−(𝜍1
−𝜍2

−))
)      (6) 

⊮ 1 ⊗⊮ 2 = (
𝜁1

+𝜁2
+ + 𝜄𝜍1

+𝜍2
+,

𝜁1
− + 𝜁1

−𝜁2
− + 𝜁2

− + 𝜄(𝜍1
− + 𝜍1

−𝜍2
− + 𝜍2

−)
)     (7) 

𝜕 ⊮ 1 = (1 − (1 − 𝜁1
+)𝜕 + 𝜄 (1 − (1 − 𝜍1

+)𝜕, −|𝜁1
−|𝜕 + 𝜄(−|𝜍1

−|𝜕)))     (8) 

⊮ 1
𝜕 = ((𝜁1

+)𝜕 + 𝜄(𝜍1
+)𝜕, −1 + (1 + 𝜁1

−)𝜕 + 𝜄(−1 + (1 + 𝜍1
−)𝜕)).     (9) 

Underneath definition contains the operational laws for BCFNs based on AA t-norm and t-conorm 

invented by Mahmood et al. [42].  

Definition 6. [42] For ⊮ 1 = (𝜁1
+ + 𝜄𝜍1

+, 𝜁1
− + 𝜄𝜍1

−)  and ⊮ 2 = (𝜁2
+ + 𝜄𝜍2

+, 𝜁2
− + 𝜄𝜍2

−)  along  Ỿ ≥
1 and 𝔨 > 𝟶 respectively, the AA operations for BCFS are  

⊮ 1 ⊕⊮ 2 = 
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(

  
 

1 − 𝕖−((− log ( 1−𝜁1
+))

Ỿ
+(−log ( 1−𝜁2

+))
Ỿ
)

1
Ỿ

+ 𝜄 (1 − 𝕖−((− log ( 1−𝜍1
+))

Ỿ
+(−log ( 1−𝜍2

+))
Ỿ
)

1
Ỿ

) ,

−(𝕖−((− log|𝜁1
−|)Ỿ+(− log|𝜁2

−|)Ỿ)
1
Ỿ
) + 𝜄 (−(𝕖−((− log|𝜍1

−|)Ỿ+(− log|𝜍2
−|)Ỿ)

1
Ỿ
))

)

  
 

 (10) 

⊮ 1 ⊗⊮ 2 = 

(

 
 

𝕖−((− log(𝜁1
+))

Ỿ
+(−log(𝜁2

+))
Ỿ
)

1

Ỿ

+ 𝜄 (𝕖−((− log(𝜍1
+))

Ỿ
+(− log(𝜍2

+))
Ỿ
)

1

Ỿ

)

−1 + 𝕖−((− log(1+𝜁1
−))Ỿ+(− log(1+𝜁2

−))Ỿ)
1

Ỿ + 𝜄 (−1 + 𝕖−((− log(1+𝜍1
−))Ỿ+(− log(1+𝜍2

−))Ỿ)
1

Ỿ)
)

 
 

  (11) 

𝔨 ⊮ 1 =

(

  
 

1 − 𝕖−(𝔨(− log ( 1−𝜁1
+))

Ỿ
)

1
Ỿ

+ 𝜄 (1 − 𝕖−(𝔨(− log ( 1−𝜍1
+))

Ỿ
)

1
Ỿ

) ,

−(𝕖−(𝔨(− log|𝜁1
−|)Ỿ)

1
Ỿ
) + 𝜄 (−(𝕖−(𝔨(− log|𝜍1

−|)Ỿ)
1
Ỿ
))

)

  
 

    (12) 

(⊮ 1)
𝔨1 =

(

 
 𝕖−(𝔨1(− log𝜁1

+)
Ỿ
)

1
Ỿ

+ 𝜄(𝕖−(𝔨1(− log 𝜍1
+)

Ỿ
)

1
Ỿ

,

(−1 + 𝕖−(𝔨1(− log ( 1+𝜁1
−))Ỿ)

1
Ỿ
) + 𝒾(−1 + (𝕖−(𝔨1(− log(1+𝜍1

−))Ỿ)
1
Ỿ
)

)

 
 

.   (13) 

Underneath definition contains the BCF AA weighted averaging (BCFAAWA) operator for BCFNs 

invented by Mahmood et al. [42]. 

Definition 7. [42] For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, the 

BCFAAWA operator is gathered as  

BCFAAWA(⊮ 1, ⊮ 2, ⊮ 3, …… ,⊮ 𝑛) =  ⊕𝜌=1
𝑛  (𝔨𝜌 ⊮ 𝜌) = 𝔨1 ⊮ 1 ⊕ 𝔨2 ⊮ 2 ⊕ … ⊕  𝔨𝑛 ⊮ 𝑛   

=

(

  
 

1 − 𝕖−(∑ 𝔨𝜌 
𝑛
𝜌=1 (− log ( 1−𝜁1

+))
Ỿ
)

1
Ỿ

+ 𝜄 (1 − 𝕖−(∑ 𝔨𝜌 
𝑛
𝜌=1 (− log ( 1−𝜍1

+))
Ỿ
)

1
Ỿ

) ,

− (𝕖−(∑ 𝔨𝜌 
𝑛
𝜌=1 (− log|𝜁1

−|)Ỿ)
1
Ỿ
) + 𝜄 (−(𝕖−(∑ 𝔨𝜌

𝑛
𝜌=1 (− log|𝜍1

−|)Ỿ)
1
Ỿ
))

)

  
 

,    (14) 

where 𝔨= (𝔨1, 𝔨2, 𝔨3, ……… , 𝔨n) is a weight vector with 𝔨j ϵ [𝟶, 1] and ∑ 𝔨j = 1n
𝜌=1 . 

3. BCF Aczel-Alsina geometric AOs 

By using AA operational laws and BCF data, the primary goal of this study is to identify the 

concept of the BCFAAWG, BCFAAOWG and BCFAAHA operators.  

Definition 8. For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, the 

BCFAAWG operator is gathered as  

BCFAAWG(⊮ 1, ⊮ 2, ⊮ 3, …… . , ⊮ 𝑛) =⊗𝜌=1
𝑛  = (⊮ 1)

𝔨1 ⊗ (⊮ 2)
𝔨2 ⊗ ………⊗ (⊮ 𝑛)𝔨𝑛 ,  (15) 
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where 𝔨= (𝔨1, 𝔨2, 𝔨3, ……… , 𝔨n) is a weight vector with 𝔨j ϵ [𝟶, 1] and ∑ 𝔨j = 1n
𝜌=1 . 

Theorem 1. For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, Eq (15) will 

again interpret a BCFN and  

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) = 

(

 
 
 

𝕖−(∑ 𝔨𝜌(− log𝜁𝜌
+)

Ỿ𝑛
𝜌=1 )

1
Ỿ

+ 𝜄 (𝕖−(∑ 𝔨𝜌(− log 𝜍𝜌
+)

Ỿ𝑛
𝜌=1 )

1
Ỿ

) ,

(−1 + 𝕖−(∑ 𝔨𝜌(− log ( 1+𝜁𝜌
−))

Ỿ𝑛
𝜌=1 )

1
Ỿ

) + 𝜄 (−1 + (𝕖−(∑ 𝔨𝜌(− log(1+𝜍𝜌
−))

Ỿ𝑛
𝜌=1 )

1
Ỿ

))

)

 
 
 

.  (16) 

Proof. For proof see Appendix A. 

Theorem 2. (Idempotency) For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n) of BCFNs, 

if ⊮=⊮𝜌  ∀ 𝜌, then 

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) = ⊮. 

Proof. For proof see Appendix A. 

Theorem 3. (Monotonicity) For two sets ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−)  and ⊮∼
𝜌 = (𝜁𝜌

+∼ +

𝜄𝜍𝜌
+∼, 𝜁𝜌

−∼ + 𝜄𝜍𝜌
−∼), 𝜌 = (1,2,3, …… . . , n) of BCFNs, if ⊮𝜌≤ ⊮𝜌

∼ ∀𝜌 i.e., 𝜁𝜌
+ ≤ 𝜁𝜌∼ 

+ , 𝜍𝜌
+ ≤ 𝜍𝜌∼ 

+ , 𝜁𝜌
− ≤

𝜁𝜌∼
−  , 𝜍𝜌

− ≤ 𝜍𝜌∼
− , then 

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤ BCFAAWG (⊮1
∼, ⊮2

∼, ⊮3
∼, ………… ,⊮𝑛

∼). 

Proof. For proof see Appendix A. 

Theorem 4. (Boundedness) For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄 𝜍𝜌

+, 𝜁𝜌
− + 𝜄 𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n) of BCFNs, 

when 

⊮−= (min
𝜌

{𝜁𝜌
+} + 𝜄 min

𝜌
{𝜍𝜌

+},max
𝜌

{𝜁𝜌
−} + 𝜄 max

𝜌
{𝜍𝜌

−}) and ⊮+= (max
𝜌

{𝜁𝜌
+} + 𝜄 max

𝜌
{𝜍𝜌

+},min
𝜌

{𝜁𝜌
−} +

𝜄 min
𝜌

{𝜍𝜌
−}), 

then 

 ⊮−≤  BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤⊮+. 

Proof. For proof see Appendix A. 

Definition 9. For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, the 

BCFAAOWG operator is gathered as 

BCFAAOWG(⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) =⊗𝜌=1
𝑛  (⊮ (𝜌))

𝔨𝜌 
= (⊮ ⊚(1))

𝔨1
⨂  (⊮

⊚(2))
𝔨2

⨂ …(⊮ ⊚(𝑛))
𝔨𝑛

,        (17) 

where (⊚ (1),⊚ (2),⊚ (3), …… ⊚ (𝑛)) are the permutation of (𝜌 = 1,2,3, …… . . , 𝑛) for which ⊮

⊚(𝜌−1) ≥⊮ ⊚(𝜌) ∀𝜌 and 𝔨= (𝔨1, 𝔨2, 𝔨3, ……… , 𝔨n) is a weight vector with 𝔨j ϵ [𝟶, 1] and ∑ 𝔨j = 1n
𝜌=1 .  

Theorem 5. For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, Eq (17) will 

again interpret a BCFN and 

BCFAAOWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ n) = 
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(

  
 𝕖

−(∑ wj(− log𝜁⊚(𝜌)
+ )

Ỿ
n
𝜌=1 )

1
Ỿ

+ 𝜄(𝕖
−(∑ w𝜌(− log 𝜍⊚(𝜌)

+ )
Ỿ

n
𝜌=1 )

1
Ỿ

,

(−1 + 𝕖
−(∑ wj(− log ( 1+𝜁⊚(𝜌)

− ))
Ỿ

n
𝜌=1 )

1
Ỿ

) + 𝒾(−1 + (𝕖
−(∑ wj(− log(1+𝜍⊚(𝜌)

− ))
Ỿ

n
𝜌=1 )

1
Ỿ

)

)

  
 

.   (18) 

Theorem 6. (Idempotency) For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n) of BCFNs, 

if ⊮=⊮𝜌  ∀ 𝜌, then 

BCFAAOWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) = ⊮. 

Theorem 7. (Monotonicity) For two sets ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−)  and ⊮∼
𝜌 = (𝜁𝜌

+∼ +

𝜄𝜍𝜌
+∼, 𝜁𝜌

−∼ + 𝜄𝜍𝜌
−∼), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, if ⊮𝜌≤ ⊮𝜌

∼ ∀𝜌  i.e., 𝜁𝜌
+ ≤ 𝜁𝜌∼ 

+ , 𝜍𝜌
+ ≤

𝜍𝜌∼ 
+ , 𝜁𝜌

− ≤ 𝜁𝜌∼
− , 𝜍𝜌

− ≤ 𝜍𝜌∼
− , then 

BCFAAOWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤ BCFAAOWG (⊮1
∼, ⊮2

∼, ⊮3
∼, ………… ,⊮𝑛

∼). 

Theorem 8. (Boundedness) For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄 𝜍𝜌

+, 𝜁𝜌
− + 𝜄 𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n) of BCFNs, 

when 

⊮−= (min
𝜌

{𝜁𝜌
+} + 𝜄 min

𝜌
{𝜍𝜌

+},max
𝜌

{𝜁𝜌
−} + 𝜄 max

𝜌
{𝜍𝜌

−}), and ⊮+= (max
𝜌

{𝜁𝜌
+} + 𝜄 max

𝜌
{𝜍𝜌

+},min
𝜌

{𝜁𝜌
−} +

𝜄 min
𝜌

{𝜍𝜌
−}), 

then 

⊮−≤  BCFAAOWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤⊮+. 

Definition 10. For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, the 

BCFAAHG operator is gathered as 

BCFAAHG(⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛)=⊗𝜌=1
𝑛  (⊮

⊚(𝜌)
° )

𝔨𝜌
= (⊮

⊚(1)
° )

𝔨1
⊗ (⊮

⊚(2)
° )

𝔨2
………⊗

(⊮
⊚(𝑛)
° )

𝔨𝑛
,           (19) 

where ⊮
⊚(𝜌)
° = 𝑛𝔢 ⊮ 𝜌, (𝜌 = 1,2,3, …… . . , 𝑛), (⊮

⊚(1)
° , ⊮

⊚(2)
° , …… ,⊮

⊚(𝑛)
° ) is any permutation of an 

arrangement of the weighted BCFNs (⊮
(1)
° , ⊮

(2)
° , …… ,⊮

(𝑛)
° ) in a way such that ⊮

⊚(𝜌−1)
° ≥⊮

⊚(𝜌)
° ∀𝜌, 

𝔢 = (𝔢1, 𝔢2, 𝔢3, …… , 𝔢𝑛)𝕋  of ⊮ 𝜌(𝜌 = 1,2,3, …… . . , 𝑛)  along the condition  𝔢𝜌 𝜖 [𝟶, 1]  and 

∑ 𝔢𝜌 = 1𝑛
𝜌=1   and 𝑛  is the balancing coefficient. Furthermore, 𝔨 = (𝔨1, 𝔨2, 𝔨3, ……… , 𝔨n ) is a weight 

vector with 𝔨j ϵ [𝟶, 1] and ∑ 𝔨j = 1n
𝜌=1 .  

Theorem 9. For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, Eq (19) will 

again interpret a BCFN and 

BCFAAHG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ n) = 
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(

  
 𝕖

−(∑ wj(− log𝜁⊚(𝜌)
+ )

Ỿ
n
𝜌=1 )

1
Ỿ

+ 𝜄(𝕖
−(∑ w𝜌(− log 𝜍⊚(𝜌)

+ )
Ỿ

n
𝜌=1 )

1
Ỿ

,

(−1 + 𝕖
−(∑ wj(− log ( 1+𝜁⊚(𝜌)

− ))
Ỿ

n
𝜌=1 )

1
Ỿ

) + 𝒾(−1 + (𝕖
−(∑ wj(− log(1+𝜍⊚(𝜌)

− ))
Ỿ

n
𝜌=1 )

1
Ỿ

)

)

  
 

.   (20) 

Theorem 10. (Idempotency) For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n) of BCFNs, 

if ⊮=⊮𝜌  ∀ 𝜌, then 

BCFAAOWG  (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) = ⊮. 

Theorem 11. (Monotonicity) For two sets ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄𝜍𝜌

+, 𝜁𝜌
− + 𝜄𝜍𝜌

−)  and ⊮∼
𝜌 = (𝜁𝜌

+∼ +

𝜄𝜍𝜌
+∼, 𝜁𝜌

−∼ + 𝜄𝜍𝜌
−∼), 𝜌 = (1,2,3, …… . . , n)  of BCFNs, if ⊮𝜌≤ ⊮𝜌

∼ ∀𝜌  i.e., 𝜁𝜌
+ ≤ 𝜁𝜌∼ 

+ , 𝜍𝜌
+ ≤

𝜍𝜌∼ 
+ , 𝜁𝜌

− ≤ 𝜁𝜌∼
−  , 𝜍𝜌

− ≤ 𝜍𝜌∼
− , then 

BCFAAOWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤ BCFAAOWG (⊮1
∼, ⊮2

∼, ⊮3
∼, ………… ,⊮𝑛

∼). 

Theorem 12. (Boundedness) For a set ⊮ 𝜌 = (𝜁𝜌
+ + 𝜄 𝜍𝜌

+, 𝜁𝜌
− + 𝜄 𝜍𝜌

−), 𝜌 = (1,2,3, …… . . , n)  of 

BCFNs, when 

⊮−= (min
𝜌

{𝜁𝜌
+} + 𝜄 min

𝜌
{𝜍𝜌

+},max
𝜌

{𝜁𝜌
−} + 𝜄 max

𝜌
{𝜍𝜌

−}) and ⊮+= (max
𝜌

{𝜁𝜌
+} + 𝜄 max

𝜌
{𝜍𝜌

+},min
𝜌

{𝜁𝜌
−} +

𝜄 min
𝜌

{𝜍𝜌
−}), 

then 

 ⊮−≤  BCFAAOWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤⊮+. 

Definition 11. Let ⊮ 1 = (𝜁1
+ + 𝜄𝜍1

+, 𝜁1
− + 𝜄𝜍1

−) and ⊮ 2 = (𝜁2
+ + 𝜄𝜍2

+, 𝜁2
− + 𝜄𝜍2

−) be any two BCFNs. 

Then, the BCF normalized Hamming distance (BCFNHD) is initiated as  

𝒹(⊮ 1, ⊮ 2) =
1

4
(|𝜁1

+ − 𝜁2
+| + |𝜍1

+ − 𝜍2
+| + |𝜁1

− − 𝜁2
− +| + |𝜍1

− − 𝜍2
−|),   (21) 

where 𝒹(⊮ 1, ⊮ 2) ∈ [𝟶, 1]. 

4. MABAC technique in the environment of BCFS 

Suppose there is a set of 𝜅  alternative {⊮ 1, ⊮ 2, ⊮ 3, ………… , ⊮ 𝜅}  and 𝜂  attributes 

{ℂ1, ℂ2, ℂ3, ………… , ℂ𝜂 }  with an associated set of the weight vector {𝔨1, 𝔨2, 𝔨3, ……… , 𝔨𝜂}  and 𝜉 

experts {𝒫1, 𝒫2, 𝒫3, ………… ,𝒫𝜉 } with associated weighted {ℯ1, ℯ2, ℯ3, ………… , ℯ𝜉}. Then, BCF 

evaluation matrix 𝔐 = [⊮𝜌𝜏
𝜉

]
𝜅×𝜂

= (𝜁𝜌𝜏
+𝜉

+ 𝜄𝜍𝜌𝜏
+𝜉

, 𝜁𝜌𝜏
−𝜉

+ 𝜄𝜍𝜌𝜏
−𝜉

)
𝜅×𝜂

, 𝜌 = 1,2, …… , 𝜅, 𝜏 =

1,2, …… , 𝜂, 𝜁𝜌
+𝜉

,  𝜍𝜌
+𝜉

∈ [𝟶, 1] and 𝜁𝜌
−𝜉 , 𝜍𝜌

−𝜉 ∈ [−1, 𝟶]  Then, the BCF MABAC approach has the 

following steps:  

Step 1: Analyzing the formulation of a BCF matrix 𝔐 = [⊮𝜌𝜏
𝜉

]
𝜅×𝜂

= (𝜁𝜌𝜏
+𝜉

+ 𝜄𝜍𝜌𝜏
+𝜉

, 𝜁𝜌𝜏
−𝜉

+

𝜄𝜍𝜌𝜏
−𝜉

)
𝜅×𝜂

, 𝜌 = 1,2, …… , 𝜅, 𝜏 = 1,2, …… , 𝜂 given as  
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𝔐 = [⊮𝜌𝜏
𝜉

]
𝜅×𝜂

=

[
 
 
 
 
 (𝜁11

+𝜉
+ 𝜄𝜍11

+𝜉
, 𝜁11

+𝜉
+ 𝜄𝜍11

+𝜉
) (𝜁12

+𝜉
+ 𝜄𝜍12

+𝜉
, 𝜁12

+𝜉
+ 𝜄𝜍12

+𝜉
) ⋯ (𝜁1𝜂

+𝜉
+ 𝜄𝜍1𝜂

+𝜉
, 𝜁1𝜂

+𝜉
+ 𝜄𝜍1𝜂

+𝜉
)

(𝜁21
+𝜉

+ 𝜄𝜍21
+𝜉

, 𝜁21
+𝜉

+ 𝜄𝜍21
+𝜉

) (𝜁22
+𝜉

+ 𝜄𝜍22
+𝜉

, 𝜁22
+𝜉

+ 𝜄𝜍22
+𝜉

) … (𝜁2𝜂
+𝜉

+ 𝜄𝜍2𝜂
+𝜉

, 𝜁2𝜂
+𝜉

+ 𝜄𝜍2𝜂
+𝜉

)

⋮ ⋱ ⋮

(𝜁𝜅1
+𝜉

+ 𝜄𝜍𝜅1
+𝜉

, 𝜁𝜅1
+𝜉

+ 𝜄𝜍𝜅1
+𝜉

) (𝜁𝜅2
+𝜉

+ 𝜄𝜍𝜅2
+𝜉

, 𝜁𝜅2
+𝜉

+ 𝜄𝜍𝜅2
+𝜉

) ⋯ (𝜁𝜅𝜂
+𝜉

+ 𝜄𝜍𝜅𝜂
+𝜉

, 𝜁𝜅𝜂
+𝜉

+ 𝜄𝜍𝜅𝜂
+𝜉

)]
 
 
 
 
 

, 

where ⊮𝜌𝜏
𝜉

= (𝜁𝜌𝜏
+𝜉

+ 𝜄𝜍𝜌𝜏
+𝜉

, 𝜁𝜌𝜏
−𝜉

+ 𝜄𝜍𝜌𝜏
−𝜉

)
𝜅×𝜂

, 𝜌 = 1,2, …… , 𝜅, 𝜏 = 1,2, …… , 𝜂  presented a formula 

given by the expert ℯ𝜉 and it is based on the attributes ℂ𝜏 for BCF information. 

Step 2: We may employ one of the developed operators that are BCFAAWG, BCFAAOWG or 

BCFAAHG operator to combine or merge the collected values of ⊮𝜌𝜏
𝜉

 to ⊮𝜌𝜏  

𝔐 = [⊮𝜌𝜏]𝜅×𝜂
=

[
 
 
 
 
(𝜁11

+ + 𝜄𝜍11
+ , 𝜁11

+ + 𝜄𝜍11
+ ) (𝜁12

+ + 𝜄𝜍12
+ , 𝜁12

+ + 𝜄𝜍12
+ ) ⋯ (𝜁1𝜂

+ + 𝜄𝜍1𝜂
+ , 𝜁1𝜂

+ + 𝜄𝜍1𝜂
+ )

(𝜁21
+ + 𝜄𝜍21

+ , 𝜁21
+ + 𝜄𝜍21

+ ) (𝜁22
+ + 𝜄𝜍22

+ , 𝜁22
+ + 𝜄𝜍22

+ ) … (𝜁2𝜂
+ + 𝜄𝜍2𝜂

+ , 𝜁2𝜂
+ + 𝜄𝜍2𝜂

+ )

⋮ ⋱ ⋮
(𝜁𝜅1

+ + 𝜄𝜍𝜅1
+ , 𝜁𝜅1

+ + 𝜄𝜍𝜅1
+ ) (𝜁𝜅2

+ + 𝜄𝜍𝜅2
+ , 𝜁𝜅2

+ + 𝜄𝜍𝜅2
+ ) ⋯ (𝜁𝜅𝜂

+ + 𝜄𝜍𝜅𝜂
+ , 𝜁𝜅𝜂

+ + 𝜄𝜍𝜅𝜂
+ )]

 
 
 
 

. 

Where ⊮𝜌𝜏= (𝜁𝜌𝜏
+𝜉

+ 𝜄𝜍𝜌𝜏
+𝜉

, 𝜁𝜌𝜏
−𝜉

+ 𝜄𝜍𝜌𝜏
−𝜉

)
𝜅×𝜂

, 𝜌 = 1,2, …… , 𝜅, 𝜏 = 1,2, …… , 𝜂  presented a formula 

given by the expert ℯ𝜉 and it is based on the attributes ℂ𝜏 for BCF information. 

Step 3: In Step 3, we standardized the merge resultant matrix 𝔐 = [⊮𝜌𝜏]𝜅×𝜂
 , 𝜌 = 1,2, …… , 𝜅, 𝜏 =

1,2, …… , 𝜂 based on the nature of each character using the following formula: 

For benefit attributes: 

𝔐 =⊮𝜌𝜏= (𝜁𝜌𝜏
+ + 𝜄𝜍𝜌𝜏

+ , 𝜁𝜌𝜏
− + 𝜄𝜍𝜌𝜏

− ) 

𝜌 = 1,2, …… , 𝜅, 𝜏 = 1,2, …… , 𝜂. 

For cost attributes: 

𝔐 = (⊮𝜌𝜏)
𝑐
= (1 − 𝜁𝜌𝜏

+ + 𝜄( 1 − 𝜍𝜌𝜏
+ ), −1 − 𝜁𝜌𝜏

− + 𝜄 (−1 − 𝜍𝜌𝜏
− )) 

𝜌 = 1,2, …… , 𝜅,   𝜏 = 1,2, …… , 𝜂. 

Step 4: Now for standardized matrix  = 𝔐 = (⊮𝜌𝜏)
𝑐
= ((𝜁𝜌

+ + 𝜄𝜍𝜌
+), (𝜁𝜌

− + 𝜄𝜍𝜌
−)) (𝜌 =

1,2, …… , 𝜅, 𝜏 = 1,2, …… , 𝜂)  and the weight of attributes   𝔨𝜂 , ( 𝜏 = 1,2, …… , 𝜂)  , compute 

standardized BCF weighting matrix  𝕨 𝔐𝜌𝜏 = ((𝜁𝜌
+ + 𝜄𝜍𝜌

+)
∘
, (𝜁𝜌

− + 𝜄𝜍𝜌
−)

∘
) , 𝜌 = 1,2, …… , 𝜅, 𝜏 =

1,2, …… , 𝜂 by the following formula: 

𝕨 𝔐𝜌𝜏 =  𝔨𝜂 ⊕ 𝔐𝜌𝜏 , 𝜌 = 1,2, …… , 𝜅 , 𝜏 = 1,2, …… , 𝜂  
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=

(

 
 
 

1 − 𝕖−(∑ 𝔨𝜏(− log ( 1−𝜁𝜌𝜏
+ ))

Ỿ𝜂
𝜏=1 )

1
Ỿ

+ 𝜄 (1 − 𝕖−(∑ 𝔨𝜏(− log ( 1−𝜍𝜌𝜏
+ ))

Ỿ𝜂
𝜏=1 )

1
Ỿ

) ,

−(𝕖−(∑ 𝔨𝜏(− log|𝜁𝜌𝜏
− |)

Ỿ𝜂
𝜏=1 )

1
Ỿ

) + 𝜄 (−(𝕖−(∑ 𝔨𝜏(− log|𝜍𝜌𝜏
− |)

Ỿ𝜂
𝜏=1 )

1
Ỿ

))

)

 
 
 

.   (22) 

Step 5: The BAA values are evaluated in Step 5, the BAA matrix 𝕋 = [𝔱𝜏]1×𝜂 maybe obtained as; 

𝔱𝜏 = (∑ 𝔐𝜌𝜏

𝜅

𝜌=1

)

1
𝜅

, 𝜌 = 1,2, …… , 𝜅 , 𝜏 = 1,2, …… , 𝜂    

=

(

 
 
 

𝕖−(∑  
1

𝜅
(− log(𝜁𝜌𝜏

+ ))
Ỿ𝜅

𝜌=1 )

1
Ỿ

+ 𝜄 (𝕖−(∑  
1

𝜅
(− log(𝜍𝜌𝜏

+ ))
Ỿ𝜅

𝜌=1 )

1
Ỿ

) ,

(−1 + 𝕖−(∑  
1

𝜅
(− log ( 1+𝜁𝜌𝜏

− ))
Ỿ𝜂

𝜌=1 )

1
Ỿ

) + 𝜄 (−1 + (𝕖−(∑  
1

𝜅
(− log ( 1+𝜍𝜌𝜏

− ))
Ỿ𝜂

𝜌=1 )

1
Ỿ

))

)

 
 
 

.   (23) 

Step 6: The distance 𝔒 = [𝒹𝜌𝜏]𝜅 ×𝜂
  between each alternative and BAA, as determined by the 

following equation, is evaluated in Step 6: 

𝒹𝜌𝜏 = {

𝒹(𝕨 𝔐𝜌𝜏, 𝔱𝜏),           𝑖𝑓  𝕨 𝔐𝜌𝜏 > 𝔱𝜏
𝟶,                                 𝑖𝑓  𝕨 𝔐𝜌𝜏 = 𝔱𝜏

−𝒹(𝕨 𝔐𝜌𝜏, 𝔱𝜏),           𝑖𝑓  𝕨 𝔐𝜌𝜏 < 𝔱𝜏

}, 

where 𝒹(𝕨 𝔐𝜌𝜏, 𝔱𝜏) is the mean distance between 𝕨 𝔐𝜌𝜏 and 𝔱𝜏. 

Step 7: Finally, using the following formula we add the values of each alternative’s 𝒹𝜌𝜏: 

𝒮𝜌 = ∑ 𝒹𝜌𝜏
𝜂
𝜏=1 . 

To better illustrate the above algorithm, we provided a flow chart for the process of the MABAC 

method which is shown in Figure 2.  
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Figure 2. The flow chart of BCF MABAC method. 

Application 

Computers were invented to automate mathematical calculations that far exceeded that which 

even the brightest brains were capable of. Innovative applications for both new and old technology are 

created by computer and information scientists. Thus, computer assistance is needed for data entry, 

editing and administration, including follow-up activities, etc. Regardless of whether it is being used 

for academic or commercial research, it is a crucial tool. The OS is the central element of a computer. 

The computer cannot be successfully used without an OS. An OS is software that controls all of the 

other applications. It manages the hardware and software, as well as the computer’s memory and 

processes. Normally, several computer applications operate concurrently, requiring access to the 

computer’s CPU, memory and storage. OSs are crucial to the computer processing system, just as 

computers are essential in every aspect of life. Computer applications and software development 

benefit greatly from the OS. Each application would need to have both its user interface and the vast 

code necessary to govern all low-level computer processes in the absence of an OS. Because of this, it 

takes substantially less effort and code to create and debug an application while still enabling users to 

control, modify and manage the system hardware through an intuitive interface. The many OSs that 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

  

  

 

 

 

  

 

 

 

 

  

 

Step 1: Construct BCF group decision matrix formulation 

with associated expert weights and attributes weights  

Step 2: Evaluation of BCF group decision matrix in to simple 

Step 3: Normalize the BCF evaluation matrix given by 

Step 4: Establish the normalize BCF weighted matrix with 

Step 5: Derive the Border Approximation Area (BAA) for 

Step 6: Evaluate the distance between each alternative and 
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are utilized in computer processing systems will be covered in this section. Some of these operating 

systems are discussed as follows: 

1) Single-user single-tasking OS (SU-OS) 

SU-OS refers to an OS that only permits a single user to accomplish one job at a time. This 

approach allows each user to execute a single application at a time. This OS is created for usage with 

personal computers or home computers. It permits one user at a time to have access to your personal 

computer. Certain tasks, such as printing paper, downloading photographs, using MS Word or Palm 

OS and playing movies, can be completed in a single frame. 

2) Multiprocessing operating system (M-Pro OS) 

The M-Pro OS to a single computer system that employs two or more CPUs. This OS refers to a 

system’s capacity to accommodate several processors or to divide duties among them. M-Pro is the 

term used to describe processing carried out by two or more computers or processors connected in 

parallel. It enables several computers to run two or more applications simultaneously.  

3) Multi-programming operating system (M-Prog OS) 

An OS that supports many programs running simultaneously on a single processor unit is known 

as M-Prog OS. It offers the ability to switch between processes and can enable more than one program 

to be prepared for execution. The idea of M-Prog depends on a computer’s capacity to store the 

program for future use. Several programs are stored in the memory during M-prog.  

4) Multi-tasking operating system (M-Tas OS) 

An OS known as M-Tas OS enables a user to carry out many computer tasks simultaneously, 

including running application software. This OS can move between tasks without losing data while 

keeping track of where you are in multiple processes. M-Tas is the process of running two or more 

applications simultaneously by one user on the same computer while using the same CPU.  

By utilizing the MABAC method based on BCFAAWG operators in the scenario of BCFS to 

tackle MAGDM difficulties, the aforementioned application is resolved. The various OS types in the 

following numerical examples are viewed as alternatives. 

Numerical example 

Say an IT Organization wants to evaluate the performance of four OS kinds to get the best and 

better OS. These 4 OS are underneath  

⊮ 1: SU-OS 

⊮ 2: M-Pro OS 

⊮ 3: M-Prog OS 

⊮ 4: M-Tas OS. 

Which would be evaluated by the underneath attributes  

ℂ1: Licensing  

ℂ2: Software compatibility 

ℂ3: Complexity 

ℂ4: Resource management. 

For this evaluation, the IT organization hire a team of three experts 𝒫𝜉(𝜉 = 1,2,3) and the weight of 

these experts is  (𝟶. 4, 𝟶. 35, 𝟶. 25) . Further, the weight of the attributes of these 4 OS is  

(𝟶. 4, 𝟶. 3, 𝟶. 2, 𝟶. 1). The evaluated values of OSs are in the model of BCFN.  

Step 1: The BCF matrices of every expert is revealed in Tables 1–3.  
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Table 1. The evaluated values described by expert 1. 

 ℂ𝟏 ℂ𝟐 ℂ𝟑 ℂ𝟒 

⊮ 𝟏 (
𝟶. 19 + 𝜄𝟶. 45

−𝟶. 69 − 𝜄𝟶. 51
) (

𝟶. 45 + 𝜄𝟶. 59
−𝟶. 89 − 𝜄𝟶. 9𝟶

) (
𝟶. 23 + 𝜄𝟶. 49

−𝟶. 39 − 𝜄𝟶. 57
) (

𝟶. 76 + 𝜄𝟶. 9𝟶
−𝟶. 69 − 𝜄𝟶. 51

) 

⊮ 𝟐 (
𝟶. 13 + 𝜄𝟶. 49

−𝟶. 89 − 𝜄𝟶. 56
) (

𝟶. 45 + 𝜄𝟶. 54
−𝟶. 6𝟶 − 𝜄𝟶. 15

) (
𝟶. 𝟶4 + 𝜄𝟶. 5𝟶
−𝟶. 99 − 𝜄𝟶. 88

) (
𝟶. 11 + 𝜄𝟶. 15

−𝟶. 79 − 𝜄𝟶. 71
) 

⊮ 𝟑 (
𝟶. 21 + 𝜄𝟶. 42

−𝟶. 83 − 𝜄𝟶. 67
) (

𝟶. 17 + 𝜄𝟶. 49
−𝟶. 69 − 𝜄𝟶. 71

) (
𝟶. 17 + 𝜄𝟶. 𝟶9
−𝟶. 58 − 𝜄𝟶. 21

) (
𝟶. 33 + 𝜄𝟶. 46

−𝟶. 29 − 𝜄𝟶. 59
) 

⊮ 𝟒 (
𝟶. 35 + 𝜄𝟶. 44

−𝟶. 67 − 𝜄𝟶. 59
) (

𝟶. 28 + 𝜄𝟶. 55
−𝟶. 42 − 𝜄𝟶. 58

) (
𝟶. 36 + 𝜄𝟶. 48

−𝟶. 89 − 𝜄𝟶. 66
) (

𝟶. 88 + 𝜄𝟶. 12
−𝟶. 29 − 𝜄𝟶. 31

) 

Table 2. The evaluated values described by expert 2. 

 ℂ𝟏 ℂ𝟐 ℂ𝟑 ℂ𝟒 

⊮ 𝟏 (
𝟶. 34 + 𝜄𝟶. 46
𝟶. 88 − 𝜄𝟶. 𝟶1

) (
𝟶. 67 + 𝜄𝟶. 𝟶9

−𝟶. 𝟶6 − 𝜄𝟶. 98
) (

𝟶. 22 + 𝜄𝟶. 41
−𝟶. 32 − 𝜄𝟶. 53

) (
𝟶. 15 + 𝜄𝟶. 91

−𝟶. 65 − 𝜄𝟶. 52
) 

⊮ 𝟐 (
𝟶. 23 + 𝜄𝟶. 79

−𝟶. 49 − 𝜄𝟶. 𝟶6
) (

𝟶. 78 + 𝜄𝟶. 24
−𝟶. 2𝟶 − 𝜄𝟶. 55

) (
𝟶. 23 + 𝜄𝟶. 54

−𝟶. 89 − 𝜄𝟶. 38
) (

𝟶. 17 + 𝜄𝟶. 65
−𝟶. 89 − 𝜄𝟶. 51

) 

⊮ 𝟑 (
𝟶. 22 + 𝜄𝟶. 47

−𝟶. 55 − 𝜄𝟶. 31
) (

𝟶. 14 + 𝜄𝟶. 2𝟶
−𝟶. 29 − 𝜄𝟶. 11

) (
𝟶. 17 + 𝜄𝟶. 33

−𝟶. 58 − 𝜄𝟶. 24
) (

𝟶. 2𝟶 + 𝜄𝟶. 49
−𝟶. 29 − 𝜄𝟶. 51

) 

⊮ 𝟒 (
𝟶. 19 + 𝜄𝟶. 56

−𝟶. 6𝟶 − 𝜄𝟶. 9𝟶
) (

𝟶. 28 + 𝜄𝟶. 25
−𝟶. 92 − 𝜄𝟶. 68

) (
𝟶. 48 + 𝜄𝟶. 44

−𝟶. 63 − 𝜄𝟶. 66
) (

𝟶. 88 + 𝜄𝟶. 18
−𝟶. 59 − 𝜄𝟶. 33

) 

Table 3. The evaluated values described by expert 3. 

 ℂ𝟏 ℂ𝟐 ℂ𝟑 ℂ𝟒 

⊮ 𝟏 (
𝟶. 16 + 𝜄𝟶. 45

−𝟶. 79 − 𝜄𝟶. 51
) (

𝟶. 12 + 𝜄𝟶. 19
−𝟶. 59 − 𝜄𝟶. 93

) (
𝟶. 56 + 𝜄𝟶. 33

−𝟶. 39 − 𝜄𝟶. 59
) (

𝟶. 6𝟶 + 𝜄𝟶. 7𝟶
−𝟶. 13 − 𝜄𝟶. 22

) 

⊮ 𝟐 (
𝟶. 7𝟶 + 𝜄𝟶. 89
−𝟶. 89 − 𝜄𝟶. 26

) (
𝟶. 45 + 𝜄𝟶. 3𝟶

−𝟶. 5𝟶 − 𝜄𝟶. 75
) (

𝟶. 𝟶5 + 𝜄𝟶. 59
−𝟶. 94 − 𝜄𝟶. 32

) (
𝟶. 15 + 𝜄𝟶. 61

−𝟶. 99 − 𝜄𝟶. 11
) 

⊮ 𝟑 (
𝟶. 22 + 𝜄𝟶. 23

−𝟶. 85 − 𝜄𝟶. 27
) (

𝟶. 74 + 𝜄𝟶. 69
−𝟶. 69 − 𝜄𝟶. 71

) (
𝟶. 11 + 𝜄𝟶. 19

−𝟶. 58 − 𝜄𝟶. 71
) (

𝟶. 66 + 𝜄𝟶. 46
−𝟶. 49 − 𝜄𝟶. 39

) 

⊮ 𝟒 (
𝟶. 27 + 𝜄𝟶. 45

−𝟶. 77 − 𝜄𝟶. 54
) (

𝟶. 78 + 𝜄𝟶. 15
−𝟶. 22 − 𝜄𝟶. 59

) (
𝟶. 36 + 𝜄𝟶. 83

−𝟶. 77 − 𝜄𝟶. 9𝟶
) (

𝟶. 81 + 𝜄𝟶. 37
−𝟶. 69 − 𝜄𝟶. 71

) 

Step 2: In Step 2, we aggregate the values of 𝔐1,𝔐2,𝔐3 to 𝔐 by using the BCFAAWG operator 

i.e., we obtain ⊮𝜌𝜏
𝜉

 to ⊮𝜌𝜏. Table 4 revealed the aggregated matrix.  

Table 4. Aggregated matrix. 

Alternatives/ 

attributes 
ℂ𝟏 ℂ𝟐 ℂ𝟑 ℂ𝟒 

⊮ 𝟏 (
𝟶. 8 + 𝜄𝟶. 94

−𝟶. 23 − 𝜄𝟶. 𝟶3
) (

𝟶. 87 + 𝜄𝟶. 77
−𝟶. 18 − 𝜄𝟶. 58

) (
𝟶. 85 + 𝜄𝟶. 93

−𝟶. 𝟶2 − 𝜄𝟶. 𝟶6
) (

𝟶. 88 + 𝜄𝟶. 99
−𝟶. 𝟶8 − 𝜄𝟶. 𝟶4

) 

⊮ 𝟐 (
𝟶. 79 + 𝜄𝟶. 98

−𝟶. 27 − 𝜄𝟶. 𝟶3
) (

𝟶. 96 + 𝜄𝟶. 89
−𝟶. 𝟶4 − 𝜄𝟶. 𝟶7

) (
𝟶. 51 + 𝜄𝟶. 96

−𝟶. 68 − 𝜄𝟶. 17
) (

𝟶. 69 + 𝜄𝟶. 86
−𝟶. 53 − 𝜄𝟶. 𝟶7

) 

⊮ 𝟑 (
𝟶. 𝟶8 + 𝜄𝟶. 91

−𝟶. 2𝟶 − 𝜄𝟶. 𝟶5
) (

𝟶. 78 + 𝜄𝟶. 9𝟶
−𝟶. 𝟶8 − 𝜄𝟶. 𝟶9

) (
𝟶. 71 + 𝜄𝟶. 72

−𝟶. 𝟶7 − 𝜄𝟶. 𝟶4
) (

𝟶. 87 + 𝜄𝟶. 95
−𝟶. 𝟶2 − 𝜄𝟶. 𝟶5

) 

⊮ 𝟒 (
𝟶. 84 + 𝜄𝟶. 95

−𝟶. 12 − 𝜄𝟶. 2𝟶
) (

𝟶. 89 + 𝜄𝟶. 85
−𝟶. 2𝟶 − 𝜄𝟶. 𝟶9

) (
𝟶. 92 + 𝜄𝟶. 96

−𝟶. 23 − 𝜄𝟶. 19
) (

𝟶. 99 + 𝜄𝟶. 75
−𝟶. 𝟶6 − 𝜄𝟶. 𝟶5

) 
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Step 3: As the data given in matrix 𝔐 = [𝔐𝜌𝜏]𝜅×𝜂
, 𝜌 = 1,2, …… , 𝜅       𝜏 = 1,2, …… , 𝜂 is of benefit 

attributes. So, the standardized matrix would be the same as given in Table 4.  

Step 4: Now, using Eq (22), we calculate a standardized BCF weighting matrix for standardized 

matrix  𝔐 = [𝔐𝜌𝜏]𝜅×𝜂
, (𝜌 = 1,2, …… , 𝜅, 𝜏 = 1,2, …… , 𝜂)  and attribute’s weight  𝔨𝜏, ( 𝜏 =

1,2, …… , 𝜂), which is interpreted in Table 5.  

Table 5. Standardized weighted matrix. 

Alternatives/ 

attributes 
ℂ𝟏 ℂ𝟐 ℂ𝟑 ℂ𝟒 

⊮ 𝟏 (
𝟶. 𝟶9 + 𝜄𝟶. 26

−𝟶. 92 − 𝜄𝟶. 63
) (

𝟶. 11 + 𝜄𝟶. 𝟶6
−𝟶. 92 − 𝜄𝟶. 99

) (
𝟶. 𝟶7 + 𝜄𝟶. 12

−𝟶. 75 − 𝜄𝟶. 86
) (

𝟶. 𝟶4 + 𝜄𝟶. 18
−𝟶. 94 − 𝜄𝟶. 91

) 

⊮ 𝟐 (
𝟶. 𝟶9 + 𝜄𝟶. 44

−𝟶. 94 − 𝜄𝟶. 63
) (

𝟶. 25 + 𝜄𝟶. 13
−𝟶. 75 − 𝜄𝟶. 82

) (
𝟶. 𝟶1 + 𝜄𝟶. 18

−𝟶. 99 − 𝜄𝟶. 94
) (

𝟶. 𝟶1 + 𝜄𝟶. 𝟶4
−𝟶. 99 − 𝜄𝟶. 94

) 

⊮ 𝟑 (
𝟶. 𝟶9 + 𝜄𝟶. 𝟶2
−𝟶. 91 − 𝜄𝟶. 71

) (
𝟶. 𝟶6 + 𝜄𝟶. 14
−𝟶. 83 − 𝜄𝟶. 85

) (
𝟶. 𝟶3 + 𝜄𝟶. 𝟶3
−𝟶. 88 − 𝜄𝟶. 82

) (
𝟶. 𝟶4 + 𝜄𝟶. 𝟶8
−𝟶. 87 − 𝜄𝟶. 92

) 

⊮ 𝟒 (
𝟶. 12 + 𝜄𝟶. 29

−𝟶. 84 − 𝜄𝟶. 91
) (

𝟶. 13 + 𝜄𝟶. 1𝟶
−𝟶. 93 − 𝜄𝟶. 85

) (
𝟶. 11 + 𝜄𝟶. 18

−𝟶. 96 − 𝜄𝟶. 95
) (

𝟶. 18 + 𝜄𝟶. 𝟶2
−𝟶. 93 − 𝜄𝟶. 92

) 

Step 5: We assess the BAA values. The BAA matrix 𝕋 = [𝔱𝜏]1×𝜂 may be obtained using Eq (23).  

𝔱1 = (𝟶. 66 + 𝜄𝟶. 88,−𝟶. 36 − 𝜄𝟶. 16), 𝔱2 = (𝟶. 7𝟶 + 𝜄𝟶. 67,−𝟶. 29 − 𝜄𝟶. 45), 𝔱3 = (𝟶. 42 +

𝜄𝟶. 65,−𝟶. 51 − 𝜄𝟶. 36) , 𝔱4 = (𝟶. 41 + 𝜄𝟶. 52,−𝟶. 53 − 𝜄𝟶. 39). 

Step 6: We evaluate the distance 𝔒 = [𝒹𝜌𝜏]𝜅 ×𝜂
  between each OS and BAA and the outcome is 

displayed in Table 6.  

Table 6. Distance between alternative and BAA. 

Alternatives ℂ𝟏 ℂ𝟐 ℂ𝟑 ℂ𝟒 

⊮ 𝟏 −0.60 −0.60 −0.40 −0.41 

⊮ 𝟐 −0.50 −0.50 −0.50 −0.47 

⊮ 𝟑 −0.60 −0.50 −0.50 −0.42 

⊮ 𝟒 −0.60 −0.50 −0.50 −0.43 

Step 7: In this step, we have 

𝒮1 = (−𝟶. 6𝟶) + (−𝟶. 6𝟶) + (−𝟶. 4𝟶) + (−𝟶. 41) = −2. 𝟶1 

𝒮2 = −1.97,   𝒮3 = −2. 𝟶2,      𝒮4 = −2. 𝟶3. 

The following order list is derived from the aforementioned evaluation to help us choose the best 

decision: 
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⊮ 2 ≻⊮ 1 ≻⊮ 3 ≻⊮ 4.. 

Because ⊮ 2 has a value larger than all other alternatives. Hence, ⊮ 2 is the best and better OS. 

5. Comparative analysis 

First, we compared our considered work with several prevalent studies, including those by Wei et 

al. [19], Jana et al. [20], Jana et al. [33], Riaz and Tehrim. [34], Bi et al. [38] and Bi et al. [39], to 

ascertain the influence and supremacy of the proposed work. Using the information in Table 4 as a 

starting point, Table 7 compares the diagnostic work with the existing work. 

Table 7. Declared the comparison between the proposed and existing aggregation operator. 

Methods  ℷ𝕊𝔽(⊮ 𝟏) ℷ𝕊𝔽(⊮ 𝟐) ℷ𝕊𝔽(⊮ 𝟑) ℷ𝕊𝔽(⊮ 𝟒) Ranking 

Wei et al. [19] method ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Jana et al. [20] method ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Jana et al. [33] method  ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Riaz and Tehrim. [34] ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Bi et al. [38] method ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Bi et al. [39] method ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

BCFAAWG 𝟶. 985 𝟶. 977 𝟶. 994 𝟶. 995 ⊮ 4 ≻⊮ 3 ≻⊮ 1 ≻⊮ 2 

Table 7’s data demonstrate existing theories, such as those by Wei et al. [19], Jana et al. [20], Jana 

et al. [33] Riaz and Tehrim [34], Bi et al. [38] and Bi et al. [39], were unable to handle the types of 

data given in Table 4 because they all had flaws. The point-wise discussion is given by 

1) We start with Wei et al. [19]. We noticed that the Wei et al. [19] method although covering the 

positive and negative aspects but the data given in Table 4 has positive and negative aspects 

along with 2nd dimension. Thus, the theory invented by Wei et al. [19] can’t cope with such 

data. Merely, the invented work can cope with such information. So, we can see that our 

proposed method can cover all information in Table 4, so the developed approach is the more 

advanced method. 

2) We can observe that Jana et al. [20] identified Dombi AOs operators and techniques of DM for 

BFS which deal with data that includes both positive and negative evaluations of people in one 

dimension. However, Table 4’s data is two dimensional, making it impossible for the efforts of 

Jana et al. [20] to overcome this type of data. This means that the developed notion is more 

advanced because it can cover more advanced data.  

3) Notice that the developments made by Jana et al. [33] can only consider the bipolar fuzzy 

information, while the proposed data consist of bipolar complex fuzzy information. So, no 

result was found in this case because bipolar complex fuzzy cannot be covered by Jana et al. [35] 

method. 

4) For Riaz and Tehrim [34], the structure is more general and based on cubic bipolar fuzzy 

information, but this method is not capable of considering the bipolar complex fuzzy 

information that is two-dimensional data. 

5) Bi et al. [38] and Bi et al. [39] have identified geometric and arithmetic AOs respectively for 

CF set to deal with two-dimensional data, but these AOs are unable to reflect the positive and 
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negative aspects of human opinion. They were unable to resolve the data in Table 4. But our 

proposed work does not fail in any condition and handles two-dimensional data with positive 

and negative aspects. First of all, we aggregated the data given in Table 4 using the BCFAAWG 

operator. After aggregating the different values given in Table 4, we used score and accuracy 

functions to rank different values. After ranking, we see that the value of ⊮ 4 is greater than 

all the other alternative values and hence we get our optimal alternative which is ⊮ 4 . That 

is why our proposed work is superior to all of the existing work and identifies the best 

alternative which is the ⊮ 4, demonstrating the flexibility of the proposed AOs. The proposed 

AOs are quite skilled compared to the existing operators. As a consequence, the suggested work 

is superior to the earlier attempts in terms of success and dominance. 

Moreover, the graphical representation of the developed theory is given in Figure 3. 

 

Figure 3. Graphical representation of data given in Table 7. 

If we consider the data given in numerical Example 4.2, we now compared our considered work 

along several other prevalent works i.e., our BCF MABAC approach will now be compared to the 

fuzzy MABAC method and BF MABAC method, which was proposed by Varma [44] and Jana [47] 

respectively. Using the data in numerical Example 4.2 as a starting point, Table 8 compares the 

diagnosed work with the existing work. 

Table 8. Declared the comparison of the MABAC method’s suggested and existing work. 

Sources Method 
The distance between alternative 

and BAA added together 
Ranking 

Varma [44] Fuzzy MABAC ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Jana [47] BF MABAC ⤰↝⤰↝⤰ ⤰↝⤰↝⤰ 

Invented work BCF MABAC 
𝒮1 = −2. 𝟶1, 𝒮2 = −1.97 

𝒮3 = −2. 𝟶2, 𝒮4 = −2. 𝟶3 

 

⊮ 2 ≻⊮ 1 ≻⊮ 3 ≻⊮ 4 



25238 

AIMS Mathematics  Volume 8, Issue 10, 25220–25248. 

Moreover, a graphical depiction of the data given in Table 8 is given in Figure 4.  

 

Figure 4. Graphical representation of data given in Table 8. 

According to the data in numerical Example 4.2, the dominant theories, such as Varma [44] and 

Jana [42] were unable to explain this type of data because each of them had flaws. Varma [44] 

diagnosed the fuzzy MABAC approach that deals with information comprising simply a positive 

degree of support. The known work of Varma [44] cannot resolve the data provided in numerical 

Example 4.2. It is because the fuzzy MABAC technique does not deal with the information that 

includes positive and negative degrees of support nor does it deal with two-dimensional information, 

and the data in numerical Example 4.2 is two-dimensional with positive and negative degrees of 

support. Similarly, the data in numerical Example 4.2 is two dimensional and the Jana [47] diagnostic 

BFMABAC approach works with data that incorporates both positive and negative human viewpoints 

in one dimension. Therefore, the diagnostic work of Jana [47] cannot resolve such data. The existing 

practices only cover a tiny amount of information and are comparatively out-of-date, ineffective and simple. 

In light of this, the proposed work differs from previous work in the sense that it is novel, more potent, 

more dominating, covers more regions and tackles a wide range of difficult real-world problems. 

6. Conclusions 

An operating system is a piece of software that controls a computer's hardware and software 

resources and offers standard services to other software applications. It serves as an interface between 

the hardware and software of the computer, facilitating communication between programs and the 

computer. As AOs are the fundamental tools that convert the overall information into a single value 

that can help with DM problems. So, based on the notion of BCFSs and Aczel-Alsina t-norm and t-

conorm, we have developed the notion of geometric AOs like BCFAAWG, BCFAAOWG and 

BCFAAHG operators. We also invented the linked properties of BCFAAWG, BCFAAOWG and 

BCFAAHG operators. The MABAC is the dominant technique to deal with ambiguous and complex 

information and it proves more dominant results. So, we have interpreted the technique of MABAC 

based on BCF Aczel-Alsina geometric AOs. Moreover, we have provided a numerical example that 
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shows the uses of developed techniques in the field of OSs. At the end of this article, to portray the 

dominance and superiority of the invented work, we interpreted the comparative analysis of our 

invented work with various prevailing theories.  

6.1. Limitations 

Structures like bipolar complex IFS, bipolar complex PFS and bipolar complex spherical FS use 

more advanced conditions than that of our developed notion. So, when the decision maker comes up 

with bipolar complex IF data, bipolar complex PF data and bipolar complex spherical fuzzy data, the 

existing notion fails. 

6.2. Future direction  

In the future, we would examine various other theories such as three-way DM [60,61] and would 

try to do this invented work in these notions. 

Moreover, some important abbreviation used throughout the article is given in Table 9. 

Table 9. Important abbreviations are used throughout the article. 

Name Abbreviation 

Fuzzy set FS 

Bipolar fuzzy set BFS 

Complex fuzzy set CFS 

Bipolar complex fuzzy sets BCFSs 

Decision making DM 

Multi-attribute decision making MADM 

Multi-Criteria decision making MCDM 

Aczel Alsina AA 

Operating System OS 

Multi-attribute border approximation area comparison MABAC 

Aggregation operators AOs 

Bipolar complex fuzzy Aczel Alsina weighted averaging BCFAAWA 

Bipolar complex fuzzy Aczel Alsina weighted geometric BCFAAWG 

Bipolar complex fuzzy Aczel Alsina ordered weighted geometric BCFAAOWG 

Bipolar complex fuzzy Aczel Alsina hybrid geometric BCFAAHG 
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(⊮ 1)
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The aforementioned equation is therefore true for 𝑛 = 2. If we now suppose that n=q is true, then 

we have 
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Next, we must demonstrate it for 𝑛 =  𝑞 + 1, that is, 

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮𝔮, ⊮𝔮+1) = ⊗𝜌=1
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. 

Finally, we discovered that the preceding equation is true for 𝑛 = 𝑞 + 1. Hence, all (non-negative 

integer) values of n were fulfilled by the aforementioned equation. 

Proof of Theorem 2. Consider ⊮𝜌=⊮= (𝜁𝜌
+ + 𝜍𝜌

+, 𝜁𝜌
− + 𝜍𝜌

−). Then, we have 
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= (𝜁𝜌
+ + 𝜍𝜌

+, 𝜁𝜌
− + 𝜍𝜌

−) =⊮. 

Thus, we obtain the ultimate result. 

Proof of Theorem 3. Observing the analysis above, we have ⊮𝜌≤ ⊮𝜌
∼ ∀𝜌  i.e., 𝜁𝜌

+ ≤ 𝜁𝜌∼ 
+ , 𝜍𝜌

+ ≤

𝜍𝜌∼ 
+ , 𝜁𝜌

− ≤ 𝜁𝜌∼
−  , 𝜍𝜌

− ≤ 𝜍𝜌∼
− . Subsequently, along with further data, we obtain 

𝜁𝜌
+ ≤ 𝜁𝜌∼ 

+ ⇒ log 𝜁𝜌
+ ≤ log 𝜁𝜌∼ 
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1
Ỿ

. 

Similar to this, we have established the theory for the imaginary part along a positive membership 

grade, such as 
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Based on the aforementioned data, we can now further discuss: 
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⇒ −1 + 𝕖−(∑ 𝔨𝜌(−log(1+𝜁𝜌
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Ỿ𝑛
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1
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Likewise, we obtain 

−1 + 𝕖−(∑ 𝔨𝜌(−log(1+𝜍𝜌
−))

Ỿ𝑛
𝜌=1 )

1
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1
Ỿ

. 

We may easily arrive at the following conclusion by applying the score and accuracy function, which 

is 

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤ BCFAAWG (⊮1
∼, ⊮2

∼, ⊮3
∼, ………… ,⊮𝑛

∼). 

Proof of Theorem 4. Using the properties of idempotency and monotonicity, we can quickly and easily 

demonstrate the necessary theorem. 

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤ BCFAAWG (⊮+, ⊮+ , ⊮+ , ………… ,⊮+ ) =⊮+ 

BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≥ BCFAAWG (⊮−, ⊮− , ⊮− , ………… ,⊮− ) =⊮−. 

Hence, using the equations above, we arrive at 

⊮−≤  BCFAAWG (⊮ 1, ⊮ 2, ⊮ 3, ………… ,⊮ 𝑛) ≤⊮+. 
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