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Abstract: We investigate a robust optimal reinsurance-investment problem for n insurers under
multiple interactions, which arise from the insurance market, the financial market, the competition
mechanism and the cooperation mechanism. Each insurer’s surplus process is assumed to follow a
diffusion model, which is an approximation of the classical Cramér-Lundberg model. Each insurer is
allowed to purchase proportional reinsurance to reduce their claim risk. To reflect the first moment and
second moment information on claims, we use the variance premium principle to calculate reinsurance
premiums. To increase wealth, each insurer can invest in a financial market, which includes one risk-
free asset and n correlated stocks. Each insurer wants to obtain the robust optimal reinsurance and
investment strategy under the mean-variance criterion. By applying a stochastic control technique
and dynamic programming approach, the extended Hamilton-Jacobi-Bellman (HJB) equation is
established. Furthermore, we derive both the robust optimal reinsurance-investment strategy and the
corresponding value function by solving the extended HJB equation. Finally, we present numerical
experiments, which yield that competition and cooperation have an important influence on the insurer’s
decision-making.
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1. Introduction

Through reinsurance, the insurer can share part of the claim risk to the reinsurer while paying part
of the premium to the reinsurer as the compensation. In addition, the insurer can invest in a finance
market for a higher rate of return or to hedge the claim risk. Due to reinsurance and investment (RI)
providing effective ways to transfer risk and gain profit, they are garnering interest in the fields of
insurance and actuarial science in recent years.

Motivated by recent studies about the optimal RI problem, we provide an integrated framework
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for studying n insurer-based robust optimal RI problems under the mean-variance (MV) criterion.
Considering that different insurers think that the stock with the greatest profit may be different, we
assume that each insurer invests in a unique and different stock. In addition, we consider multiple
interactions among n insurers, which arise from the insurance market, the financial market, the
competition and the cooperation mechanism.

This paper is related to three strands of the literature. The first strand is about the time-consistent
MV portfolio selection problem. A tractable framework for time-consistent MV problems was first
established by Björk and Murgoci [1] and Basak and Chabakauri [2]. Recently, many scholars
considered the RI problem under a time-consistent MV framework. Yang [3] studied the time-
consistent RI strategy with common shock dependence between the insurance market and the financial
market. Yang et al. [4] studied the time-consistent combining reinsurance problem. Wang et al. [5]
considered the time-consistent RI strategy with mispricing. Zhang and Liang [6] considered time-
consistent RI strategies for a jump-diffusion financial market without cash. Wang et al. [7] studied the
time-consistent RI strategy with a long-range dependent mortality rate. However, these studies only
considered a single agent and did not consider the interaction among multiple agents. Therefore, the
optimal RI strategy obtained by them may not be available for multiple insurers.

The second strand of the literature is about interaction among multiple insurers. As for this,
many scholars quantify the interaction among different insurers based on the relative performance.
Bensoussan et al. [8] first quantified the competition between two insurers based on the relative
performance. Siu et al. [9] also studied two competitive insurers based on the relative performance,
where the two insurers were subject to common claim risks. Afterward, many scholars continued
to study the competition between two insurers based on the relative performance. Deng et al. [10]
studied the case of default risk, Hu and Wang [11] considered the case of time consistency, Zhu et al.
[12] studied the case of the Heston model, Bai et al. [13] studied the case of bounded memory, Dong
et al. [14] investigated the case of the Ornstein-Uhlenbeck model. However, these papers only studied
the RI for two competitive insurers. Recently, Yang et al. [15] and Guan and Hu [16] studied the
competition among n insurers; however, they did not consider the cooperation case and the ambiguity
aversion.

The third strand of the literature is about ambiguity aversion. Due to the uncertain investment
environment, investors are usually ambiguity-averse. For this reason, Anderson et al. [17] first studied
ambiguity aversion under the continuous-time framework, Uppal and Wang [18] first considered the
level of ambiguity aversion and Maenhout [19] proposed “homothetic robustness” to study ambiguity
aversion. Recently, many scholars have studied the RI problem under the ambiguity aversion
framework. Li et al. [20] proposed a class of MV criterion, called the α-maxmin MV criterion, and
applied it to the RI problem under ambiguity aversion. Zeng et al. [21] studied the time-consistent RI
problem under ambiguity aversion. Li et al. [22] considered a robust optimal excess-of-loss RI problem
under ambiguity aversion. Pun [23] established a general analytical framework for an ambiguity-averse
agent with time-inconsistent preference. Chen and Yang [24] studied the RI problem under ambiguity
aversion with correlated claims. Inside information plays an important role in practice. Peng and
Wang [25] and Yang [26] considered RI problems with inside information. Furthermore, Peng et al.
[27] extended the results of Peng and Wang [25] and Yang [26] to that under the case of ambiguity
aversion. Jiang and Yang [28] considered the robust optimal RI in a liquid financial market under the
variance premium principle. However, these papers only derived robust RI strategies under ambiguity
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aversion for a single insurer. Wang et al. [29] studied the RI problem for two competitive insurers
under ambiguity aversion, Yang [30] considered the RI problem for an insurer and a reinsurer with
competition under ambiguity aversion however, they did not consider the cooperation case. Therefore,
the optimal RI strategy obtained by them may not be available for n > 2 competitive and cooperative
insurers.

In this paper, we provide an innovative study about the RI problem for n competitive and cooperative
insurers under ambiguity aversion. Regarding the first and the third kinds of literature mentioned
above, we study the RI problem for n competitive and cooperative insurers. Regarding the second
kind of literature mentioned above, we study the RI problem for ambiguity-averse and cooperative
insurers. Considering the work of Yang et al. [15] and Wang et al. [29], we propose a competitive
and cooperative model for n insurers. To be specific, the surplus process for each insurer follows
the Brownian motion with drift; the financial market consists of one risk-free asset and n risky asset,
whose price processes are correlated. We assume that the n insurers can be ambiguity-averse and seek
a robust optimal RI strategy among a family of alternative probability measures. By the technique
of stochastic control theory, the closed-form optimal RI strategy and the corresponding optimal value
function (OVF) are obtained.

The main contributions of this paper are as follows:

• We first study a robust RI problem for n > 2 insurers under ambiguity aversion and consider
multiple interactions, which arise from the insurance market, the financial market, the competition
and the cooperation mechanism.
• We first consider n insurers that are competitive and cooperative under an ambiguity aversion

framework. Through numerical research, we find that competition and cooperation have an
important influence on the insurer’s decision-making.
• We obtain many meaningful phenomena and provide important suggestions for RI in reality.

The rest of this paper is organized as follows. The RI problem with ambiguity aversion is presented
in Section 2. In Section 3, we introduce the competition and the cooperation mechanism among n
insurers and provide the corresponding robust stochastic optimization problem for them. In Section
4, we obtain the main result for n competitive insurers. In Section 5, we derive the main result for
n cooperative insurers. In Section 6, we illustrate our theoretical results for two insurers through
numerical experiments. The conclusion of this paper is given in Section 7.

2. RI problem with ambiguity aversion

In this section, we propose an RI problem with ambiguity aversion for n insurers. Throughout
this paper, (Ω,F , {Ft}t≥0,P) is a filtered probability space satisfying the usual conditions. Here F :=
{Ft, t ∈ [0,T ]}, Ft is a filtration, which is generated by 2n Brownian motions W1(t),W2(t), · · · ,Wn(t),
W1(t),W2(t), · · · ,Wn(t). For a detailed introduction about Ft, one can refer to Karatzas and Shreve
[31]. P is a reference measure, T is the termination time of the RI, which is a definite constant. For the
case of a random termination time, one can refer to Chen et al. [32] and Xu et al. [33]. In what follows,
all stochastic processes are assumed to be adapted to F . We assume that there are no transaction costs
or taxes in trading and that the trading occurs continuously.
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2.1. RI model

The insurer i’s cumulative claims in the time interval [0, t] is denoted by
∑Ki(t)

k=1 Y i
k. Here {Y i

k, k =
1, 2, · · · } is a sequence of independent and identically distributed random variables, the common
random variables of {Y i

k, k = 1, 2, · · · } are denoted by Y i. Denote the expectation and second-order
moment of Y i by µi1 = E(Y i) < +∞ and µi2 = E[(Y i)2] < +∞, respectively. Ki(t) = N(t) + Ni(t). Ni(t)
and N(t) are two mutually independent homogeneous Poisson processes with intensities λi ≥ 0 and
λ ≥ 0, respectively. Hence Ki(t) = N(t)+N1(t) is a Poisson process with an intensity of λ+ λi. Poisson
process N(t) is the first source of the interaction mechanism of n insurers.

To manage and control the risk exposures, we now take into account proportional reinsurance. Let
ai(t) ∈ [0, 1] represent the retention level of reinsurance acquired at time t, which means that the
insurer pays ai(t)Y i of a claim occurring at time t and the reinsurer pays (1 − ai(t))Y i. Because the
variance premium principle contains the first and second moment information of a claim, while the
expected value premium principle only contains the first moment information of a claim, compared
with the expected value premium principle, the variance premium principle may better reflect the
claim information, thus enabling the insurer and the reinsurer to sign reinsurance contracts as soon as
possible. Therefore, we consider the variance premium principle. We assume that ξi > 0 is the safety
loading of the reinsurer. Then, the reinsurance premium is given by

E

Ki(t)∑
k=1

(Y i
k − ai(t)Y i

k))

 + ξiVar

Ki(t)∑
k=1

(Y i
k − ai(t)(Y i

k))


=(1 − ai(t))(λ + λi)tµi1 + ξi(1 − ai(t))2(λ + λi)µi2t.

(2.1)

To solve the robust stochastic optimization problem in this paper explicitly, similar to Bensoussan et
al. [8] and Chen and Yang [24], we consider the diffusion approximation model. Concretely, according
to Grandell [34], we have

Ki(t)∑
k=1

Y i
k ≈ (λ + λi)µi1t −

√
(λ + λi)µi2Wi(t), (2.2)

where Wi(t) is a standard Brownian motion. For any two Brownian motions Wi(t) and Wm(t), i ,
m ∈ {1, 2, · · · , n}, we assume that they are correlated with the correlation coefficient being ρim :=

λµi1µm1√
(λ+λi)(λ+λm)µi2µm2

. By using the approximation, the insurer i’s surplus process Xai
i (t) is given by

dXai
i (t) =

[
ηi(λ + λi)µi1 − ξi(1 − ai(t))2(λ + λi)µi2

]
dt + ai(t)

√
(λ + λi)µi2Wi(t), (2.3)

where ηi > 0 is the insurer i’s safety loading and the premium is calculated by using the expectation
value principle. To exclude the insurer’s arbitrage behavior, we require that ξi > ηi.

In addition to adopting reinsurance, we assume that the insurers are allowed to invest in a financial
market consisting of one risk-free asset and n correlated stocks, referred to as stock 1, 2, · · ·, n. We
assume that S 0(t) and S i(t) are the price processes for the risk-free asset and the stock i, respectively.
dS 0(t) = rS 0(t)dt, r > 0 is the interest rate; dS i(t) = S i(t)

[
µidt + σidW i(t)

]
,* µi ≥ r is the appreciation

*Here, we assume that the price process for a stock satisfies the conditions of geometric Brownian motion. One can also consider
the price process for a stock with jumps (see, for example, Yang et al. [4], Chen and Yang [24] and Li et al. [35]), with the mispricing
phenomenon (see, for example, Wang et al. [5], Ma et al. [36] and Liu et al. [37]), with stochastic volatility (see, for example, Kang et
al. [38] and Wang et al. [39]) and with Markov chain modulation (see, for example Bensoussan et al. [8] and Xu et al. [40]).
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rate, σi > 0 is the volatility and W i(t) is a standard Brownian motion. For any i , m ∈ {1, 2, · · · , n},
there are two Brownian motions W i(t) and Wm(t) with a correlation coefficient of ρ̄im, ρ̄im ∈ [−1, 1]. We
assume that, for any i ∈ {1, 2, · · · , n}, the Brownian motions Wi(t) and W i(t) are mutually independent.
The correlation coefficient ρ̄im is the second source of the interaction mechanism of n insurers.

Each insurer can invest in the financial market to increase their wealth. We assume that each insurer
invests in a unique and different stock, i.e., different insurers think that the most profitable stock is
different, and each insurer chooses to invest in what they think to be the most profitable stock. It may
be assumed that insurer i thinks the most profitable stock is stock i; then, insurer i only invests in stock
i, i = 1, 2, · · · , n. Let πi(t) be the amount of money invested in the stock i at time t by the insurer i, and
the remaining portion of the money is invested in the risk-free asset. Denote ui(t) = (ai(t), πi(t)); then,
the wealth process Xui

i (t) of the insurer i with RI becomes

dXui
i (t) =

[
ηi(λ + λi)µi1 − ξi(1 − ai(t))2(λ + λi)µi2 + rXui

i (t) + (µi − r)πi(t)
]
dt

+ ai(t)
√

(λ + λi)µi2dWi(t) + πi(t)σidW i(t).
(2.4)

2.2. Ambiguity aversion

As we explained in the introduction, insurers are usually ambiguity-averse. Now, we incorporate
ambiguity aversion into our RI problem. To define the wealth process under ambiguity aversion, we
first introduce a process ϕi(t) = (θi(t), θ̄i(t)) satisfying the following conditions:

(i) For each t ∈ [0,T ], ϕi(t) is progressively measurable with respect to Ft;

(ii) E
{
exp

{
1
2

∫ T

0
(θi(t))2dt + 1

2

∫ T

0
(θ̄i(t))2dt

}}
< +∞. Here, the expectation is calculated under

probability measure P.
The space of all such processes ϕi(t) is denoted by Φi(t).
Furthermore, a real-valued process {Λϕi(t)|t ∈ [0,T ]} on (Ω,F , {Ft}t≥0,P) is defined as

Λϕi(t) = exp
{
−

∫ t

0
θi(s)dWi(s) −

1
2

∫ t

0
(θi(s))2ds −

∫ t

0
θ̄i(s)dW i(s) −

1
2

∫ t

0
(θ̄i(s))2

}
ds.

By the definition of ϕi(t), we know that Λϕi(t) is a P-martingale; then, we have that E[Λϕi(T )] = 1.
Now, we define a new probability measure Qi, which is absolutely continuous with respect to P on FT .

Concretely, for each ϕi(t) ∈ Φi(t), we define dQi

dP

∣∣∣∣
FT

:= Λϕi(T ). According to Girsanov’s theorem, under

the alternative measure Qi, the stochastic processes WQi
i (t) and W

Qi
i (t) are standard Brownian motions,

where
dWQi

i (t) = dWi(t) + θi(t)dt, dW
Qi
i (t) = dW i(t) + θ̄i(t)dt. (2.5)

Furthermore, under an ambiguity-aversion framework, the wealth process given by (2.4) becomes

dXui
i (t) =

[
ηi(λ + λi)µi1 − ξi(1 − ai(t))2(λ + λi)µi2 + rXui

i (t) + (µi − r)πi(t) − θ̄i(t)πi(t)σi

−θi(t)ai(t)
√

(λ + λi)µi2

]
dt + ai(t)

√
(λ + λi)µi2dWQi

i (t) + πi(t)σidW
Qi
i (t).

(2.6)

Now, we define the following admissible strategy.
Definition 2.1 A strategy ui(t) (t ∈ [0,T ]) is called an admissible strategy if it satisfies the following

conditions:
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(1) For any t ∈ [0,T ], ui(t) is measurable with respect to Ft;

(2) For any t ∈ [0,T ], ai(t) ∈ [0, 1];

(3) EQi
∗
{∫ T

0

[∑n
i π

2
i (t)

]
dt

}
< +∞, where Qi

∗ is the probability distribution chosen to describe the
worst case;

(4) The stochastic differential equation (2.6) for ui(t) has a unique strong solution.

The set of all admissible RI strategies of the insurer i is denoted byUi.

3. Robust stochastic optimization problem for n competitive and cooperative insurers

In this section, we establish two interaction mechanisms among n insurers, i.e., n insurers are
competitive and n insurers are cooperative, respectively. Considering these two cases, we define the
robust stochastic optimization problem for them, respectively.

3.1. Robust stochastic optimization problem for n competitive insurers

We first establish the competitive mechanism among n insurers.

Many scholars quantified the competition between two insurers based on the relative performance.
In this paper, we set up the competition mechanism for n insurers based on the relative performance.
The benchmark of each insurer’s competition is the average value of the remaining insurer’s wealth,
which is given by

X
(um)m,i

i (t) :=
1

n − 1

n∑
m=1,m,i

Xum
m (t) =

1
n − 1

∑
m,i

Xum
m (t),

where (um)m,i := (u1(t), u2(t), · · · , ui−1(t), ui+1(t), · · · , un(t)).

The relative wealth process X̂ui,(um)m,i
i (t) of the insurer i is defined as

X̂ui,(um)m,i
i (t) = (1 − τi)X

ui
i (t) + τi

(
Xui

i (t) − X
(um)m,i

i (t)
)

= Xui
i (t) − τiX

(um)m,i

i (t),
(3.1)

where the parameter τi ∈ [0, 1] captures the intensity of insurer i’s relative concern and measures
their sensitivity to the average performance of their competitors. The larger τi means that they give
more weight to the relative average performance and care more about increasing their relative wealth,
making competition fiercer. When τi = 0, we return to the single-insurer case.

Based on the above analysis, the relative wealth process X̂ui,(um)m,i
i (t) for the competition case is given
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by

dX̂ui,(um)m,i
i (t) =

ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − ai(t))2(λ + λi)µi2 +
τi

n − 1

·
∑
m,i

ξm(1 − am(t))2(λ + λm)µm2 + rX̂ui,(um)m,i
i (t) + (µi − r)πi(t) −

τi

n − 1

∑
m,i

(µm − r)πm(t)

− θi(t)ai(t)
√

(λ + λi)µi2 +
τi

n − 1

∑
m,i

θm(t)am(t)
√

(λ + λm)µm2 − θ̄i(t)πi(t)σi

+
τi

n − 1

∑
m,i

θ̄m(t)πm(t)σm

 dt + ai(t)
√

(λ + λi)µi2dWQi
i (t)

−
τi

n − 1

∑
m,i

am(t)
√

(λ + λm)µm2dWQi
m (t) + πi(t)σidW

Qi
i (t) −

τi

n − 1

∑
m,i

πm(t)σmdW
Qi
m (t).

(3.2)

Now, we construct the robust stochastic optimization problem for n competitive insurers. Each
insurer seeks to derive a robust RI strategy during the time interval [0,T ] to maximize the expected
terminal wealth while minimizing the variance of the terminal wealth. Let

Jui,(um)m,i
i (t, x̂i) = EQi

t,x̂i
[X̂ui(um)m,i

i (T )] −
γi

2
VarQi

t,x̂i
[X̂ui,(um)m,i

i (T )],

where EQi
t,x̂i

[·] = EQi
[
·
∣∣∣X̂ui,(um)m,i

i (t) = x̂i
]
, VarQi

t,x̂i
[·] = VarQi

[
·
∣∣∣X̂ui,(um)m,i

i (t) = x̂i
]
, γi is the risk-

aversion coefficient for the insurer i. When insurer i is assumed to be ambiguity-neutral, the stochastic
optimization problem is given by

sup
ui∈Ui

Jui,(um)m,i
i (t, x̂i). (3.3)

In this paper, the insurers are assumed to be ambiguity-averse. Then, the robust stochastic
optimization problem under the ambiguity aversion framework for the insurer i can be written as

sup
ui∈Ui

inf
Qi∈Q

{
Jui,(um)m,i

i (t, x̂i) + Dt,x̂i(Qi||P)
}
, (3.4)

where Dt,x̂i(Qi||P) ≥ 0 denotes the generalized Kullback-Leibler (KL) divergence between Qi and
P. The introduction of Dt,x̂i(Qi||P) allows one to measure the ambiguity aversion of the insurer i and
regularize the choices of Qi. The larger the KL divergence, the less the deviations from the reference
model are penalized. When the KL divergence equals 0, the robust stochastic optimization problem
(3.4) reduces to the traditional stochastic optimization problem (3.3).

Our aim was to look for the optimal RI strategy for the robust stochastic optimization problem
(3.4). From Definition 2.1 given by Espinosa and Touzi [41], we know that a Nash equilibrium for the
n insurers is an n-tuple (u∗1(t), u∗2(t), · · · , u∗n(t)) ∈ U1 ×U2 × · · · ×Un such that, for each i = 1, 2, · · · , n,
given (u∗m)m,i, the RI strategy ui(t) is a solution of the stochastic optimization problem (3.4).

Under the non-zero-sum stochastic differential game framework, our main interest is to seek an
equilibrium control strategy (u∗1(t), u∗2(t), · · · , u∗n(t)) ∈ U1 ×U2 × · · · × Un such that

inf
Qi∈Q

{
Ju∗i ,(u

∗
m)m,i

i (t, x̂i) + Dt,x̂i(Qi||P)
}
≥ inf

Qi∈Q

{
Jui,(u∗m)m,i

i (t, x̂i) + Dt,x̂i(Qi||P)
}

(3.5)
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for each i = 1, 2, · · · , n.
The equilibrium value function is defined as follows.
Definition 3.1. (Equilibrium value function). If (3.5) holds, then we define the equilibrium value

function of insurer i as follows:

Ji(t, x̂i) = Ju∗i ,(u
∗
m)m,i

i (t, x̂i) + Dt,x̂i(Q
∗
i ||P) = sup

ui∈Ui

inf
Qi∈Q

{
Jui,(u∗m)m,i

i (t, x̂i) + Dt,x̂i(Qi||P)
}
. (3.6)

Here u∗i = u∗i (t) represents the robust RI strategies for insurer i, i = 1, 2, · · · , n. To ensure that this
strategy is time-consistent, we define the following strategy.

Definition 3.2. If the control strategy (u∗1(t), u∗2(t), · · · , u∗n(t)) exists, we define the following strategy
uεi

uεi (s, x̃) =
{

ui(s, x̃), for (s, x̃) ∈ [t, t + ε) × R,
u∗i (s, x̃), for (s, x̃) ∈ [t + ε,T ] × R.

Here ui ∈ Ui, ε > 0 and (t, x̃) ∈ [0,T ] × R are arbitrarily choosen. If

lim inf
ε→0

Ju∗i ,(u
∗
m)m,i

i (t, x̂i) − Juεi ,(u
∗
m)m,i

i (t, x̂i)
ε

≥ 0

for all ui ∈ Ui and (t, x̃) ∈ [0,T ] × R, then for insurer i, u∗i is called an equilibrium strategy and
Ju∗i ,(u

∗
m)m,i

i (t, x̂i) is the equilibrium value function, i.e., the OVF.
In the following Section 4, we will obtain the optimal strategy and the corresponding OVF for the

robust stochastic optimization problem (3.4). According to the Definition 3.2 and the proof provided
by Björk et al. [42], we can prove that the following optimal strategy is time-consistent.

3.2. Robust stochastic optimization problem for n cooperative insurers

In this part, we define the robust stochastic optimization problem for the cooperation case. First, we
present the cooperative mechanism among n insurers.

Today, most major insurance companies exist as insurance groups. They jointly resist risks and
make profits from investments. In such a cooperative economy, the common wealth process is
controlled by all insurers. We must consider the joint interests of the insurers; the following common
wealth process will be studied:

Xu(t) =
n∑

i=1

κiX
ui
i (t), (3.7)

where κi is the weighted coefficient satisfying κi ∈ [0, 1],
∑n

i=1 κi = 1, and κi takes a role of balancing
the interests among n insurers. The larger the value of κi, the more important the insurer i in the
cooperative group. At the termination time T of the RI, the insurers distribute the common wealth
according to their weighted coefficient κi. Here we can determine κi in different ways, such as through
the insurer’s initial surplus x0

i , i.e., κi =
x0

i∑n
i=1 x0

i
. Combining (2.6) and (3.7) yields the following dynamics
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for n cooperative insurers’ common wealth process:

dXu(t) =

rXu(t) +
n∑

i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − ai(t))2(λ + λi)µi2

+

n∑
i=1

κi(µi − r)πi(t) −
n∑

i=1

θi(t)κiai(t)
√

(λ + λi)µi2 −

n∑
i=1

θ̄i(t)κiπi(t)σi

 dt

+

n∑
i=1

κiai(t)
√

(λ + λi)µi2dWQi
i (t) +

n∑
i=1

κiπi(t)σidW
Qi
i (t).

(3.8)

The robust stochastic optimization problem for n cooperative insurers under a time-consistent MV
framework is given as follows:

J̄(t, x) = max
u∈U

inf
Q∈Q

{
J̄u(t, x) + Dt,x(Q||P)

}
= max

u∈U
inf
Q∈Q

{
Et,x(Xu

T ) −
γ

2
Vart,x(Xu

T ) + Dt,x(Q||P)
}
, (3.9)

where Q = (Q1,Q2, · · · ,Qn), U = (U1,U1, · · · ,Un) and γ > 0 measures the group’s risk aversion;
J̄(t, x) is OVF.

Similar to Definition 3.2, we can obtain the equilibrium strategy for n cooperative insurers, which
is time-consistent. To avoid duplication, we omit it here.

4. Solution to n competitive insurers

In this section, we are devoted to deriving a robust optimal RI strategy and the corresponding OVF
for n competitive insurers. Some special cases of our model are also provided, which show that our
model and results extend some existing ones in the literature. We first derive the closed-form the
robust optimal RI strategy and the corresponding OVF for n insurers; then, we derive the explicit
robust optimal RI strategy and the corresponding OVF for two insurers.

To analytically evaluate the robust stochastic optimization problem, we specify the form of
Dt,x̂i(Qi||P). Inspired by Maenhout [19], we assume that Dt,x̂i(Qi||P) satisfies the following form

Dt,x̂i(Qi||P) = EQi
t,x̂i


∫ T

t

 θ2
i

2ψi(s, X̂ui,(um)m,i
i (s))

+
θ̄2

i

2ψ̄i(s, X̂ui,(um)m,i
i (s))

 ds

 .
Here ψi(t, X̂

ui,(um)m,i
i (t)) and ψ̄i(t, X̂

ui,(um)m,i
i (t)) are nonnegative and capture the insurers’ ambiguity

aversions. The larger the values of ψi(t, X̂
ui,(um)m,i
i (t)) and ψ̄i(t, X̂

ui,(um)m,i
i (t)), the more ambiguity-averse

the insurers. To render the above robust stochastic optimization problem analytically tractable, we
assume that ψi(t, X̂ui,(um)m,i

i (t)) = αi and ψ̄i(t, X̂
ui,(um)m,i
i (t)) = ᾱi, where αi and ᾱi are nonnegative (cf.

Maenhout [19]).
Let C1,2([0,T ]×R) denote the space ofΨ(t, x̂i) such thatΨ(t, x̂i) and its derivativesΨt(t, x̂i),Ψx̂i(t, x̂i),

Ψx̂i x̂i(t, x̂i) are continuous on [0,T ]×R. For any Ψ(t, x̂i) ∈ C1,2([0,T ]×R), and any fixed ui(t) ∈ Ui, the
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infinitesimal generatorAui,(u∗m)m,i,ϕi,(ϕ∗m)m,i is defined as

Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,iΨ(t, x̂i)

=Ψt(t, x̂i) +

ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − ai(t))2

·(λ + λi)µi2 +
τi

n − 1

∑
m,i

ξm(1 − am(t))2(λ + λm)µm2 + rx̂ + (µi − r)πi(t)

−
τi

n − 1

∑
m,i

(µm − r)πm(t) − θi(t)ai(t)
√

(λ + λi)µi2 +
τi

n − 1

∑
m,i

θm(t)am(t)
√

(λ + λm)µm2

− θ̄i(t)πi(t)σi +
τi

n − 1

∑
m,i

θ̄m(t)πm(t)σm

Ψx̂i(t, x̂i) +
1
2

g(ui, um)Ψx̂i x̂i(t, x̂i),

(4.1)

where

g(ui, um) = g1(ai, am) + g2(πi, πm) = Cai,(am)m,i
1 D1(Cai,(am)m,i

1 )T + Cπi,(πm)m,i
2 D2(Cπi,(πm)m,i

2 )T , (4.2)

Cai,(am)m,i
1 =

−τia1(t)
√

(λ + λ1)µ12

n − 1
, · · · ,−

τiai−1(t)
√

(λ + λi−1)µ(i−1)2

n − 1
, ai(t)

√
(λ + λi)µi2,

−
τiai+1(t)

√
(λ + λi+1)µ(i+1)2

n − 1
, · · · ,−

τian(t)
√

(λ + λn)µn2

n − 1

 ,
(4.3)

Cπi,(πm)m,i
2 =

[
−
τiπ1(t)σ1

n − 1
, · · · ,−

τiπi−1(t)σi−1

n − 1
, πi(t)σi,−

τiπi+1(t)σi+1

n − 1
, · · · ,−

τiπn(t)σn

n − 1

]
, (4.4)

D1 =


1 ρ12 · · · ρ1(n−1) ρ1n

ρ12 1 · · · ρ2(n−1) ρ2n

. . . . . . . . . . . . . . .

ρ1n ρ2n . . . ρ(n−1)n 1

 ,D2 =


1 ρ̄12 · · · ρ̄1(n−1) ρ̄1n

ρ̄12 1 · · · ρ̄2(n−1) ρ̄2n

. . . . . . . . . . . . . . .

ρ̄1n ρ̄2n . . . ρ̄(n−1)n 1

 . (4.5)

In order to derive the robust optimal RI strategy and the corresponding OVF, we provide the
following important theorem.

Theorem 4.1. (Verification theorem). Suppose that there exist two real functions Vi(t, x̂i) ∈
C1,2([0,T ]×R), hi(t, x̂i) ∈ C1,2([0,T ]×R) satisfying the following extended Hamilton-Jacobi-Bellman
(HJB) equation system:

sup
ui∈Ui

inf
ϕi∈Φi

{
Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,iVi(t, x̂i) −Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,i

γi

2
h2

i (t, x̂i)

+γihi(t, x̂i)Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,ihi(t, x̂i) +
θ2

i (s)
2αi
+
θ̄2

i (s)
2ᾱi(s)

}
= 0,Vi(T, x̂i) = x̂i,

(4.6)

Au∗i ,(u
∗
m)m,i,ϕ

∗
i ,(ϕ

∗
m)m,ihi(t, x̂i) = 0, hi(T, x̂i) = x̂i; (4.7)
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here,

u∗i (t) = arg sup
ui∈Ui

inf
ϕi∈Φi

{
Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,iVi(t, x̂i) −Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,i

γi

2
h2

i (t, x̂i)

+γihi(t, x̂i)Aui,(u∗m)m,i,ϕi,(ϕ∗m)m,ihi(t, x̂i) +
θ2

i (s)
2αi
+
θ̄2

i (s)
2ᾱi(s)

}
.

(4.8)

Then u∗i (t) is the robust optimal RI strategy and Vi(t, x̂i) is the corresponding OVF, i.e., Vi(t, x̂i) =
Ji(t, x̂i).

Before giving the main results, we define the following notations:

δi = (λ + λi)µi2

[
2ξi + (αi + γi)er(T−t)

]
,

ζi = λµi1γier(T−t) τi
n−1 , βi = 2ξi(λ + λi)µi2,

δ̄i = (γi + ᾱi)σ2
i , ζ̄i =

σiγiτi
n−1 , β̄i = (µi − r)e−r(T−t),

δ̂i = (λ + λi)µi2

[
2ξi + γier(T−t)

]
, β̂i = 2ξi(λ + λi)µi2.

(4.9)

Now, we give the main results for n competitive insurers.
Theorem 4.2. The solution to the robust stochastic optimization problem (3.4) is as follows. The

insurer i’s robust optimal reinsurance strategy (ORS) is a∗i (t) = (0 ∨ āi(t)) ∧ 1, āi(t) is the solution of
the following system of linear equations

δ1a1(t) − ζ1µ21a2(t) − · · · − ζ1µ(n−1)1an−1(t) − ζ1µn1an(t) = β1,

−ζ2µ11a1(t) + δ2a2(t) − · · · − ζ2µ(n−1)1an−1(t) − ζ2µn1an(t) = β2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−ζnµ11a1(t) − ζnµ21a2(t) − · · · − ζnµ(n−1)1an−1(t) + δnan(t) = βn;

(4.10)

the insurers’ robust optimal investment strategy (OIS) (π∗1(t), π∗2(t), · · · , π∗n(t)) is the solution of the
following system of linear equations

δ̄1π1(t) − ζ̄1σ2ρ̄12π2(t) − · · · − ζ̄1σn−1ρ̄1(n−1)πn−1(t) − ζ̄1σnρ̄1nπn(t) = β̄1,

−ζ̄2σ1ρ̄12π1(t) + δ̄2π2(t) − · · · − ζ̄2σn−1ρ̄2(n−1)πn−1(t) − ζ̄2σnρ̄2nπn(t) = β̄2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−ζ̄nσ1ρ̄1nπ1(t) − ζ̄nσ2ρ̄2nπ2(t) − · · · − ζ̄nσn−1ρ̄(n−1)nπn−1(t) + δ̄nπn(t) = β̄n;

(4.11)

the worst-case measures are given by

θ∗i (t) = a∗i (t)αi

√
(λ + λi)µi2er(T−t), (4.12)

θ̄∗i (t) = π∗i (t)σiᾱier(T−t), (4.13)

and the corresponding OVF for the insurer i is given by

Vi(t, x̂i) = x̂ie−r(T−t) +
Bi(t)
γi

, (4.14)
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where

Bi(t) = γi

∫ T

t


ηi(λ + λi)µi1 −

τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − a∗i (s))2(λ + λi)µi2

+
τi

n − 1

∑
m,i

ξm(1 − a∗m(s))2(λ + λm)µm2 + (µi − r)π∗i (t) −
τi

n − 1

∑
m,i

(µm − r)π∗m(s)

+
τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)
√

(λ + λm)µm2 +
τi

n − 1

∑
m,i

θ̄∗m(t)π∗m(t)σm

 er(T−s)

−
γi

2
g(u∗i , u

∗
m)e2r(T−s) −

1
2

[
a∗2i (s)αi(λ + λi)µi2 + π

∗2
i (s)σ2

i ᾱi

]
e2r(T−s)

}
ds,

(4.15)

and i = 1, 2, · · · , n.
Proof. Please see Appendix A. □

From Appendix A, we have the following findings:

λγiµi1er(T−t)

(λ + λi)µi2[2ξi + (αi + γi)er(T−t)]
τi

n − 1

∑
m,i

a∗mµm1

which is a measure of the insurer i’s sensitivity to their competitors’ reinsurance strategies; also,

γi

(ᾱi + γi)σi

τi

n − 1

∑
m,i

π∗m(t)σmρ̄im

which is a measure of the insurer i’s sensitivity to their competitors’ investment strategies.
Now, we give some special cases of our general model. We can obtain the corresponding optimal

strategies for these cases as we did in Theorem 4.2; the proofs are omitted.
Corollary 4.1. If τi = 0, i.e., we do not consider the competition, the insurer i’s robust ORS

becomes

a∗i (t) =
2ξi

2ξi + (αi + γi)er(T−t) , (4.16)

and the insurer i’s robust OIS becomes

π∗i (t) =
µi − r

(ᾱi + γi)σ2
i er(T−t)

. (4.17)

We find that the robust ORS given by (4.16) is similar to that in Theorem 4.1 presented by Yi et al.
[43], which considers the robust RI for an insurer under the expected premium principle. Moreover,
the robust OIS given by (4.17) is similar to that in Proposition 1 presented by Maenhout [19].

Corollary 4.2. If λ = 0 and ρ̄im = 0, i.e., the interaction arising from the insurance and finance
markets is not considered, the insurer i’s robust optimal RI strategies are given by (4.16) and (4.17),
respectively.

From Corollary 4.2, we find that even though the competition exists, the robust optimal RI strategy is
not affected by the competition parameter τi. Therefore, we can get such a conclusion that competition
plays a role only in interrelated individuals and groups.

AIMS Mathematics Volume 8, Issue 10, 25131–25163.



25143

Corollary 4.3. If αi = 0 and ᾱi = 0, i.e., the ambiguity is not considered, the insurer i’s robust ORS
is given by

a∗i (t) =
2ξi(λ + λi)µi2 +

λγiµi1τi
n−1 er(T−t) ∑

m,i a∗mµm1

(λ + λi)µi2[2ξi + γier(T−t)]
∧ 1, (4.18)

and the insurer i’s robust OIS is given by

π∗i (t) =
(µi − r) + γiσiτi

n−1 er(T−t) ∑
m,i π

∗
m(t)σmρ̄im

γiσ
2
i er(T−t)

. (4.19)

Corollary 4.4. If αi = 0, ᾱi = 0 and τi = 0 (resp. λ = 0 and ρ̄im = 0), i.e., the ambiguity and relative
performance (resp. interaction arising from the insurance and finance markets) are not considered, the
insurer i’s robust ORS is given by

a∗i (t) =
2ξi

2ξi + γier(T−t) , (4.20)

and the insurer i’s robust OIS is given by

π∗i (t) =
µi − r

γiσ
2
i er(T−t)

. (4.21)

We find that the optimal RI strategies given by (4.20) and (4.21) are similar to that in Theorem 2
presented by Zeng and Li [44], which considers RI for an insurer under the expected premium principle.
In other words, the model presented by Zeng and Li [44] can be taken as a special case of our model.

In what follows, we solve the stochastic optimization problem (3.4) for the situation with two
insurers. In this case, we can derive the explicit solutions.

Theorem 4.3. For the wealth process described by (3.2) with two insurers, the insurer 1’s robust
ORS is a∗1(t) = ǎ1(t) ∧ 1, where ǎ1(t) is given by

ǎ1(t) =
β1δ2 + β2τ1γ1λµ11µ21er(T−t)

δ1δ2 − τ1τ2γ1γ2e2r(T−t)(λµ11µ21)2 ; (4.22)

the insurer 1’s robust OIS is given by

π∗1(t) =
β̄1δ̄2 + β̄2τ1γ1σ1σ2ρ̄12

δ̄1δ̄2 − τ1τ2γ1γ2(σ1σ2ρ̄12)2
; (4.23)

the insurer 2’s robust ORS is a∗2(t) = ǎ1(t) ∧ 1, where ǎ2(t) is given by

ǎ2(t) =
β2δ1 + β1τ2γ2λµ11µ21er(T−t)

δ1δ2 − τ1τ2γ1γ2e2r(T−t)(λµ11µ21)2 ; (4.24)

the insurer 2’s robust OIS is given by

π∗2(t) =
β̄2δ̄1 + β̄1τ2γ2σ1σ2ρ̄12

δ̄1δ̄2 − τ1τ2γ1γ2(σ1σ2ρ̄12)2
; (4.25)

the worst-case measures are given by

θ∗1(t) =
(β1δ2 + β2τ1γ1λµ11µ21er(T−t))α1

√
(λ + λ1)µ12er(T−t)

δ1δ2 − τ1τ2γ1γ2e2r(T−t)(λµ11µ21)2 , (4.26)
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θ̄∗1(t) =
(β̄1δ̄2 + β̄2τ1γ1σ1σ2ρ̄12)π∗1σ1ᾱ1er(T−t)

δ̄1δ̄2 − τ1τ2γ1γ2(σ1σ2ρ̄12)2
, (4.27)

θ∗2(t) =
(β2δ1 + β1τ2γ2λµ11µ21er(T−t))α2

√
(λ + λ2)µ22er(T−t)

δ1δ2 − τ1τ2γ1γ2e2r(T−t)(λµ11µ21)2 , (4.28)

θ̄∗2(t) =
(β̄2δ̄1 + β̄1τ2γ2σ1σ2ρ̄12)σ2ᾱ2er(T−t)

δ̄1δ̄2 − τ1τ2γ1γ2(σ1σ2ρ̄12)2
; (4.29)

the insurer i’s OVF is given by

Vi(t, x̂i) = x̂ier(T−t) +
Bi(t)
γi

, (4.30)

where

Bi(t) = γi

∫ T

t

{[
ηi(λ + λi)µi1 − τiηm(λ + λm)µm1 − ξi(1 − a∗i (s))2(λ + λi)µi2 + τiξm(1 − a∗m(s))2

· (λ + λm)µm2 + (µi − r)π∗i (t) − τi(µm − r)π∗m(t) + τiθ
∗
m(t)a∗m(t)

√
(λ + λm)µm2 + τiθ̄

∗
m(t)π∗m(t)σm

]
× er(T−s) −

γi

2

[
π∗2i (t)σ2

i + τ
2
i π
∗2
m (t)σ2

m − 2ρ̄imτiσiσmπ
∗
i (t)π∗m(t) + a∗2i (t)(λ + λi)µi2 + τ

2
i a∗2m (t)

× (λ + λm)µm2 − 2λµi1µm1τia∗i (t)a∗m(t)
]
e2r(T−s) −

1
2

[
a∗2i (s)αi(λ + λi)µi2 + π

∗2
i (s)σ2

i ᾱi

]
e2r(T−s)

}
ds,

(4.31)

for i , m ∈ {1, 2}.
Proof. Please see Appendix B. □
Corollary 4.5. If the ambiguity is not considered for two insurers, the insurer 1’s ORS is given by

a∗1(t) =
β̂1δ̂2 + β̂2τ1γ1λµ11µ21er(T−t)

δ̂1δ̂2 − τ1τ2γ1γ2e2r(T−t)(λµ11µ21)2
∧ 1, (4.32)

the insurer 1’s OIS is given by

π∗1(t) =
e−r(T−t)

1 − τ1τ2ρ̄
2
12

[
µ1 − r
γ1σ

2
1

+
(µ2 − r)τ1ρ̄12

γ2σ1σ2

]
, (4.33)

the insurer 2’s ORS is given by

a∗2(t) =
β̂2δ̂1 + β̂1τ2γ2λµ11µ21er(T−t)

δ̂1δ̂2 − τ1τ2γ1γ2e2r(T−t)(λµ11µ21)2
∧ 1 (4.34)

and the insurer 2’s OIS is given by

π∗2(t) =
e−r(T−t)

1 − τ1τ2ρ̄
2
12

[
µ2 − r
γ2σ

2
2

+
(µ1 − r)τ2ρ̄12

γ1σ1σ2

]
. (4.35)

We find that the ORSs given by (4.32) and (4.34) reduce to that in Theorem 4.3 presented by
Deng et al. [10], which considers RI for two insurers under the condition of maximizing the expected
exponential utility. Moreover, (4.33) and (4.35) reduce to that in Theorem 1 presented by Hu and Wang
[11]. This means that our model extends the model presented by Deng et al. [10] and Hu and Wang
[11] to n insurers with ambiguity aversion.
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5. Solution to n cooperative insurers

To analytically evaluate the robust stochastic optimization problem (3.9) for the cooperation case,
Dt,x(Q||P) is given as follows:

Dt,x(Q||P) = EQ
t,x


∫ T

t

n∑
i=1

[
θ2

i (s)
2αi
+
θ̄2

i (s)
2ᾱi

]
ds

 .
Similar to Theorem 4.1, we give the following verification theorem for n cooperative insurers.
Theorem 5.1. Suppose that there exist V̄(t, x) ∈ C1,2([0,T ] × R) and h̄(t, x) ∈ C1,2([0,T ] × R)

satisfying the following extended HJB equations
(i) For all (t, x) ∈ [0,T ] × R

sup
u∈U

inf
ϕ∈Φ

V̄t(t, x) +

rx +
n∑

i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − ai(t))2(λ + λi)µi2 +

n∑
i=1

κi(µi − r)πi(t)

−

n∑
i=1

θi(t)κiai(t)
√

(λ + λi)µi2 −

n∑
i=1

θ̄i(t)κiπi(t)σi

 V̄x(t, x) +
1
2
[
V̄xx(t, x) − γh̄2

x(t, x)
]

×

 n∑
i=1

κ2
i a2

i (t)(λ + λi)µi2 +

n∑
i=1

∑
m,i

κiκmλµi1µm1ai(t)am(t) +
n∑

i=1

κ2
i σ

2
i π

2
i (t)

+

n∑
i=1

n∑
m,i

κiκmσiσmρ̄imπi(t)πm(t)

 + n∑
i=1

θ2
i (s)
2αi
+

n∑
i=1

θ̄2
i (s)
2ᾱi

 = 0.

(5.1)

(ii) For all (t, x) ∈ [0,T ] × R

h̄t(t, x) +

rx +
n∑

i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − a∗i (t))2(λ + λi)µi2 +

n∑
i=1

κi(µi − r)π∗i (t)

−

n∑
i=1

θ∗i (t)κia∗i (t)
√

(λ + λi)µi2 −

n∑
i=1

θ̄∗i (t)κiπ
∗
i (t)σi

 h̄x(t, x) +

 n∑
i=1

κ2
i a∗2i (t)(λ + λi)µi2

+

n∑
i=1

∑
m,i

κiκmλµi1µm1a∗i (t)a∗m(t) +
n∑

i=1

κ2
i σ

2
i π
∗2
i (t) +

n∑
i=1

n∑
m,i

κiκmσiσmρ̄imπ
∗
i (t)π∗m(t)

 h̄xx(t, x)

+

n∑
i=1

θ∗2i (s)
2αi

+

n∑
i=1

θ̄∗2i (s)
2ᾱi

= 0.

(5.2)

(iii) For x ∈ R,
V̄(T, x) = x, h̄(T, x) = x.

Then, u∗(t) is the robust optimal RI strategy and V̄(T, x) is the corresponding OVF, i.e., V̄(T, x) =
J̄(t, x).

For notational convenience, we define the following notations: ∆̆i =
[
2κiξie−r(T−t) + (αi + γ)κ2

i

]
(λ + λi)µi2,

Υi = 2ξi(λ + λi)µi2e−r(T−t), Ῡi = (µi − r)e−r(T−t).
(5.3)
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By Theorem 5.1, we can obtain the following theorem.
Theorem 5.2. For the wealth process given by (3.8), the solution to the robust stochastic

optimization problem (3.9) is as follows. The insurer i’s robust ORS is a∗i (t) = (0 ∨ ái(t)) ∧ 1, where
ái(t) is the solution of the following system of linear equations

∆̆1a1(t) + γκ1κ2λµ11µ21a2(t) + · · · + γκ1κnλµ11µn1an(t) = κ1Υ1,

γκ2κ1λµ21µ11a1(t) + ∆̆2a2(t) + · · · + γκ2κnλµ21µn1an(t) = κ2Υ2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

γκnκ1λµn1µ11a1(t) + γκnκ2λµn1µ21an(t) + · · · + ∆̆nan(t) = κnΥn;

(5.4)

the insurers’ robust OIS (π∗1(t), π∗2(t), · · · , π∗n(t)) is the solution of the following system of linear
equations

κ2
1σ

2
1(ᾱ1 + γ)π1(t) + γκ1κ2σ1σ2ρ̄12π2(t) + · · · + γκ1κnσ1σnρ̄1nπn(t) = κ1Ῡ1,

γκ2κ1σ2σ1ρ̄21π1(t) + κ2
2σ

2
2(ᾱ2 + γ)π2(t) + · · · + γκ2κnσ2σnρ̄2nπn(t) = κ2Ῡ2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

γκnκ1σnσ1ρ̄n1π1(t) + γκnκ2σnσ2ρ̄n2π2(t) + · · · + κ2
nσ

2
n(ᾱn + γ)πn(t) = κnῩn.

(5.5)

The market strategies are given by

θi(t) = κiαi

√
(λ + λi)µi2a∗i (t)er(T−t), θ̄i(t) = κiᾱiσiπ

∗
i (t)er(T−t), i = 1, 2, · · · , n. (5.6)

The corresponding OVF is given by

V̄(t, x) = xer(T−t) +
B̂(t)
γ
, (5.7)

where

B̂(t) = γ
∫ T

t


 n∑

i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − a∗i (s))2(λ + λi)µi2 +

n∑
i=1

κi(µi − r)π∗i (s)


× er(T−s) −

1
2

n∑
i=1

κ2
i αi(λ + λi)µi2a∗2i (s)e2r(T−s) −

1
2

n∑
i=1

κ2
i ᾱiσ

2
i π
∗2
i (s)e2r(T−s)

−
γ

2
e2r(T−s)

 n∑
i=1

κ2
i a∗2i (s)(λ + λi)µi2 + 2

∑
m,i

κiκmλµi1µm1a∗i (s)a∗m(s) +
n∑

i=1

κ2
i σ

2
i π
∗2
i (s)

+2
n∑

m,i

κiκmσiσmρ̄imπ
∗
i (s)π∗m(s)


 ds.

(5.8)

Proof. Please see Appendix C. □
In what follows, we solve the robust stochastic optimization problem (3.9) for the two insurers case.

We can obtain the following explicit solution.
Theorem 5.3. For the wealth process given by (3.8) with two insurers, the solution to problem (3.9)

is as follows. The insurer 1’s robust ORS is a∗1(t) = (0 ∨ à1(t)) ∧ 1, where à1(t) is given by

à1(t) =
κ1Υ1∆̆2 − Υ2γκ1κ

2
2λµ11µ21

∆̆1∆̆2 − (γκ1κ2λµ11µ21)2
; (5.9)
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the insurer 1’s robust OIS is given by

π∗1(t) =
κ1Ῡ1σ

2
2(ᾱ2 + γ) − Ῡ2γκ1σ1σ2ρ̄12

κ2
1σ

2
1σ

2
2(ᾱ1 + γ)(ᾱ2 + γ) − (γκ1σ1σ2ρ̄12)2

; (5.10)

the insurer 2’s robust ORS is a∗2(t) = (0 ∨ à2(t)) ∧ 1, where à2(t) is given by

à2(t) =
κ2Υ2∆̆1 − Υ1γκ

2
1κ2λµ11µ21

∆̆1∆̆2 − (γκ1κ2λµ11µ21)2
, (5.11)

and the insurer 2’s robust OIS is given by

π∗2(t) =
κ2Ῡ2σ

2
1(ᾱ1 + γ) − Ῡ1γκ2σ1σ2ρ̄12

κ2
2σ

2
1σ

2
2(ᾱ1 + γ)(ᾱ2 + γ) − (γκ2σ1σ2ρ̄12)2

. (5.12)

The market strategies are given by

θi(t) = κiαi

√
(λ + λi)µi2a∗i (t)er(T−t), θ̄i(t) = κiᾱiσiπ

∗
i (t)er(T−t), i = 1, 2. (5.13)

The OVF is given by

V̄(t, x) = xer(T−t) +
B̂(t)
γ
, (5.14)

where

B̂(t) = γ
∫ T

t


 2∑

i=1

κiηi(λ + λi)µi1 −

2∑
i=1

κiξi(1 − a∗i (s))2(λ + λi)µi2 +

2∑
i=1

κi(µi − r)π∗i (s)


× er(T−s) −

1
2

2∑
i=1

κ2
i αi(λ + λi)µi2a∗2i (s)e2r(T−s) −

1
2

2∑
i=1

κ2
i ᾱiσ

2
i π
∗2
i (s)e2r(T−s)

−
γ

2
e2r(T−s)

 2∑
i=1

κ2
i a∗2i (s)(λ + λi)µi2 + 2κ1κ2λµ11µ21a∗1(s)a∗2(s) +

2∑
i=1

κ2
i σ

2
i π
∗2
i (s)

+2κ1κ2σ1σ2ρ̄12π
∗
1(s)π∗2(s)

]}
ds.

(5.15)

Proof. Please see Appendix D. □
In what follows, we discuss two special cases of our model for two cooperative insurers. We can

derive the corresponding optimal RI strategies for these cases as we did in Theorem 5.2; the proofs are
omitted. The corresponding OVFs can also be similarly obtained; however, the expressions are rather
complicated and are thus omitted here.

Corollary 5.1. If λ = 0, i.e., the interaction arising from the insurance market is not considered, the
insurer 1’s robust ORS is given by

a∗1(t) =
2ξ1e−r(T−t)

2ξ1e−r(T−t) + (α1 + γ)κ1
, (5.16)

and the insurer 2’s robust ORS is given by

a∗2(t) =
2ξ2e−r(T−t)

2ξ2e−r(T−t) + (α2 + γ)κ2
. (5.17)
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If ρ̄12 = 0, i.e., the interaction arising from the finance market is not considered, the insurer 1’s robust
OIS is given by

π∗1(t) =
(µ1 − r)e−r(T−t)

κ1σ
2
1(ᾱ1 + γ)

, (5.18)

and the insurer 2’s robust OIS is given by

π∗2(t) =
(µ2 − r)e−r(T−t)

κ2σ
2
2(ᾱ2 + γ)

. (5.19)

From (5.16)–(5.19), we can see that insurer 1’s (resp. 2’s) robust optimal RI strategies decrease with
respect to κ1 (resp. κ2). In other words, with the increase of the insurer’s weight coefficient, insurers are
more keen to turn to reinsurers to resist risks and reduce their investment in risky assets. This shows
that, as the leader of the group, one should consider the interests of the whole group and take more
cautious RI behavior. We find that the OISs given by (5.18) and (5.19) reduce to that in Theorem 3.1
presented by Zhou et al. [45], which considers the joint interests of the insurer and reinsurer. In other
words, our model extends the model presented by Zhou et al. [45] to n cooperative insurers.

Corollary 5.2. If αi = ᾱi = 0, i.e., the ambiguity is not considered, the insurer 1’s robust ORS is
a∗1(t) = (0 ∨ ã1(t)) ∧ 1, where ã1(t) is given by

ã1(t) =
κ1Υ1

(
2κ2ξ2e−r(T−t) + γκ2

2

)
(λ + λ2)µ22 − κ2Υ2γκ1κ2λµ11µ21(

2κ1ξ1e−r(T−t) + γκ2
1

) (
2κ2ξ2e−r(T−t) + γκ2

2

)
(λ + λ1)µ12(λ + λ2)µ22 − (γκ1κ2λµ11µ21)2

; (5.20)

the insurer 1’s robust OIS is given by

π∗1(t) =
e−r(T−t)

κ1γ(1 − ρ̄2
12)

[
µ1 − r
σ2

1

−
(µ2 − r)ρ̄12

σ1σ2

]
; (5.21)

the insurer 2’s robust ORS is a∗2(t) = (0 ∨ ã2(t)) ∧ 1, where ã2(t) is given by

ã2(t) =
κ2Υ2

(
2κ1ξ1e−r(T−t) + γκ2

1

)
(λ + λ1)µ12 − κ1Υ1γκ1κ2λµ11µ21(

2κ1ξ1e−r(T−t) + γκ2
1

) (
2κ2ξ2e−r(T−t) + γκ2

2

)
(λ + λ1)µ12(λ + λ2)µ22 − (γκ1κ2λµ11µ21)2

, (5.22)

and the insurer 2’s robust OIS is given by

π∗2(t) =
e−r(T−t)

κ2γ(1 − ρ̄2
12)

[
µ2 − r
σ2

2

−
(µ1 − r)ρ̄12

σ1σ2

]
. (5.23)

6. Sensitivity analysis

In this section, we compare the optimal RI strategy and the corresponding OVF for the competition
case, the cooperation case and the case without competition and cooperation. Our aim was to find the
similarities and differences of RI behaviors for these three cases. Suppose that there are two insurers
and two stocks in the insurance and financial markets, respectively. We only report the insurer 1’s
robust optimal RI strategy and corresponding OVF because the similarity of the analysis and the two
insurers are symmetric in terms of properties. The basic parameters are given in Table 1.
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Table 1. Values of model parameters in numerical examples.

r T t λ ρ̄12 γ

0.02 10 0 2 0.2 0.7
Insurer 1 η1 ξ1 λ1 γ1 α1 ᾱ1 τ1 µ1 σ1 x̂1 κ1

0.1 0.2 1 1 0.2 0.9 0.7 0.04 0.3 10 0.5
Insurer 2 η2 ξ2 λ2 γ2 α2 ᾱ2 τ2 µ2 σ2 x̂2 κ2

0.2 0.25 2 1.2 0.7 0.7 0.5 0.06 0.4 10 0.5

6.1. Numerical results for the robust ORS

In this part, we provide the numerical results for the robust ORS. Specifically, we examine the
influences of model parameters on the robust ORS a∗1(t) for three cases, i.e., the competition case,
the cooperation case and the case without competition and cooperation. We assume that the density
function of claim size Y i is e−y for y > 0. Therefore, we obtain that µ11 = µ21 = 1 and µ12 = µ22 = 2.

Figure 1 shows the effect of τ1 on a∗1(t) for the competition case. From Figure 1, we find that
a∗1(t) increases with respect to τ1. A larger τ1 means that the insurer 1 hopes to surpass the wealth
of their competitor, i.e., insurer 2. While taking part in reinsurance can reduce the claim risk, it is
nonetheless costly. This is because the insurer 1 needs to pay a reinsurance premium to the reinsurer.
In this situation, insurer 1 tends to decrease their reinsurance premium, which increases the competition
parameter τ1, which in turn implies increasing a∗1(t).

Figure 2 shows the effect of κ1 on a∗1(t) for the cooperation case. We find that a∗1(t) is a decreasing
function of κ1. As κ1 increases, the status of the insurer 1 in the cooperative group also increases.
To keep the cooperation going, the insurer 1 should make a reinsurance decision from the group’s
perspective. To reduce the risk faced by the entire group, the reinsurance willingness of insurer 1 is
enhanced. This causes the retention proportion of reinsurance to decrease.

τ
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a
* 1
(t

)

0.22

0.23

0.24
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0.26

0.27

0.28

0.29

0.3

0.31

Figure 1. Effect of τ1 on a∗1(t).

κ
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a
* 1
(t
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0.5

0.55

0.6

0.65

Figure 2. Effect of κ1 on a∗1(t).

Figure 3 depicts the effect of ξ1 on a∗1(t) for three cases, i.e., the competition case, the cooperation
case and the case without competition and cooperation. The numerical result shows that a∗1(t) is an
increasing function of ξ1. As the parameter ξ1 increases, the insurer needs to pay more costs to
the reinsurer. Therefore, the insurer decreases their demand for reinsurance, i.e., they increase their
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retention.

Figures 4 and 5 reveal that a∗1(t) is decreasing about α1, γ1 and γ. This is because α1 represents the
ambiguity aversion parameter, and γ1 and γ represent the risk aversion parameters. With the increase
of α1, γ1 and γ, the insurer would purchase more reinsurance to transfer claim risk and ambiguity.
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Competition
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Without Competition and Cooperation

Figure 3. Effect of ξ1 on
a∗1(t).
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Figure 4. Effect of α1 on
a∗1(t).
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Figure 5. Effects of γ
and γ1 on a∗1(t).

Further analyzing Figures 3–5, we can see that the insurer 1 keeps more retention in the cooperation
case than in the other two cases. This implies that cooperation can improve the insurer’s ability to
resist claim risk. From Figures 3–5, we also find that the insurer 1 has the weakest ability to resist risk
when there is no competition and cooperation. This means that both competition and cooperation can
enhance the insurer’s ability to resist claim risk.

6.2. Numerical results for the robust OIS

Now, we present the numerical results for the insurer 1’s robust OIS π∗1(t) for the competition case,
the cooperation case and the case without competition and cooperation.

Figure 6 shows the effect of τ1 on π∗1(t) for the competition case. From Figure 6, we can see that
π∗1(t) increases with respect to τ1. That is, the more the insurer is concerned about outperforming their
competitor, the more money that the insurer would like to invest in the stock. The reason may be
because the presence of relative performance, as each insurer desires to perform well relative to their
competitor. Investing into the stock has a possibility of rapidly increasing income; hence, the insurer
would increase their investments in the stock.

Figure 7 illustrates the effect of κ1 on π∗1(t) for the cooperation case. It is clear that π∗1(t) is a
decreasing function of κ1. As we explained in Figure 2, as κ1 increases, the status of the insurer 1 in
the cooperative group also increases. Their investment decision should then be made from the group’s
perspective. To reduce the investment risk faced by the entire group, the insurer 1 invests very little in
the stock 1.
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Figure 6. Effect of τ1 on π∗1(t).
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Figure 7. Effect of κ1 on π∗1(t).

As shown in Figure 8, π∗1(t) is a decreasing function of ambiguity aversion parameter ᾱ1. Due
to the model uncertainty, a larger ambiguity-aversion parameter will force the insurer to reduce their
investment in the stock.

Figure 9 describes the effect of r on π∗1(t). As r is the risk-free interest rate, the larger the value of
r, the greater the expected income of the risk-free asset, and, hence, the more the insurer will wish to
invest in the risk-free asset. Therefore, π∗1(t) decreases with respect to r.
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Figure 8. Effect of ᾱ1 on π∗1(t).
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Figure 9. Effect of r on π∗1(t).

Figure 10 provides the effect of µ1 on π∗1(t). From Figure 10, we can see that π∗1(t) is an increasing
function of µ1. µ1 stands for the appreciation rate of the stock 1. Therefore, the larger the value of µ1,
the more the insurer will wish to invest in the stock 1.

Figure 11 shows the effect of the volatility σ1 of the stock 1 on π∗1(t). The larger the value of σ1, the
riskier the stock 1, and, hence, the less the insurer will wish to invest in the stock 1. Therefore, π∗1(t)
decreases with respect to σ1.
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Figure 10. Effect of µ1 on π∗1(t).
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Figure 11. Effect of σ1 on π∗1(t).

Further analyzing Figures 8–11, we can see that compared with the competition case and the case
without competition and cooperation, the insurer tends to invest a higher dollar amount in stock in the
cooperation case. This implies that cooperation can improve the insurer’s ability to resist investment
risk. Compared with the other two cases, the insurer’s investment behavior is the most positive in
the cooperation case. The insurer has the weakest ability to resist investment risk when there is no
competition and cooperation.

6.3. Comparison of the OVFs in three cases

Finally, we compare the optimal value functions among the cooperation case, the competition case
and the case without competition and cooperation. We analyze the effects of the financial market model
parameters r, µ1 and σ1 on the OVFs.

From Figure 12, we can see that the OVF for the cooperation case is larger than that for the
competition case and the case without competition and cooperation. This shows that the insurer will
get more benefits under the condition of the cooperation case. This is because, in the cooperation case,
the RI behaviors of the insurer are more aggressive than what we have derived from the numerical
results in Subsections 6.1 and 6.2.
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Figure 12. Effects of r, µ1 and σ1 on the OVFs.
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7. Conclusions

This article extends the results in the literature from two competitive insurers to n > 2 competitive
and cooperative insurers. For n insurers, we have considered three aspects of interaction. First, the
interaction arises from the claim process, i.e., the correlation coefficient ρim. Second, the interaction
arises from the stock price, i.e., the correlation coefficient ρ̄im. Third, the interaction arises from
the competition and cooperation, i.e., the competitive weighting coefficient τi and the cooperative
weighting coefficient κi. Furthermore, we have established the new RI models. Under the MV criterion,
by applying a stochastic control technique and dynamic programming approach, we derived both the
robust optimal RI strategy and the corresponding optimal value function. The numerical experiments
demonstrate the effects of model parameters on the robust optimal RI strategy and the OVF for the
cooperation case, the competition case and the case without competition and cooperation. Through
numerical studies, we have found that the insurers will adopt more active RI decision-making under
the condition of cooperation. Both competition and cooperation can improve the insurer’s income
and the insurer’s strength to resist risk; the insurer obtains the most benefits from cooperation. These
findings are consistent with our understanding. The results and findings can provide guidance for the
insurers making RI decisions.

Use of AI tools declaration

The author declares that he has not used artificial intelligence tools in the creation of this article.

Acknowledgments

This research was supported by the Natural Science Basic Research Program of Shaanxi of China
(Program No. 2023-JC-YB-002) and the Humanities and Social Sciences Research Project of the
Ministry of Education of China (Program No. 21XJC910001).

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

AIMS Mathematics Volume 8, Issue 10, 25131–25163.



25154

Appendix A. Proof of Theorem 4.2.

Proof. First, we rewrite the extended HJB equation (4.6) as

sup
ui∈Ui

inf
ϕi∈Φi

∂Vi(t, x̂i)
∂t

+

rx̂i + ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − ai(t))2(λ + λi)µi2

+
τi

n − 1

∑
m,i

ξm(1 − a∗m(t))2(λ + λm)µm2 + (µi − r)πi(t) −
τi

n − 1

∑
m,i

(µm − r)π∗m(t) − θi(t)ai(t)

·
√

(λ + λi)µi2 +
τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)
√

(λ + λm)µm2 − θ̄i(t)πi(t)σi +
τi

n − 1

∑
m,i

θ̄∗m(t)π∗m(t)σm


×
∂Vi(t, x̂i)
∂x̂i

+
1
2

g(ui, u∗m)
∂2Vi(t, x̂i)

∂x̂2
i

− γi

(
∂hi(t, x̂i)
∂x̂i

)2 + θ2
i (s)
2αi
+
θ̄2

i (s)
2ᾱi(s)

 = 0.

(A.1)

According to the first-order optimality conditions, the functions θi(t) and θ̄i(t), which realize the
infimum part of (A.1), are respectively given by θ∗i (t) = ai(t)αi

√
(λ + λi)µi2

∂Vi(t,x̂i)
∂x̂i

,

θ̄∗i (t) = πiσiᾱi
∂Vi(t,x̂i)
∂x̂i

.
(A.2)

Inserting (A.2) into (A.1) yields

sup
ui∈Ui

∂Vi(t, x̂i)
∂t

+

rx̂i + ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − ai(t))2(λ + λi)µi2

+
τi

n − 1

∑
m,i

ξm(1 − a∗m(t))2(λ + λm)µm2 + (µi − r)πi(t) −
τi

n − 1

∑
m,i

(µm − r)π∗m(t)

+
τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)
√

(λ + λm)µm2 +
τi

n − 1

∑
m,i

θ̄∗m(t)π∗m(t)σm

 ∂Vi(t, x̂i)
∂x̂i

+
1
2

g(ui, u∗m)

×

∂2Vi(t, x̂i)
∂x̂2

i

− γi

(
∂hi(t, x̂i)
∂x̂i

)2 − 1
2

[
a2

i (t)αi(λ + λi)µi2 + π
2
i (t)σ2

i ᾱi

] (∂Vi(t, x̂i)
∂x̂i

)2
 = 0.

(A.3)

Similar to Yang et al. [4], we conjecture that the solutions to (A.3) and (4.7) have the following
forms:  Vi(t, x̂i) = Ai(t)x̂i +

Bi(t)
γi
, Ai(T ) = 1, Bi(T ) = 0,

hi(t, x̂i) = Āi(t)x̂i +
B̄i(t)
γi
, Āi(T ) = 1, B̄i(T ) = 0.

(A.4)

Then the partial derivatives are
∂Vi(t,x̂i)

∂t = A′i(t) +
B′i (t)
γi
, ∂Vi(t,x̂i)

∂x̂i
= Ai(t),

∂V2
i (t,x̂i)
∂x̂2

i
= 0,

∂hi(t,x̂i)
∂t = Ā′i(t) +

B̄′i (t)
γi
, ∂hi(t,x̂i)

∂x̂i
= Āi(t),

∂h2
i (t,x̂i)
∂x̂2

i
= 0.

(A.5)
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Plugging (A.4) and (A.5) into (A.3), we obtain

sup
ui∈Ui

[A′i(t) + rAi(t)
]
x̂i +

B′i(t)
γi
+ Ai(t)

ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − ai(t))2

×(λ + λi)µi2 +
τi

n − 1

∑
m,i

ξm(1 − a∗m(t))2(λ + λm)µm2 + (µi − r)πi(t) −
τi

n − 1

∑
m,i

(µm − r)π∗m(t)


−
γi

2
g(ui, u∗m)Ā2

i (t) −
1
2

[
a2

i (t)αi(λ + λi)µi2 + π
2
i (t)σ2

i ᾱi

]
A2

i (t)

+

 τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)
√

(λ + λm)µm2 +
τi

n − 1

∑
m,i

θ̄∗m(t)π∗m(t)σm

 Ai(t)

 = 0.

(A.6)

Differentiating (A.6) with respect to ai(t) and πi(t) implies that

a∗i (t) =
2ξi(λ + λi)µi2Ai(t) +

λγiµi1τi
n−1 Ā2

i (t)
∑

m,i a∗mµm1

(λ + λi)µi2[2ξiAi(t) + αiA2
i (t) + γiĀ2

i (t)]
(A.7)

and

π∗i (t) =
(µi − r)Ai(t) +

γiσiτi
n−1 Ā2

i (t)
∑

m,i π
∗
m(t)σmρ̄im

ᾱiσ
2
i A2

i (t) + γiσ
2
i Ā2

i (t)
. (A.8)

Substituting (A.7) and (A.8) into (A.6) and (4.7), respectively, we can derive the following system
of ordinary differential equations (ODEs) according to whether it contains x̂i:

A′i(t) + rAi(t) = 0, A(T ) = 0, (A.9)

B′i(t)
γi
+

ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − a∗i (t))2(λ + λi)µi2

+
τi

n − 1

∑
m,i

ξm(1 − a∗m(t))2(λ + λm)µm2 + (µi − r)π∗i (t) −
τi

n − 1

∑
m,i

(µm − r)π∗m(t)

 Ai(t)

−
γi

2
g(u∗i , u

∗
m)Ā2

i (t) −
1
2

[a∗2i (t)αi(λ + λi)µi2 + π
∗2
i (t)σ2

i ᾱi]A2
i (t) +

 τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)

·
√

(λ + λm)µm2 +
τi

n − 1

∑
m,i

θ̄∗m(t)π∗m(t)σm

 Ai(t) = 0, Bi(T ) = 0,

(A.10)

Â′i(t) + rÂi(t) = 0, Â(T ) = 0, (A.11)
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B̂′i(t)
γi
+

ηi(λ + λi)µi1 −
τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − a∗i (t))2(λ + λi)µi2

+
τi

n − 1

∑
m,i

ξm(1 − a∗m(t))2(λ + λm)µm2 + (µi − r)π∗i (t) −
τi

n − 1

∑
m,i

(µm − r)π∗m(t)

 Âi(t)

−
1
2

[
a∗2i (t)αi(λ + λi)µi2 + π

∗2
i (t)σ2

i ᾱi

]
A2

i (t)

+

 τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)
√

(λ + λm)µm2 +
τi

n − 1

∑
m,i

θ̄∗m(t)π∗m(t)σm

 Âi(t) = 0, B̂i(T ) = 0.

(A.12)

Considering the boundary condition, the solutions to ODEs (A.9)–(A.12) are given by

Ai(t) = Âi(t) = er(T−t), (A.13)

B̂i(t) = γi

∫ T

t


ηi(λ + λi)µi1 −

τi

n − 1

∑
m,i

ηm(λ + λm)µm1 − ξi(1 − a∗i (s))2(λ + λi)µi2

+
τi

n − 1

∑
m,i

ξm(1 − a∗m(s))2(λ + λm)µm2 + (µi − r)π∗i (s) −
τi

n − 1

∑
m,i

(µm − r)π∗m(s)

+
τi

n − 1

∑
m,i

θ∗m(t)a∗m(t)
√

(λ + λm)µm2 +
τi

n − 1

∑
m,i

θ̄∗mm(t)π∗m(t)σm

 er(T−s)

−
1
2

[
a∗2i (t)αi(λ + λi)µi2 + π

∗2
i (s)σ2

i ᾱi

]
e2r(T−s)

}
ds,

(A.14)

and Bi(t) is given by (4.15).
By substituting (A.13) into (A.7), the insurers’ robust ORS is given by

a∗i (t) =
2ξi(λ + λi)µi2 +

λγiµi1τi
n−1 er(T−t) ∑

m,i a∗mµm1

(λ + λi)µi2[2ξi + (αi + γi)er(T−t)]
. (A.15)

Note that, in (A.15), i , m ∈ {1, 2, · · · , n}; (A.15) can be rewritten as the system of linear equations
given by (4.10). āi(t) is the solution of (4.10). If 0 < āi(t) < 1, then the ORS is a∗i (t) = āi(t). If āi(t) ≤ 0,
the sup{· · · } in (A.6) with respect to ai(t) is achieved at the point 0. This is because the function in the
interior of sup{· · · } decreases with respect to ai(t) in the interval [0, 1]. This means that the ORS must
be a∗i (t) = 0. Analogously, if āi(t) ≥ 1, the ORS must be a∗i (t) = 1.

By substituting (A.13) into (A.8), the insurers’ robust OIS is given by

π∗i (t) =
(µi − r) + γiσiτi

n−1 er(T−t) ∑
m,i π

∗
m(t)σmρ̄im

(ᾱi + γi)σ2
i er(T−t)

. (A.16)

Note that, in (A.16) i , m ∈ {1, 2, · · · , n}; (A.16) can be rewritten as the system of linear equations
given by (4.11). By substituting (A.13), a∗i (t) and π∗i (t) into (A.2), the worst-case measures are given by
(4.12) and (4.13). This completes the proof. □
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Appendix B. Proof of Theorem 4.3.

Proof. For the two-insurers case, the system of ODEs given by (4.10) becomes δ1a∗1(t) − τ1γ1λµ11µ21a∗2(t) = β1,

−τ2γ2λµ11µ21a∗1(t) + δ2a∗2(t) = β2.
(B.1)

Then, the determinant of the coefficient matrix is given by∣∣∣∣∣∣ δ1 −τ1γ1λµ11µ21er(T−t)

−τ2γ2λµ11µ21er(T−t) δ2

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ (λ + λ1)µ12

[
2ξ1 + (α1 + γ1)er(T−t)

]
−τ1γ1λµ11µ21er(T−t)

−τ2γ2λµ11µ21er(T−t) (λ + λ2)µ22

[
2ξ2 + (α2 + γ2)er(T−t)

] ∣∣∣∣∣∣∣
=(λ + λ1)µ12(λ + λ2)µ22

[
2ξ1 + (α1 + γ1)er(T−t)

] [
2ξ2 + (α2 + γ2)er(T−t)

]
− γ1γ2τ1τ2e2r(T−t)(λµ11µ21)2

>γ1γ2λ
2e2r(T−t)[µ12µ22 − τ1τ2(µ11)2(µ21)2] ≥ γ1γ2λ

2e2r(T−t)[µ12µ22 − (µ11)2(µ21)2].

The last inequality holds because of τ1τ2 ∈ [0, 1]. By the Cauchy-Schwarz inequality, it is clear that
µ12µ22 − (µ11)2(µ21)2 > 0. This means that the system of linear equations given by (B.1) has a unique
root (ǎ1(t), ǎ2(t)) which is given by (4.22) and (4.24). From (4.22) and (4.24), it is clear that ǎ1(t) > 0
and ǎ2(t) > 0; this implies that, if ǎ1(t) < 1 and ǎ2(t) < 1, then a∗1(t) = ǎ1(t) and a∗2(t) = ǎ2(t) are the
robust ORSs. Similar to Theorem 4.2, if ǎ1(t) ≥ 1 and ǎ2(t) ≥ 1, then a∗1(t) = 1 and a∗2(t) = 1 are the
robust ORSs.

In what follows, we obtain the OIS. From the system of linear equations given by (4.11), we have{
δ̄1π

∗
1(t) − τ1γ1σ1σ2ρ̄12π

∗
2(t) = β̄1,

−τ2γ2σ1σ2ρ̄12π
∗
1(t) + δ̄2π

∗
2(t) = β̄2.

(B.2)

Then, the determinant of the coefficient matrix is given by∣∣∣∣∣∣ δ̄1 −τ1γ1σ1σ2ρ̄12

−τ2γ2σ1σ2ρ̄12 δ̄2

∣∣∣∣∣∣ =
∣∣∣∣∣∣ (γ1 + ᾱ1)σ2

1 −τ1γ1σ1σ2ρ̄12

−τ2γ2σ1σ2ρ̄12 (γ2 + ᾱ2)σ2
2

∣∣∣∣∣∣
=(γ1 + ᾱ1)(γ2 + ᾱ2)σ2

1σ
2
2 − τ1τ2γ1γ2(σ1σ2ρ̄12)2

>γ1γ2σ
2
1σ

2
2[1 − τ1τ2(ρ̄12)2] ≥ γ1γ2σ

2
1σ

2
2[1 − (ρ̄12)2] ≥ 0.

Therefore, the system of linear equations given by (B.2) has a pair unique roots (π∗1(t), π∗2(t)) which
is given by (4.23) and (4.25). That is, π∗1(t) and π∗2(t) are the robust OISs.

Inserting (4.22)–(4.25) into (4.12) and (4.13), we have the worst-case measures given by (4.26)–
(4.29). Substituting (4.22)–(4.25) into (4.15), we obtain Bi(t) as given by (4.31); substituting (4.22)–
(4.25) into (A.14), we obtain B̂i(t) as given by

B̂i(t) = γi

∫ T

t

{[
ηi(λ + λi)µi1 − τiηm(λ + λm)µm1 − ξi(1 − ai(s))2(λ + λi)µi2

+ τiξm(1 − a∗m(s))2(λ + λm)µm2 + (µi − r)πi(s) − τi(µm − r)π∗m(s) + τiθ
∗
m(t)a∗m(t)

√
(λ + λm)µi2

+τiθ̄
∗
m(t)π∗m(t)σm

]
er(T−s) −

1
2

[
a2

i (t)αi(λ + λi)µi2 + π
2
i (s)σ2

i ᾱi

]
e2r(T−s)

}
ds.

(B.3)
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This completes the proof. □

Appendix C. Proof of Theorem 5.2.

Proof. Similar to Theorem 4.2, we assume that the solutions to (5.1) and (5.2) are as follows: V̄(t, x) = A(t)x + B̂(t)
γ
, A(T ) = 1, B(T ) = 0,

h̄(t, x) = Ā(t)x + B̃(t)
γ
, Ā(T ) = 1, B̄(T ) = 0.

(C.1)

Then the partial derivatives are V̄t(t, x) = A′(t) + B̂′(t)
γ
, V̄x(t, x) = A(t), V̄xx(t, x) = 0,

h̄t(t, x) = Ā′(t) + B̃′(t)
γ
, h̄x(t, x) = Āi(t), h̄(t, x)xx = 0.

(C.2)

Plugging (C.1)–(C.2) into (5.1), we obtain

sup
u∈U

inf
ϕ∈Φ

[A′(t) + rA(t)]x +
B̂′(t)
γ
+

 n∑
i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − ai(t))2(λ + λi)µi2

+

n∑
i=1

κi(µi − r)πi(t) −
n∑

i=1

θi(t)κiai(t)
√

(λ + λi)µi2 −

n∑
i=1

θ̄i(t)κiπi(t)σi

 A(t)

−
γ

2
Ā2(t)

 n∑
i=1

κ2
i a2

i (t)(λ + λi)µi2 +

n∑
i=1

∑
m,i

κiκmλµi1µm1ai(t)am(t) +
n∑

i=1

κ2
i σ

2
i π

2
i (t)

+

n∑
i=1

n∑
m,i

κiκmσiσmρ̄imπi(t)πm(t)

 + n∑
i=1

θ2
i (s)
2αi
+

n∑
i=1

θ̄2
i (s)
2ᾱi

 = 0.

(C.3)

Differentiating (C.3) with respect to θi(t) and θ̄i(t) implies that

θi(t) = κiαiai(t)
√

(λ + λi)µi2A(t), θ̄i(t) = κiᾱiπi(t)σiA(t). (C.4)

By substituting (C.4) into (C.3), we obtain

sup
u∈U

[A′(t) + rA(t)]x +
B̂′(t)
γ
+

 n∑
i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − ai(t))2(λ + λi)µi2

+

n∑
i=1

κi(µi − r)πi(t)

 A(t) −
1
2

n∑
i=1

κ2
i αi(λ + λi)µi2A2(t)a2

i (t) −
1
2

n∑
i=1

κ2
i ᾱiσ

2
i A2(t)π2

i (t)

−
γ

2
Ā2(t)

 n∑
i=1

κ2
i a2

i (t)(λ + λi)µi2 +

n∑
i=1

∑
m,i

κiκmλµi1µm1ai(t)am(t) +
n∑

i=1

κ2
i σ

2
i π

2
i (t)

+

n∑
i=1

n∑
m,i

κiκmσiσmρ̄imπi(t)πm(t)


 = 0.

(C.5)
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Differentiating (C.5) with respect to ai(t), i = 1, 2, · · · , n, we have

ai(t)
[
2κiξi(λ + λi)µi2A(t) + κ2

i αi(λ + λi)µi2A2(t) + γκ2
i (λ + λi)µi2Ā2(t)

]
+γĀ2(t)

∑
m,i

κiκmλµi1µm1am(t) = 2κiξi(λ + λi)µi2A(t), i = 1, 2, · · · , n. (C.6)

We assume that the solution of (C.6) is ái(t), i = 1, 2, · · · , n. Similar to what we have explained in
Theorem 4.2, the insurer i’s ORS is a∗i (t) = (0 ∨ ái(t)) ∧ 1.

Differentiating (C.5) with respect to πi(t), i = 1, 2, · · · , n, we obtain the OIS (π∗1(t), π∗2(t), · · · π∗n(t))
as the solution of the system of linear equations given by (5.5).

Substituting (a∗1(t), a∗2(t), · · · , a∗n(t)) and (π∗1(t), π∗2(t), · · · , π∗n(t)) into (C.5), we can obtain the
following system of ODEs, according to whether it contains x

A′(t) + rA(t) = 0, A(T ) = 1, (C.7)

B̂′(t)
γ
+

 n∑
i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − a∗i (t))2(λ + λi)µi2 +

n∑
i=1

κi(µi − r)π∗i (t)

 A(t)

−
1
2

n∑
i=1

κ2
i αi(λ + λi)µi2A2(t)a∗2i (t) −

1
2

n∑
i=1

κ2
i ᾱiσ

2
i A2(t)π∗2i (t) −

γ

2
Ā2(t)

 n∑
i=1

κ2
i a∗2i (t)(λ + λi)µi2

+

n∑
i=1

∑
m,i

κiκmλµi1µm1a∗i (t)a∗m(t) +
n∑

i=1

κ2
i σ

2
i π
∗2
i (t) +

n∑
i=1

n∑
m,i

κiκmσiσmρ̄imπ
∗
i (t)π∗m(t)

 = 0, B̂(T ) = 0.

(C.8)
Substituting (a∗1(t), a∗2(t), · · · , a∗n(t)) and (π∗1(t), π∗2(t), · · · , π∗n(t)) into (C.4), the optimal market

strategies are given by (5.6). Substituting (a∗1(t), a∗2(t), · · · , a∗n(t)) and (π∗1(t), π∗2(t), · · · , π∗n(t)) and
(θ1(t), · · · , θn(t) and (θ̄1(t), · · · , θ̄n(t) into (5.2), we can derive the following system of ODEs according
to whether it contains x

Ā′(t) + rĀ(t) = 0, Ā(T ) = 1, (C.9)

and

B̃′(t)
γ
+

 n∑
i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − a∗i (t))2(λ + λi)µi2 +

n∑
i=1

κi(µi − r)π∗i (t)

 Ā(t)

−
1
2

n∑
i=1

κ2
i αi(λ + λi)µi2A2(t)a∗2i (t) −

1
2

n∑
i=1

κ2
i ᾱiσ

2
i A2(t)π∗2i (t), B̃(t) = 0.

(C.10)

From (C.7) and (C.9), we have
A(t) = Ā(t) = er(T−t). (C.11)

Substituting (C.11) into (C.8), we can obtain B̂(t), which is given by (5.8). Substituting (C.11) into
(C.10), B̃(t) is given by

B̃(t) = γ
∫ T

t


 n∑

i=1

κiηi(λ + λi)µi1 −

n∑
i=1

κiξi(1 − a∗i (s))2(λ + λi)µi2 +

n∑
i=1

κi(µi − r)π∗i (s)

 er(T−s)

−
1
2

n∑
i=1

κ2
i αi(λ + λi)µi2a∗2i (s)e2r(T−s) −

1
2

n∑
i=1

κ2
i ᾱiσ

2
i π
∗2
i (s)e2r(T−s)

 ds.

(C.12)
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This completes the proof. □

Appendix D. Proof of Theorem 5.3.

Proof. For the two-insurers case, from (5.4), we have ∆̆1a1(t) + γκ1κ2λµ11µ21a2(t) = κ1Υ1,

γκ1κ2λµ11µ21a1(t) + ∆̆2a2(t) = κ2Υ2.
(D.1)

Then, the determinant of the coefficient matrix is given by∣∣∣∣∣∣ ∆̆1 γκ1κ2λµ11µ21

γκ1κ2λµ11µ21 ∆̆2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ [2κ1ξ1e−r(T−t) + (α1 + γ)κ2
1](λ + λ1)µ12 γκ1κ2λµ11µ21

γκ1κ2λµ11µ21 [2κ2ξ2e−r(T−t) + (α2 + γ)κ2
2](λ + λ2)µ22

∣∣∣∣∣∣
=[2κ1ξ1e−r(T−t) + (α1 + γ)κ2

1][2κ2ξ2e−r(T−t) + (α2 + γ)κ2
2](λ + λ1)µ12(λ + λ2)µ22 − (γκ1κ2λµ11µ21)2

>(γκ1κ2λ)2(µ12µ22 − µ
2
11µ

2
21).

By the Cauchy-Schwarz inequality, it is clear that µ12µ22 − µ
2
11µ

2
21 > 0. This means that (D.1) has

a unique root (à1(t), à2(t)), which is given by (5.9) and (5.11), respectively. Similar to what we have
explained in Theorem 4.2, the ORSs of insurer 1 and 2 are respectively given by a∗1(t) = (0∨ à1(t))∧ 1
and a∗2(t) = (0 ∨ à2(t)) ∧ 1.

From (5.5) we have κ2
1σ

2
1(ᾱ1 + γ)π1(t) + γκ1κ2σ1σ2ρ̄12π2(t) = κ1(µ1 − r)e−r(T−t),

γκ1κ2σ1σ1ρ̄12π1(t) + κ2
2σ

2
2(ᾱ2 + γ)π2(t) = κ2(µ2 − r)e−r(T−t).

(D.2)

Then, the determinant of the coefficient matrix is given by∣∣∣∣∣∣ κ2
1σ

2
1(ᾱ1 + γ) γκ1κ2σ1σ2ρ̄12

γκ1κ2σ1σ2ρ̄12 κ2
2σ

2
2(ᾱ2 + γ)

∣∣∣∣∣∣
=κ2

1σ
2
1(ᾱ1 + γ)κ2

2σ
2
2(ᾱ2 + γ) − (γκ1κ2σ1σ2ρ̄12)2

>(γκ1κ2σ1σ2)2(1 − ρ̄2
12) ≥ 0.

Therefore, (D.2) has a unique root (π∗1(t), π∗2(t)), which is given by (5.10) and (5.12). Substituting
(5.9)–(5.12) into (5.6), the optimal market strategies are given by (5.13). By substituting (5.9)–(5.13)
into (5.8), we can obtain B̂(t) as given by (5.15). This completes the proof. □
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