
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(10): 25104–25130.
DOI: 10.3934/math.20231282
Received: 23 May 2023
Revised: 25 July 2023
Accepted: 04 August 2023
Published: 29 August 2023

Research article

Recursive reordering and elimination method for efficient computation of
PageRank problems

Zhao-Li Shen1,2,*, Yu-Tong Liu1, Bruno Carpentieri3, Chun Wen4,* and Jian-Jun Wang1,*

1 College of Science, Sichuan Agricultural University, Ya’an, Sichuan 625000, China
2 Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, 9700

AK Groningen, The Netherlands
3 Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
4 School of Mathematical Sciences, University of Electronic Science and Technology of China,

Chengdu, Sichuan 611731, China

* Correspondence: szlxiaoyao@163.com, wchun17@163.com, wangjianjun02@163.com.

Abstract: The PageRank model is widely utilized for analyzing a variety of scientific issues beyond its
original application in modeling web search engines. In recent years, considerable research effort has
focused on developing high-performance iterative methods to solve this model, particularly when the
dimension is exceedingly large. However, due to the ever-increasing extent and size of data networks
in various applications, the computational requirements of the PageRank model continue to grow. This
has led to the development of new techniques that aim to reduce the computational complexity required
for the solution. In this paper, we present a recursive 5-type lumping algorithm combined with a two-
stage elimination strategy that leverage characteristics about the nonzero structure of the underlying
network and the nonzero values of the PageRank coefficient matrix. This method reduces the initial
PageRank problem to the solution of a remarkably smaller and sparser linear system. As a result,
it leads to significant cost reductions for computing PageRank solutions, particularly in scenarios
involving large and/or multiple damping factors. Numerical experiments conducted on over 50
real-world networks demonstrate that the proposed methods can effectively exploit characteristics of
PageRank problems for efficient computations.

Keywords: PageRank model; elimination; reordering; Krylov subspace methods; ILU factorizations
Mathematics Subject Classification: 65C40, 65F10

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231282


25105

1. Introduction

Google proposed the PageRank model [1] to assess the relevance of web pages that match a user-
defined search query. Since then, PageRank has been widely used in various fields that go beyond
search engines, see for instances [2–10]. This widespread use is attributed to the simplicity of the model
and the universality of its underlying principle. PageRank is often used to evaluate the centralities or
importances of network nodes, which are measured by the stationary probability vector of a random
process that visits nodes through their directed links. In detail, an adjacency matrix G ∈ Nn×n stores
link structure of the network nodes with quantity n, where G(i, j) = 1 when there is a directed edge
from the jth node to the ith node. The transition probability matrix P ∈ Rn×n of the random process is
formed by

P(i, j) =


1

n∑
k=1

G(k, j)
, when G(i, j) = 1,

0, otherwise.
(1.1)

To guarantee the existence of a unique stationary distribution and the convergence of the Power
iteration of the random walk process [11,12], typically matrix P is transformed into a stochastic matrix
A through

A = αP̃ + (1 − α)veT . (1.2)

In (1.2), P̃ = P + vdT , where the binary vector d ∈ Nn×1 has value 1 at the indexes with no out-
link, 0 ≤ v ∈ Rn×1 ≤ 1, ∥v∥1 = 1, e is a vector of all ones, 0 < α < 1 is the damping factor and
assigns the probability that the traveler transfers through following directed links, while veT represents
probabilities of transferring in other ways such as jumping to a random unlinked node. The PageRank
model then can be regarded as computing the eigenvector x satisfying the equation

Ax = x, ∥x∥1 = 1, x > 0. (1.3)

As only the ratio between the importances of nodes are needed, the relative importances can also be
obtained by solving the following linear equations [13]

(I − αP)x = v. (1.4)

Since the PageRank model was proposed, the development of high-performance solvers for
systems (1.3)–(1.4) has attracted much study attention. Classical iteration algorithms, e.g., the
Power method, often prove effective when the damping factor equals to a moderate value (e.g.,
Google recommended to use α = 0.85 for search engine ranking). On the other hand, when α
increases to 1, often needed by some applications [14]), the speed that stationary iterative methods
converge deteriorates sharply, necessitating the exploitation of more robust solvers. Extrapolation
algorithms [15–18], adaptive methods [19], multigrid solvers [20, 21], inner-outer strategies [22–26],
Krylov subspace algorithms [27–30] and methods that combine stationary iterations and Krylov
subspace algorithms [31–34] are used in the quest of robust solvers. It has been demonstrated that
in some problems involving large damping factors, Krylov subspace methods can save over 50% CPU
time cost when compared with classical iterative methods [35]. Nonetheless, due to the ever-increasing
extent and size of data networks in applications, the computational demands of the PageRank model

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25106

continue to grow, motivating the development of new techniques that can reduce the computational
complexity required for the solution.

One relevant research direction classifies network nodes into family of special types, e.g., those with
and without out-links, and reorders them accordingly so that only the PageRank values of one type are
the solution of a linear system, while the PageRank values of the remaining nodes can be obtained
efficiently using vector-vector and matrix-vector operations. If the linear system corresponding to
one type of nodes (called the “kernel linear system”) is significantly smaller than the original system,
the costs associated with the solution of the PageRank model can be greatly decreased. Some of
the relevant methods reorder the nodes into two types [13], three types [36], five types [37] and
include recursive variants [38]. A different research direction exploits the similarities between rows
in the adjacency matrix G to either devise elimination algorithms [39] that increases the sparsity
of the PageRank problem (1.4), or find suitable permutations that reveal some off-diagonal low-
rank blocks in the coefficient matrix I − αP [40, 41], leading to highly efficient compressed matrix
representations of (1.4). The effectiveness of these strategies depends on the structural characteristics
of the underlying network. However, they proved useful in simplifying realistic PageRank calculations
in many contexts. A deeper understanding of the structural properties of existing networks arising from
different backgrounds, the development of new strategies to further exploit these properties, and the
design of fast solvers for the simplified problem are some issues that still require additional research.

In this paper, we present a recursive 5-type reordering approach and a two-stage elimination
algorithm that combines information of both the nonzero structure of the underlying network and the
numerical properties of the PageRank model to reduce the computational complexity. Meanwhile,
the effect of the elimination strategy on changing the spectrum distribution is demonstrated to be
controlled. The remaining content is structured as follows. Section 2 covers the most generally
used methods for classifying graph nodes into different types. Section 3 presents a recursive 5-type
reordering algorithm. Section 4 introduces a new two-stage elimination strategy which extends the
work proposed in [39], and analyzes its impact on the eigenvalues distribution of the PageRank linear
system. Section 5 presents real-world network simulations. Finally, Section 6 discusses some remarks
arising from this study and perspective of future works. The MATLAB notation [42] is used throughout
the paper.

2. Existed lumping algorithms for computing PageRank

2.1. Lumping the graph nodes into two types (Lump-2)

Current approaches to classifying nodes in the web adjacency graph begin with Lee, Golub, and
Zenios’ work [43], which takes advantage of the presence of dangling nodes, i.e., nodes with 0 out-
degree. The method aggregates all dangling nodes into one node, and then computes the PageRank
values by solving two smaller linear systems. Langville and Meyer refined this initial idea [13].
They classify the nodes of the web adjacency graph into dangling nodes (D) and nondangling nodes
(ND) [13]; we refer to this classification scheme as Lump-2. They also reorder the nodes into
two subvectors corresponding to dangling and nondangling nodes, and permute the linear system
symmetrically accordingly. The new system is shown as:

x̃T
(
1 − αP̃

)
= ṽT , (2.1)

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25107

where

ND D (2.2)

P̃ = ΠPΠT =
ND
D

[
P̃11 P̃12

0 0

]
, (2.3)

and Π is the permutation matrix*, x̃T = xTΠT , ṽ = vTΠT . Note that,(
1 − αP̃

)−1
=

(1 − P̃11

)−1
α
(
1 − P̃11

)−1
P̃12

0 I

 . (2.4)

Thus, the permuted PageRank vector x̃T = ṽT
(
1 − αP̃

)−1
can be formed as:

x̃T =

(
ṽT

1

(
1 − P̃11

)−1
, αṽT

1

(
1 − P̃11

)−1
P̃12 + ṽT

2

)
. (2.5)

After splitting x̃T into [x̃1, x̃2]T , where x̃T
1 and x̃T

2 store the PageRank values of nondangling and
dangling nodes, respectively, the solution procedure can be implemented as

x̃T
1 = ṽT

1

(
1 − αP̃11

)−1
, (2.6)

x̃T
2 = αx̃T

1 P̃12 + ṽT
2 . (2.7)

Iterative algorithms, such as Krylov subspace methods, need only solve the smaller linear
system (2.6) (which we refer to as the “kernel linear system”) to compute the PageRank values of
nondangling nodes, i.e., subvector x̃T

1 . Then, the PageRank values of dangling nodes, i.e., subvector
x̃T

2 , can be obtained at the negligible cost of one matrix-vector multiplication and one vector-vector
addition. Thus, if the number of nondangling-nodes is substantially smaller than the total dimension,
the time needed to solve the PageRank problem can be drastically reduced. This method can provide
a fivefold performance speedup over the Power method when more than 80% of the total nodes are
dangling nodes.

Following this idea, a number of enhancements are suggested to further reduce the size of the kernel
system. They can be classified in one of two ways: either categorizing the nodes into more classes,
or applying the reordering recursively to a given class. For these two distinct research directions, we
review the representative methods briefly before introducing a new reordering algorithm that combines
the different strategies.

2.2. Lumping the web matrix into three types (Lump-3)

Lin et al. further classify the nodes in the web adjacency graph into three categories: strongly
nondangling nodes (S ), weakly nondangling nodes (W), and dangling nodes (D), with the new type W
representing nodes that only point to dangling nodes [36]. We refer to Lin et al.’s method as Lump-3.
By reordering the nodes as [S ,W,D] and permuting the problem symmetrically, the matrix P̃ in the
permuted PageRank linear system (2.1) becomes

P̃ = ΠPΠT =

S
W
D


P̃11 P̃12 P̃13

0 0 P̃23

0 0 0

 , (2.8)

*Π is obtained through reordering the rows and columns of an identity matrix according to the lumping algorithm.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25108

while x̃ and ṽ are partitioned according to node type: x̃ =
[
x̃T

1 , x̃
T
2 , x̃

T
3

]T
,ṽ =

[
ṽT

1 , ṽ
T
2 , ṽ

T
3

]T
. Then, this

permuted problem is expressed as

[
x̃T

1 , x̃
T
2 , x̃

T
3

] 
I − αP̃11 −αP̃12 −αP̃13

0 I −αP̃23

0 0 I

 = [ṽT
1 , ṽ

T
2 , ṽ

T
3

]
, (2.9)

and x̃T
1 , x̃

T
2 , x̃

T
3 can be obtained using the formulas

x̃T
1 = ṽT

1

(
1 − αP̃11

)−1
; (2.10)

x̃T
2 = αx̃T

1 P̃12 + ṽT
2 ; (2.11)

x̃T
3 = αx̃T

1 P̃13 + αx̃T
2 P̃23 + ṽT

3 . (2.12)

Iterative methods are only used to solve the linear system (2.10) for the subvector of PageRank values
of S , which is not larger than the set ND in the Lump-2 method; therefore, it may be less expensive to
solve.

2.3. The recursive lumping method for PageRank (Lump-R)

Langville and Meyer generalize the Lump-2 and Lump-3 algorithms to a recursive version that
recursively applies Lump-2 reordering to the upper-left corner of the permuted transition matrix P̃ [38].
We refer to this method as Lump-R. The structure of the transition matrix after k − 1 reordering is
described below:

P̃ = ΠPΠT =



P̃11 P̃12 P̃13 · · · P̃1k

0 P̃23 · · · P̃2k

0 · · · P̃3k
. . .

...

0


. (2.13)

Meanwhile, x̃ and ṽ are permuted accordingly as follows: x̃ =
[
x̃T

1 , x̃
T
2 , x̃

T
3 , · · · , x̃

T
k

]T
,ṽ =[

ṽT
1 , ṽ

T
2 , ṽ

T
3 , · · · , ṽ

T
k

]T
. From (2.13), x̃ can be computed as follows:

x̃T
1 = ṽT

1

(
1 − αP̃11

)−1
. (2.14)

For i = 2, 3, · · · k, x̃T
i = α

∑i−1

j=1
x̃T

j P̃ ji+ṽT
i . (2.15)

The Lump-2 and Lump-3 techniques are instances of this recursive reordering procedure for k = 2 and
k = 3, respectively. This method is useful for uncovering the network structure in greater depth and it
may reduce the dimension of the “kernel linear system” further as k increases, but the reordering phase
requires more time [38]. As a result, it is recommended to terminate the recursive process when the
upper-left submatrix P̃11 contains few dangling nodes.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25109

2.4. Lumping the web matrix into five types (Lump-5)

Similarly, the previously discussed classification for nodes with zero outlinks can be applied to
nodes with zero inlinks, i.e., nodes that are not referenced by other nodes. These are referred to as
unreferenced nodes (UR), in contrast to referenced nodes (R), which are referenced by other nodes.
Taking R and UR categories into consideration, Yu et al. further classify the Lump-3 method’s types
into 5 categories: strong nondangling & referenced nodes (S &R), strong nondangling & unreferenced
nodes (S &UR), dangling & referenced nodes (D&R), dangling & unreferenced nodes (D&UR),
weakly nondangling nodes (W). This technique is known as Lump-5. Figure 1 depicts the relationship
between these five categories.

Figure 1. Relationship between the five distinct types of nodes.

By reordering the nodes as [S &R, S &UR,W,D&R,D&UR] and permuting the problem
symmetrically, the matrix P̃ in the permuted PageRank linear system (2.1) becomes

P̃ = ΠPΠT =

S &R
S &UR

W
D&R

D&UR


P̃11 0 P̃13 P̃14 0
P̃21 0 P̃23 P̃24 0
0 0 0 P̃34 0
0 0 0 0 0
0 0 0 0 0


, (2.16)

and x̃ and ṽ are reordered accordingly as x̃ =
[
x̃T

1 , x̃
T
2 , x̃

T
3 , x̃

T
4 , x̃

T
5

]T
,ṽ =

[
ṽT

1 , ṽ
T
2 , ṽ

T
3 , ṽ

T
4 , ṽ

T
5

]T
. The

permuted problem can be written

[
x̃T

1 , x̃
T
2 , x̃

T
3 , x̃

T
4 , x̃

T
5

]

I − αP̃11 0 −αP̃13 −αP̃14 0
−αP̃21 I −αP̃23 −αP̃24 0

0 0 I −αP̃34 0
0 0 0 I 0
0 0 0 0 I


=
[
ṽT

1 , ṽ
T
2 , ṽ

T
3 , ṽ

T
4 , ṽ

T
5

]
, (2.17)

and x̃T
1 , x̃

T
2 , x̃

T
3 , x̃

T
4 , x̃

T
5 can be calculated as follows:

x̃T
1 =
(
ṽT

1 + αṽT
2 P̃21

) (
1 − αP̃11

)−1
; (2.18)

x̃T
2 = ṽT

2 ; (2.19)

x̃T
3 = α

(
x̃T

1 P̃13 + x̃T
2 P̃23

)
+ ṽT

3 ; (2.20)

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25110

x̃T
4 = α

(
x̃T

1 P̃14 + x̃T
2 P̃24 + x̃T

3 P̃34

)
+ ṽT

4 ; (2.21)

x̃T
5 = ṽT

5 . (2.22)

This method detects more network structural features than the prior reordering algorithm and
generates a smaller “kernel linear system” for test problems in [37]. However, its performance on
really large networks has to be shown yet. Furthermore, it will be interesting to see if a recursive
implementation of this method can further reduce the dimension of the “kernel linear system”.

3. A recursive 5-types lumping algorithm for Google’s PageRank

This section presents the Lump-R5 algorithm, which applies Lump-5 recursively to the current
“kernel linear system” until the dimension cannot be reduced further or the algorithm is executed a
predetermined number of times. Throughout each phase of the recursive procedure, the nodes can
be classified into five distinct categories. Although this algorithm can be conveniently described
as a recursive call to itself, we provide formulas for calculating the PageRank value of each node
category. The purpose of these formulas is to shed light on efficient implementations of this algorithm,
as opposed to a more intuitive but less efficient recursive implementation, and to demonstrate how the
method can be adapted to solve PageRank linear systems with multiple damping factors.

In the permuted problem (2.1), after k iterations of Lump-5 reordering, there are n = 4k + 1 classes
of nodes, and x̃ and ṽ are reordered as follows: x̃ =

[
x̃T

1 , x̃
T
2 , x̃

T
3 , · · · , x̃

T
n

]T
,ṽ =

[
ṽT

1 , ṽ
T
2 , ṽ

T
3 , · · · , ṽ

T
n

]T
.

Below are the formulas used to compute x̃T
1 , x̃

T
2 , x̃

T
3 , · · · , x̃

T
n . Note that x̃1 are the only type of nodes that

require solving a linear system:

x̃T
1 =

ṽT
1 + α

k−1∑
j=0

x̃T
4 j+2P̃4 j+2,1

 (I − αP̃11

)−1
. (3.1)

To express the computation formulas for the PageRank of the remaining nodes, we introduce an integer
l (k − 1 ⩾ l ⩾ 0):

x̃T
i = α

k−l−1∑
j=1

x̃T
4 j+iP̃4 j+i,i + ṽT

i , when i = 4l + 2 ⩽ n; (3.2)

x̃T
i = α

i−1∑
j=1

x̃T
j P̃ ji + α

k−l−1∑
j=1

x̃T
4 j+i−1P̃4 j+i−1,i + ṽT

i , when i = 4l + 3 ⩽ n; (3.3)

x̃T
i = α

i−1∑
j=1

x̃T
j P̃ ji + α

k−l−1∑
j=1

x̃T
4 j+i−2P̃4 j+i−2,i + ṽT

i , when i = 4l + 4 ⩽ n; (3.4)

x̃T
i = α

k−l−1∑
j=1

x̃T
4 j+i−3P̃4 j+i−3,i + ṽT

i , when i = 4l + 5 ⩽ n. (3.5)

According to (3.2), we first compute x̃T
4l+2 in decreasing order of l. Then, x̃T

1 and x̃T
4l+5 can be

computed using Eqs (3.1) and (3.5), where (3.1) is solved by iterative methods. Following that, x̃T
4l+3

and x̃T
4l+4 can be calculated using Eqs (3.3) and (3.4). The PageRank vectors of n nodes are concatenated

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25111

and permuted at this stage, to arrive at the required solution xT . The computation of x̃T
4l+2, x̃T

4l+3, x̃T
4l+3

and x̃T
4l+4 can be done in parallel. In our cases, where l is not excessively large, the cost of computing

these quantities is negligible compared to the cost of solving for x̃T
1 . Therefore, we will not discuss

implementation optimization in detail here.

In conclusion, the Lump-R5 algorithm is depicted in Algorithm 1 shown below.

Algorithm 1 Recursive Lump-5 reordering method (Lump-R5).

Input: Damping factor α, convergence torenlcen tol, number of recursive steps k.
1: Permute the transition matrix P in the original linear system, so that the same class of nodes are

clustered.
2: Let l = k − 1.
3: while l , 0 do
4: Computing x̃T

4l+2 through (3.2).
5: l = l − 1.
6: end while
7: Use iterative algorithms to solve x̃T

1 according to (3.1).
8: Computing directly by (3.1) - (3.5) for the PageRank value of the remaining nodes.
9: Set x̃ =

[
x̃T

1 , x̃
T
2 , x̃

T
3 , · · · , x̃

T
n

]T
,compute the PageRank vector xT = x̃TΠ,and normalize xT =

xT/
∥∥∥xT
∥∥∥

1
10: return x;

Here, the computational costs of the lumping algorithms are compared approximately. Because
Lump-2 and Lump-3 algorithms are instances of the Lump-R algorithm, and Lump-5 is an instance
of Lump-R5, we only compare Lump-R5 and Lump-R. The cost of each recursive step for these
two recursive methods comes mainly from classifying nodes into special categories. Note that the
classification can be conducted using the binary information contained in the adjacency matrix G.
Lump-R requires finding the dangling nodes, which necessitates the computation of the number of
nonzero elements in each row of G. This costs s1 ∈ [nnz(G) − n, nnz(G)] additions of integers.
For Lump-R5, it is necessary to identify the dangling nodes, unreferenced nodes, and weakly
dangling nodes, and then the required 5 categories of nodes are determined by performing some
straightforward intersection operations. Finding unreferenced nodes requires calculating the number
of non-zero elements in each column of G, which costs s2 ∈ [nnz(G) − n, nnz(G)] additions of
integers. Finally, finding the weakly dangling nodes requires computing the row sums of the
submatrix G(nondangling, nondangling) corresponding to the nondangling nodes, which costs at least
s3 ∈ [nnz(G(nondangling, nondangling)) − length(nondangling), nnz(G(nondangling, nondangling))]
operations. In general, (1) the computational cost of this implementation is less than that of finding
the dangling nodes, and the greater the proportion of dangling nodes, the lower the computational
cost; (2) a recursive step of Lump-R5 requires approximately two to three times as many integer
additions as Lump-R. Note, additionally, that: (1) the computational cost of these algorithms depends
on the number of nonzero elements and the number of dangling nodes of the left-top block at each
recursive step, and thus is problem-dependent; (2) the storage format affects the computational cost
in actual computer implementations, e.g., computing column sums on the MATLAB platform takes
significantly less time than computing row sums; and (3) data extraction and redistribution operations

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25112

also incur significant costs that are platform-dependent and difficult to account for.

3.1. A numerical experiment

We provide an insight on the merits of the Lump-2, Lump-3, Lump-R, Lump-5 and the proposed
Lump-R5 methods to reduce the dimension of the PageRank linear system on a 3774768×3774768
adjacency matrix named “patents” downloaded from https://sparse.tamu.edu/, using 4 recursive steps
for Lump-R and Lump-R5.

Figures 2 and 3 of the original and reordered matrix patterns for this problem reveal the block
structures produced by the five reordering methods. Nondangling nodes represent the largest
proportion, while dangling nodes represent the second largest proportion (see Figure 3 (left)). There are
many weakly nondangling nodes and unreferenced dangling nodes, suggesting that the dimension of
the “kernel linear system” can be decreased even further when only the dangling nodes are considered.
Indeed, it is not necessary to split dangling nodes into dangling & referenced nodes and dangling &
unreferenced nodes when only the “kernel linear system” dimension is considered. Figure 3 (right)
shows that the proportion of strong non-dangling & referenced nodes decreases with each recursive
step, and the speed of such a decrease is diminishing with the recursive process proceeds. Similar
observation of the decrease in the proportion of the non-dangling nodes can be found in Figure 2. It is
interesting to confirm this phenomenon in general. Figures 2 and 3 indicate that the Lump-R5 method
produces the smallest upper left block of the five reordering methods, which is a significant advantage
from a computational viewpoint. In Section 5, we test the effectiveness of these methods on a large set
of network matrices. However, some general observations can be made based on this analysis.

Structures of the original (left) and Lump-2 reordered (right) patent matrix.

Structures of the patent matrix after Lump-3 reordering (left) and recursive reordering (right).

Figure 2. Structures of the original and of three reordered “patent” matrices.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25113

Figure 3. Structure of “patent” matrix after reordering using Lump-5 (left) and the recursive
Lump-5 lumping methods (right).

• Classifying nodes into several types requires searching and permutation operations. Typically,
these costs are small compared to the cost of solving the PageRank linear system. Therefore,
if the reordering procedure significantly reduces the size of the “kernel linear system”, its
implementation is justified especially in the case multiple instances of the same network is solved.
• For the PageRank problem on a fixed network with multiple values of the damping factor, the

Lump-2, Lump-3, and Lump-R methods produce “kernel linear systems” of the shifted form
(I − αiP)x = v with collinear right-hand sides (see Eqs (2.6), (2.10) and (2.14)), and these shifted
systems can be simultaneously solved using Krylov subspace algorithms. This observation is
important for an efficient implementation. Although, on the other hand, Lump-5 and Lump-R5 do
not naturally maintain the collinearity of the right-hand sides, as shown by Eqs (2.18) and (3.1)),
the sequence of shifted linear systems with s damping factors x̃T

1 =
(
ṽT

1 + αiṽ2
T P21

) (
1 − αiP̃11

)−1

1 ≤ i ≤ s can be transformed into a sequence of shifted linear systems with two separate right-
hand sides [x̃T

11, x̃
T
12] =

[
ṽT

1 , ṽ
T
2 P̃21

] (
1 − αiP̃11

)−1
so that block shifted Krylov methods can be

applied to solve them simultaneously.
• If networks lack a notable special structure that could yield a significantly smaller “kernel linear

system”, it can be worth considering some combined strategy that splits the matrix into a linear
combination of two matrices, one of which can be reordered effectively.
• All of the reordering methods discussed in this section produce the “kernel linear system” of the

form
x̃T

1

(
I − αP̃11

)
= bT

1 , (3.6)

where P̃11 is the upper-left block of the permuted transition matrix P̃, and bT
1 denotes the

right hand side, e.g., bT
1 = ṽT

1 for Lump-2, Lump-3 and Lump-R, and bT
1 =

(
ṽT

1 + αṽ2
T P̃21

)T
for Lump-5. The following theorem shows that some similarities exist between the spectrum
ranges and the matrix types of the original PageRank system and its “kernel linear system”.

Theorem 3.1. The coefficient matrix A of the original PageRank system (1.4) and the coefficient
matrix I−αP̃11 of the “kernel linear system” (3.6) are both nonsingular M-matrices. The modules
of the eigenvalues of these two matrices are in the interval [1 − α, 1 + α].

Proof . According to (1.1), P ≥ 0 and ρ(P) ≤ ∥P∥1 = max j(
∑n

i=1 P(i, j)) ≤ 1. Because 0 < α < 1,

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25114

the PageRank coefficient matrix A = I − αP is a nonsingular M-matrix, and the modules of its
eigenvalues are in the interval [1−α, 1+α]. As P̃ and Ã are the symmetrically permuted versions
of P and A, respectively, the above analysis and conclusion also apply to P̃ and Ã. Because P̃11

in the “kernel linear system” (3.6) is a sub-matrix of P̃, we get P̃11 > 0 and ρ(P̃11) ≤ ∥P̃11∥1 =

max j(
∑n

i=1 P̃11(i, j)) ≤ max j(
∑n

i=1 P(i, j)) = ∥P∥1 ≤ 1. Therefore, the coefficient matrix I − αP̃11

of the “kernel linear system” remains a nonsingular M-matrix, and modules of its eigenvalues
continue to lie in the interval [1 − α, 1 + α]. □

Therefore, any efficient solver for the original PageRank system (1.4) can be used to solve the
“kernel linear system” corresponding to any of the described reordering schemes.

• Some bioinformatics networks have special structures that have the potential to accelerate
PageRank computations but have not yet been fully utilized. Figure 4 depicts the pattern structure
of the protein-protein interaction networks of Human, fruit fly, mouse and yeast downloaded
from the Molecular INTeraction Database https://mint.bio.uniroma2.it/index.php/download/. It is
clear that such structure is preferable for constructing approximate inverses or preconditioners.
In addition, the zoom-in section demonstrates the existence of nested-block structures and
similar row sparsity-patterns, which can be exploited using methods such as [44] and [39, 40],
respectively.

0 1 2 3 4 5

nz = 179466 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

104

3.7 3.8 3.9 4 4.1

nz = 179466 104

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

104

Figure 4. Pattern structure of Human (Homo Sapiens) protein-protein network (left) and
zoom-in of the right-bottom part (right).

4. Two-stages elimination of PageRank linear systems

4.1. The single stage elimination strategy (SSES)

The two essential components of iterative solvers for PageRank linear systems are an accelerator,
which is any algorithm that accelerates the convergence of the basic Power method, and a
preconditioner, which modifies the initial system to make it more amenable to the iterative solution.
Iterative methods are able to overcome the memory constraints of direct methods because they
mainly require matrix-vector multiplications. When sparse storage format is used, the computational
complexity of matrix-vector product operations is nearly proportional to the number of non-zero
elements in the matrix, i.e., O(nnz). In addition, this quantity also has a significant impact on

AIMS Mathematics Volume 8, Issue 10, 25104–25130.

https://mint.bio.uniroma2.it/index.php/download/


25115

the construction cost of matrix factorization methods such as incomplete lower-upper triangular
decompositions (which are commonly used as preconditioners). As a result, reducing the density
of the left-upper block is a critical issue for improving the performance of a PageRank solution.
The elimination strategy [39] and the off-diagonal low-rank factorization [40] are two examples of
techniques that achieve this goal by utilizing some properties of PageRank matrices. These properties
are recalled below.

Property 4.1. [39] In the PageRank transition matrix P, P( j, i) = P(k, i) when these are nonzero
values for 1 ≤ i, j, k ≤ n.

Property 4.2. [39] For the network adjacency matrix G and the PageRank transition matrix P,

P(i, S ) = P( j, S ) when G(i, S ) = G( j, S ),

where 1 ≤ i, j ≤ n, S ⊆ {1, 2, · · · , n}.

Due to these properties, it is possible to determine the degree of similarity, or the identity, of two
rows of P by simply comparing their sparsity patterns. If a group of rows have very similar non-zero
patterns, many of their non-zero values may be annihilated by row subtraction. Note, however, that
this operation may generate fill-ins outside the common non-zero pattern between two rows; therefore,
the row reduction should only be executed if more non-zero values are eliminated than those that are
filled in. In general, the criterion to guide the decision if the row subtraction row j − row i should be
performed or not is

comnnz(i, j) > rowsum(i) − comnnz(i, j), (4.1)

where rowsum denotes the number of nonzero elements of a certain row of G and P, and comnnz(i, j)
denotes the quantity of non-zero values in the common sparsity pattern of rows i and j.

The elimination operation between two rows can be expressed as Ei jP, where matrix Ei j = {ekl}

formed by subtracting the ith row from the jth row on the identity matrix of dimension n.
Note that, due to the possibility of introducing negative values in row j, Ei jP may lose

Properties 4.1–4.2, as the previous example demonstrates. Once a row has been eliminated, it is
marked and skipped in the subsequent stages of the elimination algorithm. The main framework of
this strategy is concluded as below:

(i) select sequentially row i from the unmarked rows to be the reference row, or generate complete
elimination operator E ←

∏
Ei j, which accounts for all row subtractions if all rows are marked;

(ii) traverse subsequent unmarked rows and reduce them if criterion (4.1) is satisfied, generating the
corresponding operator matrix Ei j;

(iii) mark row i and the eliminated rows, then return back to step (i).

The following two improvements are introduced in this framework to enhance the overall efficiency in
the elimination strategy that we published in [39].

• Since eliminating very sparse rows may not be very efficient, it is suggested to initially permute
rows in rowsum-increasing order and skip in the search those that have cumulative rowsum
smaller or equal than θ times the total number of nonzeros in G. For instance, when θ is set
to 25%, we only consider the rows with largest densities that contain at most 75% nonzero values
of P.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25116

• In the elimination, for each reference row, only at most ω (which is typically a small number,
such as 100) unmarked rows are traversed.

In web page networks, the proportion of nodes with k in-links almost equals to 1/kγ, and the most
recent estimate of γ is 2.1 [45]; the network structure also exhibits a nested block characteristic [44].
The above scheme can significantly reduce the time costs when dealing with web link networks based
on these characteristics, while a little sacrifice in the effect of eliminating the nonzero values. A detailed
algorithm description of this elimination process can be found in Algorithm 1 in [39], and we call this
algorithm the first-step elimination algorithm.

In every ith column of the elimination operator E, the indexes of negative values refer to the rows
reduced using the ith reference row. Meanwhile, each row of E has at most 1 negative element because
it can be eliminated at most once. Therefore, nnz(E) < 2n and inv(E) = abs(E) [39]. The transformed
system after elimination of (1.4) can be expressed as

AE x = vE, with AE = EA, vE = Ev, (4.2)

where AE and PE are expected to be sparser than A and P, respectively.
Note that, the eliminated matrix AE is expected to be different with A in terms of eigenvalues, and

it may be less favorable for iterative solvers. Fortunately, it has been demonstrated theoretically and
confirmed experimentally that the perturbation is bounded by a moderate amount [39].

4.2. Two-stage elimination strategy

Although the reduced matrix EP may no longer satisfy Properties 4.1 in general, the following
result provides some hints for continuing the elimination.

Theorem 4.1. In the eliminated PageRank transition matrix EP, P( j, i) = ±P(k, i) when these are
nonzero values for 1 ≤ i, j, k ≤ n.

Proof . Because of Property 1, elimination modifies a non-zero element P(i, j) of P to 0 when the ith

row of P is subtracted from a reference kth row that has a non-zero value P(k, j), otherwise P(i, j)
remains unchanged. Meanwhile a zero element P(i, j) = 0 in the same jth column changes to −P(k, j),
and P(k, j) = P(i, j) due to Property 1. In conclusion, the non-zero values in the jth column are either
equal or opposite to one another. □

Example 4.1. Given a PageRank transition matrix P, the eliminated matrix EP generated after the
first-step elimination algorithm will be

P =


1
4

1
4

1
3

1
2

1
4

1
4

1
3 0

1
4

1
4

1
3 0

1
4

1
4 0 1

2

 −→ EP =


1
4

1
4

1
3

1
2

0 0 0 −1
2

0 0 0 −1
2

0 0 −1
3 0

 .
The non-zero elements in each column of EP have either same values or opposite values. It is evident
that matrix EP can be eliminated further via basic row operations, e.g., subtracting the 2nd row from
the 3rd row decreases the number of non-zero values by 1 in row 3, and adding the 4th row to the 1st

row reduces the non-zero elements of row 1 by 1. 2

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25117

In order to continue elimination on EP, we need to accurately determine whether a row
addition/subtraction row j ± row i will decrease or increase the density. Consequently, criterion 4.1
must be updated to take into account the new structure of EP provided by Theorem 4.1. Specifically,
fixing a reference row i, we eliminate row j if one of the two operations row j := row j + row i or
row j := row j − row i decrease the density in row j. Both operations have the potential to achieve the
goal. For example, if row j = (a1, a2, a3, a4, a5, a6, a7) and row i = (a1, a2, a3, a4,−a5,−a6,−a7) with
ai > 0 (i = 1, 2, · · · , 7), both row j := row j + row i and row j := row j − row i reduce the number
of non-zeros in row j, but the latter should be preferred as it annihilates more entries. If we denote as
nnz( j)+ and nnz( j)− the numbers of non-zero elements of row j+ row i and row j− row i, respectively,
we decide to reduce row j when min(nnz( j)+, nnz( j)−) < nnz( j), and we record the type of operation
(either addition or subtraction). We outline the second-step elimination algorithm as Algorithm 2. The
whole two-stage elimination strategy sequentially implements the first-step elimination algorithm and
then the second-step elimination algorithm.

Note that, the sequence of row-operations performed during elimination is stored in the variables
m, groupi and operationi, i = m + 1,m + 2, . . . , n at lines 26 − 29 of Algorithm 2. These steps are
straightforward to implement using a high-level programming language such as MATLAB. For the
sake of clarity, we will briefly describe the implementation of line 27 in the example that follows.

Example 4.2. Suppose G is of dimension 5, m = 1, group2 = {2, 3}, group2 = ∅, group4 = {4, 5},
operation2 = {1,−1}, operation3 = {1}, operation4 = {1, 1}, operation5 = {1}. Then the line 27 can be
implemented by:
(1) row(i).index=i:i+length(groupi)-1, col(i).index=i*ones(1,length(groupi)), i = 2, 3, 4, 5;
(2) whole row=[row(2:5).index], whole col=[col(2:5).index];
(3) value=[operation2, · · · , operation5];
(4) EC=sparse(whole row,whole col,value,4,4);
(5) E=blkdiag(speye(5-4),EC); 2

The main difference between the second-step elimination algorithm (Algorithm 2) and the single-
stage elimination algorithm [39] from the standpoint of computational cost is that: for each candidate
reference rows i, the former algorithm requires to assess the effect on another row j of two elimination
operations, namely row j := row j + row i and row j := row j − row i, while the latter of only one
operation, row j := row j − row i. According to the analysis presented in [39], the time required to
compute the elimination effect varies by problem and parameter. In general, it is not possible to predict
which algorithm will be the most cost-efficient. For the analysis of the computational cost of a single-
stage elimination algorithm, one can refer to [39], as it is also highly applicable to the second-stage
elimination algorithm.

Next, we examine the impact of the two-stage elimination algorithm on the eigenvalues distribution
of the Google matrix A, which may determine to a large extent the convergence speed of iterative
solvers applied to (1.4). We denote by E1 and E2 the 1-step and 2-step elimination operators,
respectively. We will begin by introducing the following theorems.

Theorem 4.2. Let AE1 = E1 · A and AE2 = E2 · AE1 = E2 · E1 · A be the PageRank coefficient matrices
after the first-step elimination and then the second-step elimination (Algorithm 2), respectively. We
establish the following bounds:

∥E2E1∥1 = ∥(E2E1)−1∥1 ≤ (1+2·ω), ∥E2E1∥∞ = ∥(E2E1)−1∥∞ ≤ 3, ∥AE2∥1 ≤ (1+α)(1+2·ω). (4.3)

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25118

Algorithm 2 Second-step elimination process for PageRank models.

Input: EG, θ, ω
1: Compute the numbers of nonzero entries in rows of EG by rowsum = sum(EG, 2).
2: Reorder rowsum to a value increasing order, reorder rows of EG accordingly.
3: Compute the smallest s satisfying rowsum(1 : s) ≥ θnnz(EG).
4: Set mark = [0, 0, · · · , 0] ∈ R1×n

5: for i = s + 1 : n do
6: groupi = ∅, operationi = {1};
7: if mark(i) = 0 then
8: groupi = {i};
9: for j = (i + 1) : min(i + ω, n) do

10: if mark( j) = 0 then
11: Compute nnz( j)+ and nnz( j)−.
12: Compute [M, ind] = min(nnz( j)+, nnz( j)−)
13: if M < nnz( j) then
14: groupi = {groupi, j}
15: if ind == 1 then
16: operationi = {operationi, 1}
17: else
18: operationi = {operationi,−1}
19: end if
20: Set mark( j) = 1.
21: end if
22: end if
23: end for
24: Set mark(i) = 1.
25: end if
26: end for
27: Construct the permutation perm = {1 : m, groupm+1, groupm+2, · · · , groupn}

28: Generate the elimination operator E by modifying the m + 1 : n columns of identity matrix
according to operationi, i = m + 1,m + 2, . . . , n.

29: Permute E using the inverse perm of perm.
30: Reorder the rows of EG and E back to the original order.
31: return E;

Proof . In the 1-step elimination procedure, we carry out the operation row j := row j − row i only if
it decreases the density of row j. In both elimination steps, this operation can be carried out at most
once on row j. In the 2-step elimination algorithm, the operation row j := row j + row i sets row j
back to its state before 1-step elimination, so it will actually increase the density of row j. On the
other hand, the operation row j := row j− row i in the 2-step elimination will also increase the density
of row j because the zero elements reduced by the 1-step elimination will change to negative values,
the elements with negative values will be modified to their doubleness, and the remaining elements

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25119

will remain unchanged. As a result, neither of these two operations will be implemented in the 2-
step elimination. In summary, if the row j is reduced using the reference row i in the first stage of
elimination, it will no longer be reduced using row i in the 2-step elimination process.

Therefore matrix E2E1 has the following form: the diagonal elements are 1, the off-diagonal
elements are either 1 or -1, the number of nonzero elements in each column is less than 1+2ω because
a reference row may reduce at most ω rows in each elimination process. Thus ∥E2E1∥1 ≤ 1 + 2ω, and
∥AE2∥1 ≤ ∥A∥1∥E2E1∥1 ≤ (1 + α)(1 + 2ω).

Besides, as a row may be reduced both in the 1-step and 2-step elimination, the number of non-
zero elements in each row of E2E1 is at most 3 including the diagonal element. We conclude that
∥E2E1∥∞ ≤ 3.

By reverting the operations performed during the elimination, namely adding or subtracting each
reference row from its reduced rows, the final eliminated system can be transformed back to the original
system. As a result, changing the values of the off-diagonal elements (1 and −1) in E2E1 to their
opposite number yields (E2E1)−1. Thus ∥(E2E1)−1∥1 = ∥E2E1∥1 ≤ 2 · ω + 1, ∥(E2E1)−1∥∞ = ∥E2E1∥∞ ≤

3. □

Lemma 4.1. [46] If matrix C ∈ Rn×n is strictly diagonally dominant by columns, denoted by

δ = mink(|ckk| −
∑
j,k

|c jk|),

there must be ||C−1||1 ≤ 1/δ.

Theorem 4.3. Let λE2 be an eigenvalue of AE2 , then

1 − α
2 · ω + 1

≤ |λE2 | ≤ (1 + α)(2 · ω + 1).

Proof . According to Theorem 4.2, |λE2 | ≤ ρ(AE2) ≤ ∥AE2∥1 ≤ (1 + α)(1 + 2 · ω). As A is diagonally
dominant by columns, therefore ∥A−1∥1 ≤

1
mink(|Akk |−

∑
j,k |A jk |)

≤ 1
1−α , according to Lemma 4.1. Then we

get ∥A−1
E2∥1 ≤ ∥(E2E1)−1∥1∥A−1∥1 ≤

1+2·ω
1−α and, consequently, |λE2 | ≥

1−α
1+2·ω . □

For the case where matrix A = I − αP is symmetric, we derive stricter bounds for the eigenvalues
of AE through the following lemma and theorem, where ρ(·) denotes the spectral radius.

Lemma 4.2. [47] If matrix A is normal,

ρ(XA) ≤ ρ(A)∥X∥ and ρ(AY) ≤ ρ(A)∥Y∥,

for any matrices X and Y.

Proof . Because ∥ · ∥ is an induced matrix norm, we can write ρ(XA) ≤ ∥XA∥ ≤ ∥A∥∥X∥ and ρ(AY) ≤
∥AY∥ ≤ ∥A∥∥Y∥. As A is normal, ∥A∥ = ρ(A). Therefore, the inequalities are demonstrated. □

Theorem 4.4. If the PageRank coefficient matrix A = I − αP is symmetric, and λE2 is an eigenvalue of
AE2 , then

1 − α
√

3(1 + 2ω)
≤ |λE2 | ≤

√
3(1 + 2ω)(1 + α).

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25120

Proof . It is clear that symmetric matrices A and A−1 are normal. According to Lemma 4.2, we get

|λE2 | ≤ ρ(AE2) ≤ ∥E2E1∥ρ(A) ≤
√
∥E2E1∥1∥E2E1∥∞ ≤

√
3(1 + 2 · ω)(1 + α),

ρ(A−1
E2

) = ρ(A−1(E2E1)−1) ≤ ρ(A−1)∥(E2E1)−1∥ ≤
√
∥(E2E1)−1∥1∥(E2E1)−1∥∞ρ(A−1) ≤

√
3(1 + 2ω)
1 − α

.

Consequently, |λE2 | ≥
1

ρ(A−1
E2

) ≥
1 − α

√
3(1 + 2ω)

. □

Note that all of the above analyses provide bounds based on the worst-case scenarios. Our numerical
experiments (even with non-symmetric A) show that the bounds on the spectrum radius of AE2 stated
in the preceding theorem may be loose in practice. Indeed, the spectral distribution of AE2 can be
expected to be only marginally less favourable than those of A for the iterative solution. In addition,
efficient preconditioners (such as incomplete LU factorizations) can be used to effectively enhance the
spectral distribution at a moderate cost, while still benefiting from the decrease in density caused by
elimination, as shown in [39].

In order to reduce the computational complexity of the PageRank problem, we propose integrating
elimination strategies with lumping reordering techniques. The combination should be carried out as
follows:

(1) first, the PageRank linear system is reordered to produce a more compact “kernel linear system”
(I − αP̃11)x̃1 = b1 where the matrix P̃11 and the coefficient matrix (I − αP̃11) inherit Properties
4.1-4.2;

(2) second, the elimination technique is applied to the “kernel linear system” to generate a reduced
(i.e., more sparse) system E(I − αP̃11)x̃1 = Eb1;

(3) then, the eliminated “kernel linear system” is solved for x̃1 iteratively;

(4) finally, using x̃1, the PageRank values of the remaining nodes excluding x̃1 are computed by a few
vector-vector and matrix-vector operations.

Note that the theoretical results in this section related with the values of matrix norms and the
modules of eigenvalues also hold when replacing the PageRank linear system (1.4) with the “kernel
linear system” (3.6), and because I−αP and I−αP̃11 are both strictly diagonally dominant by columns,
P and P̃11 are both non-negative with 1-norm values no larger than 1.

5. Numerical experiments

We assess and compare the effectiveness of the previously discussed reordering and elimination
strategies for the solution of a large number of PageRank linear systems originating from various
fields. All of the tests are implemented using MATLAB R2022a on a Windows 10 computer with an
AMD Ryzen7 4800u CPU and 16 GB RAM. The selected networks represented by binary matrices
are downloaded from the University of Florida matrix repository [48] and the Web Algorithmics
Laboratory [49–51]. We report on their characteristics in Table 1, where the matrix problems are
classified according to their group name in the matrix repositiory, num represents the number of

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25121

matrices tested in the group, n is the average dimension, nnz denotes the average number of non-
zero entries per matrix and den = nnz/n2 denotes the average density. In all of our experiments, the
personalization vector v of the PageRank problem and the initial guess x0 are v = [1, 1, · · · , 1]T/n and
x0 = v, respectively.

Table 1. Characteristics of the binary matrices of each group.

Name num n nnz den
SNAP 25 2,502,735 8,539,049 1.36 × 10−6

LAW 9 10,416,785 228,858,878 2.11 × 10−6

Pajek 10 386,009 1,572,415 1.06 × 10−5

cit 3 1,279,028 5,764,444 3.52 × 10−6

Gleich 6 3,666,739 34,738,258 2.58 × 10−6

Kamvar 2 482,675 4,947,937 2.12 × 10−5

Performances of the lumping algorithms

We test the Lump-2, Lump-3, Lump-5 and its recursive version Lump-R5 algorithms. We vary
the number of recursive steps for the recursive orderings from 1 to 7, and we record the result of 7
recursive iterations reporting two important metrics for each run: Dratio represents the ratio between the
dimension of the final “kernel linear system” corresponding to the upper left block and the dimension
of the original adjacency matrix; CPU is the elapsed CPU time cost (in seconds) required to execute
the lumping algorithm on our computer. In Table 2, we present the mean value of these two metrics for
each group of matrices.

Table 2. Comparison results between various reordering techniques for reducing the
PageRank problem’s dimension.

Methods Lump-2 Lump-3 Lump-R Lump-5 Lump-R5

Groups Dratio CPU Dratio CPU Dratio CPU Dratio CPU Dratio CPU

SNAP 66.4% 0.03 63.9% 0.13 63.5% 0.63 56.5% 0.17 55.7% 1.42
LAW 81.6% 0.27 79.7% 3.24 79.3% 10.56 78.0% 3.42 77.3% 26.70
Pajek 74.78% 0.04 67.01% 0.10 54.17% 0.32 57.76% 0.15 38.58% 0.30
cit 79.56% 0.07 72.44% 0.21 57.13% 0.64 57.86% 0.28 31.92% 0.59
Gleich 91.42% 0.34 90.74% 1.40 90.56% 7.00 67.99% 1.89 66.41% 15.29
Kamvar 91.42% 0.02 89.48% 0.06 89.32% 0.36 89.11% 0.11 88.78% 0.92

Table 2 shows that Lump-R>Lump-3>Lump-2 in terms of their ability to reduce the problem
dimension. It should be noted that Lump-2, Lump-3 and Lump-R can be viewed as instances of
Lump-R using 1, 2 and 7 recursive steps, respectively. Therefore, these results are consistent with
theory and our expectations. The “kernel system” produced by Lump-2 is significantly smaller than
the original one for SNAP, LAW, Pajek and cit groups, while Lump-3 never significantly reduces
the problem dimension further than Lump-2. In these categories of networks, the proportion of
dangling nodes is important, whereas the proportion of weakly dangling nodes is modest. Lump-5

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25122

outperforms Lump-3 at a modest CPU time increase, and Lump-R5 outperforms Lump-5. Lump-5 is
clearly more effective than Lump-3 at reducing problem size for SNAP, Pajek, cit and Gleich groups,
whereas Lump-R outperforms Lump-3 for Pajek and cit groups only. Dangling nodes in these tests
have a weak recursive structure, and the proportion of unreferenced nodes is not small (although
it is smaller than that of dangling nodes). Therefore, excluding the unreferenced nodes provides
greater advantages than recursively excluding the dangling nodes. Lump-R5 significantly reduces
the problem size further than Lump-5 for groups Pajek and cit. In comparison to the little benefit of
only recursively removing dangling nodes, also recursively excluding the unreferenced nodes brings
some improvements on reducing the problem dimension. As a result, we can say that the unreferenced
nodes in these networks have some recursive structure. Another interesting observation is that, for the
recursive-type methods Lump-R and Lump-R5, the recursive process significantly increases the time
cost when it has little effect on reducing the problem dimension, whereas this increase is much gentler
when it has a significant effect on reducing the problem dimension. This suggests the strategy of
detecting the dimension of the upper-left linear system at each step of the recursive process; if it is not
significantly reduced relative to the input matrix at this step, the permutation will not be implemented,
and the recursive process should terminate.

We conclude, based on the results of this experiment, that the recursive 5-type reordering method
outperforms the other lumping algorithms for our PageRank problems.

Performances of elimination algorithms

This section tests the combined effect of the proposed two-stage elimination strategy with the 5-type
lumping reordering in reducing the number of non-zero elements of the PageRank linear system. We
assess and compare the single-stage elimination strategy (SSES) from [39], the two-stage elimination
strategy (TSES) proposed by this paper, and both elimination methods executed on the “kernel linear
system” of the five-type reordering technique (called 5-re-SSES and 5-re-TSES, respectively). The
latter approach is implemented in two distinct stages: first, the transition matrix P is permuted using 5-
type lumping, and then elimination is applied to the upper-left block. The parameters in the elimination
algorithms are set as θ = 0.3 and ω = 100 as suggested in [39].

The results are presented in Table 3, where NNZr represents the ratio of the amount of non-zero
coefficients in the eliminated “kernel linear system” to that of the original PageRank system, and CPU
represents the total elapsed CPU time cost (in seconds) required by lumping plus elimination on our
computer.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25123

Table 3. Comparison results between different methods for reducing the density of the
PageRank linear system.

Methods SSES TSES 5-re-SSES 5-re-TSES

Problems NNZr CPU NNZr CPU NNZr CPU NNZr CPU

cnr-2000 52.9% 0.77 48.8% 2.58 46.6% 0.74 42.6% 1.98
eu-2005 53.5% 4.32 43.5% 9.27 50.8% 3.76 41.6% 8.00
in-2004 42.0% 3.43 36.7% 11.34 37.2% 3.43 32.4% 9.40
indochina-2004 33.3% 59.90 23.8% 96.32 30.9% 73.01 21.5% 102.75
web-BerkStan 49.7% 1.78 46.1% 5.60 44.6% 2.11 41.9% 5.71
web-Stanford 67.5% 1.14 63.9% 2.89 63.0% 1.29 59.9% 2.99
web-NotreDame 66.6% 1.46 63.5% 3.80 40.5% 0.56 38.6% 1.41
Stanford 78.5% 14.11 74.8% 22.78 73.5% 13.50 70.2% 21.56
Stanford-Berkeley 55.7% 28.20 46.4% 40.40 50.9% 27.10 42.7% 38.29
patents 99.9% 21.09 99.9% 47.25 34.1% 8.19 34.1% 16.20
EVA 100.0% 0.07 99.8% 0.12 1.6% 0.006 1.6% 0.007
uk-2007-100000 45.9% 0.36 39.1% 0.80 44.9% 0.51 38.0% 0.92

Table 3 shows that the TSES strategy presented in this work is more effective than SSES at reducing
the linear system density by 4.58% to 28.53%. The reason for this is that TSES can make further use
of the negative values in the matrix, and continue elimination. Similarly, 5-re-TSES outperforms 5-
re-SSES. Meanwhile, 5-re-SSES and 5-re-TSES reduce problem density better than SSES and TSES,
respectively. The reason for this is that the top left corner block produced by the Lump-5 method
contains fewer non-zero elements and is generally denser than the original matrix. Among the tested
methods, the 5-re-TSES outperforms the other methods at reducing problem density, as expected.
The resulting “kernel linear system” has only 1.6% to 70.6% of the initial number of non-zeros in the
original system. For 10 of the 12 studied problems, 5-re-TSES decreases the density by more than 50%,
while TSES does this for 7 of the 12 problems, and SSES only for 4 of them. We can conclude from
our results that the networks analysed exhibit a high degree of repetitive row sparsity patterns and the
two-stage elimination strategy is very effective to exploit this structural property, especially when used
in combination with the 5-type reordering.

In terms of computational efficiency, 5-re-SSES and 5-re-TSES have lower CPU time costs than
their counterparts SSES and TSES for two-thirds of the problems. For some adjacency matrices with a
modest proportion of S &R nodes, the left-top block is small, and the elimination algorithm is fast since
it traverses fewer rows. Furthermore, 5-re-SSES and 5-re-TSES clearly outperform SSES and TSES on
the matrices “patents” and “EVA”, because repetitive row sparsity patterns are not important in these
matrices, but the proportion of S &R nodes is small, and as a result the problem density is decreased
primarily with the help of the 5-type reordering approach rather than elimination procedures.

We conclude that the 5-re-SSES method is effective at reducing the density of the PageRank
problems studied, and it can be efficiently implemented. It should be noted that the time cost of this
pre-processing process, which includes the reordering and elimination stages, may be amortized during
the solution, particularly when dealing with sequences of PageRank problems with multiple damping
factors or multiple personalization vectors since it is performed only once.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25124

Performances on accelerating PageRank computations

This section examines the performance of SSES, TSES, 5-re-SSES, 5-re-TSES and Lump-5
methods on accelerating the convergence of Krylov subspace methods for solving the initial PageRank
problem. We solve the linear system corresponding to the left-top block with or without elimination
strategies using the ILU-preconditioned GMRES solver [52]. The ILU factorization and iterative
solution are implemented by the ILUPACK package [53]. Note that ILPUACK can be only used
in Linux-based operating systems. Each iteration begins with the zero vector x0 = 0, the maximum
dimension of the Krylov subspace is m = 10, and the iterations are terminated when the approximate

solution xi satisfies
∥(xi − αPxi) − v∥2

∥v∥2
< 10−8 or the number of restarts reaches 1000. The memory

costs are quantified as

mem =



nnz(LUA)+nnz(A)
nnz(A) Lump-5,

nnz(LUAE )+nnz(AE)
nnz(A) the eliminated system by SSES,

nnz(LUAT E )+nnz(AT E)−nnz(AT )+nnz(A)
nnz(A) the eliminated system by 5-re-SSES,

nnz(LUAT E2
)+nnz(AT E2 )−nnz(AT )+nnz(A)

nnz(A) the eliminated system by 5-re-TSES,

(5.1)

where symbol nnz(LUA) represents the number of the non-zeros in all the multilevel ILU factors of
A, while AT denotes the coefficient matrix of the upper-left “kernel system” after 5-type lumping, AT E

and AT E2 denote the eliminated matrix of AT by the SSES strategy and the TSES strategy, respectively.
For fair comparisons, the parameters of elimination algorithms are tuned to get good performance. We
tune the ‘droptol’ parameter that affects ILUPACK accuracy to ensure that the memory costs of the
various tested solvers are comparable. However, methods that incorporate elimination reduce memory
costs to such a great extent that other methods often cannot guarantee convergence at the same memory
footprint. Therefore, the elimination cases are tuned to have the same memory cost, the non-elimination
cases are tuned to have another level of memory cost.

The comparison results are presented in Table 4, where Tp, T f and Ts denote the CPU time (in
seconds) needed by the pre-processing including reordering and/or elimination, the factorization step
and the Krylov subspace solver, respectively, and Ttotal denotes the total CPU time. Symbol ‘-’
represents no corresponding metric value.

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25125

Table 4. Numerical results for the solution of PageRank problems with
α = 0.995.

Problem&Method Dratio NNZr Mem Tp T f Ts Ttotal

cnr-2000
ILUPACK
SSES
Lump-5
5-re-SSES
5-re-TSES

100.0%
100.0%
74.2%
74.2%
74.2%

100.0%
52.9%
90.8%
46.6%
42.6%

2.22
1.60
2.13
1.61
1.60

-
0.95
0.13
0.50
1.06

8.92
2.80
4.21
2.20
2.06

0.60
0.27
0.36
0.07
0.05

9.52
4.03
4.70
2.76
3.17

web-BerkStan
ILUPACK
SSES
Lump-5
5-re-SSES
5-re-TSES

100.0%
100.0%
89.2%
89.2%
89.2%

100.0%
49.7%
86.9%
44.6%
41.9%

2.41
1.59
2.39
1.59
1.61

-
1.72
0.32
1.65
3.49

26.49
9.84
21.12
7.87
8.13

4.96
0.32
0.61
0.31
0.24

31.44
11.89
22.06
9.83
11.85

web-Stanford
ILUPACK
SSES
Lump-5
5-re-SSES
5-re-TSES

100.0%
100.0%
92.7%
92.7%
92.7%

100.0%
67.5%
92.5%
63.0%
59.9%

2.02
1.60
1.99
1.62
1.60

-
1.26
0.15
1.21
1.81

5.68
3.07
3.56
2.94
2.68

4.06
2.13
1.61
1.19
0.39

9.74
6.46
5.32
5.34
4.88

eu-2005
ILUPACK
SSES
Lump-5
5-re-SSES
5-re-TSES

100.0%
100.0%
91.2%
91.2%
91.2%

100.0%
53.5%
93.9%
50.8%
41.6%

2.04
1.62
2.02
1.59
1.61

-
3.78
0.79
3.86
6.19

53.52
44.77
75.00
37.54
36.26

15.76
1.51
7.14
1.47
1.40

69.29
50.06
82.93
42.87
43.85

in-2004
ILUPACK
SSES
Lump-5
5-re-SSES
5-re-TSES

100.0%
100.0%
77.9%
77.9%
77.9%

100.0%
42.0%
92.2%
37.2%
32.4%

2.00
1.23
2.01
1.24
1.00

-
3.25
0.74
2.60
5.71

25.31
12.76
21.12
9.87
8.06

15.54
0.69
2.32
0.36
0.45

40.85
16.70
24.18
12.84
14.23

uk-2007-100000
ILUPACK
SSES
Lump-5
5-re-SSES
5-re-TSES

100.0%
100.0%
94.6%
94.6%
94.6%

100.0%
45.9%
98.0%
44.9%
38.0%

2.04
1.60
2.12
1.59
1.60

-
0.28
0.11
0.28
0.33

8.19
6.31
7.82
5.77
4.05

0.72
0.20
0.71
0.18
0.09

8.91
6.79
8.63
6.23
4.47

As shown in Table 4, SSES and Lump-5 can effectively lower the factorization time T f and the
solving process time Ts, with the preprocessing process adding a small amount of additional time cost
Tp. The reason is clearly that the quantity of non-zero values and/or the size of the “kernel system”

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25126

have been reduced. These two methods increase the total computational efficiency with decreased total
time costs, Ttotal as a result. The SSES method outperforms the Lump-5 method because it reduces
T f , Ts and Ttotal by a greater amount. When both are combined, the proposed 5-re-SSES method can
further reduce the factorization time T f and the solving process time Ts and achieve a higher level of
computational efficiency with a lower total time cost Ttotal.

Compared with the 5-re-SSES method, the use of the proposed two-stage elimination strategy
generally further decreases the factorization time and the solving time. However, because the two-
stage elimination strategy may significantly increase the pre-processing time compared to the one-
stage elimination process (note, however, that the code has not been fully optimized), the resulting 5-
re-TSES method does not outperform the 5-re-SSES method in terms of total time costs. As stated
previously, the pre-processing procedure can be implemented only once and used to solve multiple
PageRank problems on the same network graph. In such situations, the solution time Ts becomes the
most important metric, followed by the factorization time T f . We conclude that 5-re-TSES will be
preferable in terms of time consumption for solving multiple PageRank problems on the same network
graph, whereas 5-re-SSES should be preferred for solving a single PageRank linear system. In terms
of memory requirements, TSES-type methods are more efficient that SSES-type methods.

6. Conclusions

For the solution of large PageRank models, in this paper we have described a recursive 5-type
lumping algorithm combined with a two-stage elimination strategy that integrates information about
the nonzero structure of the underlying network and the nonzero values of the PageRank coefficient
matrix to reduce the dimension and the density of the relevant PageRank system to solve. Numerical
experiments on over 50 real-world networks demonstrate that 1) real networks often have deeper
structural characteristics than those already reported in the literature, and these can be used for faster
PageRank computations; 2) the structural properties of data networks tend to be related to their
application backgrounds; and 3) the proposed methods can exploit these properties effectively and
have the potential to decrease significantly the costs of PageRank solutions especially for the case of
large and/or multiple damping factors.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (12101433), the
Sichuan Science and Technology Program (2023NSFSC1136) and the Two-Way Support Programs
of Sichuan Agricultural University, China (1921993077). Bruno Carpentieri belong to the Gruppo
Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM)
and this work was partially supported by INdAM-GNCS under Progetti di Ricerca 2022. Furthermore
Bruno Carpentieri was funded by Provincia autonoma di Bolzano/Alto Adige - Ripartizione
Innovazione, Ricerca, Universitàe Musei (contract nr. 19/34).

AIMS Mathematics Volume 8, Issue 10, 25104–25130.



25127

Conflict of interest

The authors declare no conflict of interest.

References

1. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, Comput. Netw.
ISDN Syst., 30 (1998), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

2. T. Zhou, E. Martinez-Baez, G. Schenter, A. E. Clark, PageRank as a collective variable to study
complex chemical transformations and their energy landscapes, J. Chem. Phys., 150 (2019),
134102. https://doi.org/10.1063/1.5082648

3. B. Liu, S. Jiang, Q. Zou, Hits-pr-hhblits: Protein remote homology detection by combining
pagerank and hyperlink-induced topic search, Brief. Bioinformatics, 21 (2020), 298–308.
https://doi.org/10.1093/bib/bby104

4. M. Rafiei, A. A. Kardan, A novel method for expert finding in online communities based on concept
map and pagerank, Hum. Cent. Comput. Inf. Sci., 5 (2015), 10. https://doi.org/10.1186/s13673-015-
0030-5

5. F. A. Massucci, D. Docampo, Measuring the academic reputation through citation networks via
pagerank, J. Informetr., 13 (2019), 185–201. https://doi.org/10.1016/j.joi.2018.12.001

6. M. Zhang, X. Li, L. Zhang, S. Khurshid, Boosting spectrum-based fault localization using
Pagerank, In: Proceedings of the 26th ACM SIGSOFT international symposium on software testing
and analysis, 2017, 261–272. https://doi.org/10.1145/3092703.3092731

7. A. Bojchevski, J. Gasteiger, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki, et al.,
Scaling graph neural networks with approximate pagerank, In: Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, 2020, 2464–2473.
https://doi.org/10.1145/3394486.3403296

8. E. Chien, J. Peng, P. Li, O. Milenkovic, Adaptive universal generalized pagerank graph neural
network, arXiv preprint, 2020. https://doi.org/10.48550/arXiv.2006.07988

9. A. Roth, T. Liebig, Transforming pagerank into an infinite-depth graph neural network, In: Joint
European conference on machine learning and knowledge discovery in databases, 2022, 469–484.
https://doi.org/10.1007/978-3-031-26390-3 27

10. D. F. Gleich, PageRank beyond the web, SIAM Rev., 57 (2015), 321–363.
https://doi.org/10.1137/140976649

11. R. A. Horn, S. Serra-Capizzano, A general setting for the parametric Google matrix, Internet Math.,
3 (2008), 385–411. https://doi.org/10.1080/15427951.2006.10129131

12. S. Serra-Capizzano, Jordan canonical form of the Google matrix: A potential contribution
to the PageRank computation, SIAM J. Matrix Anal. Appl., 27 (2005), 305–312.
https://doi.org/10.1137/S0895479804441407

13. A. Langville, C. Meyer, Google’s PageRank and beyond: The science of search engine rankings,
Princeton: Princeton University Press, 2006. https://doi.org/10.1515/9781400830329

AIMS Mathematics Volume 8, Issue 10, 25104–25130.

http://dx.doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/https://doi.org/10.1063/1.5082648
http://dx.doi.org/https://doi.org/10.1093/bib/bby104
http://dx.doi.org/https://doi.org/10.1186/s13673-015-0030-5
http://dx.doi.org/https://doi.org/10.1186/s13673-015-0030-5
http://dx.doi.org/https://doi.org/10.1016/j.joi.2018.12.001
http://dx.doi.org/https://doi.org/10.1145/3092703.3092731
http://dx.doi.org/https://doi.org/10.1145/3394486.3403296
http://dx.doi.org/https://doi.org/10.48550/arXiv.2006.07988
http://dx.doi.org/https://doi.org/10.1007/978-3-031-26390-3_27
http://dx.doi.org/https://doi.org/10.1137/140976649
http://dx.doi.org/https://doi.org/10.1080/15427951.2006.10129131
http://dx.doi.org/https://doi.org/10.1137/S0895479804441407
http://dx.doi.org/https://doi.org/10.1515/9781400830329


25128

14. P. G. Constantine, D. F. Gleich, Random alpha PageRank, Internet Math., 6 (2009), 189–236.
https://doi.org/10.1080/15427951.2009.10129185

15. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, G. H. Golub, Extrapolation methods for
accelerating PageRank computation, In: Proceedings of the 12th international conference on World
Wide Web, (2003), 261–270. https://doi.org/10.1145/775152.775190

16. X. Tan, A new extrapolation method for PageRank computations, J. Comput. Appl. Math., 313
(2017), 383–392. https://doi.org/10.1016/j.cam.2016.08.034

17. C. Brezinski, M. Redivo-Zaglia, S. Serra-Capizzano, Extrapolation methods for PageRank
computations, CR Math., 340 (2005), 393–397. https://doi.org/10.1016/j.crma.2005.01.015

18. A. Cicone, S. Serra-Capizzano, Google PageRanking problem: The model and the analysis, J.
Comput. Appl. Math., 234 (2010), 3140–3169. https://doi.org/10.1016/j.cam.2010.02.005

19. S. D. Kamvar, T. H. Haveliwala, G. H. Golub, Adaptive methods for the computation of the
PageRank, Linear Algebra Appl., 386 (2004), 51–65. https://doi.org/10.1016/j.laa.2003.12.008

20. H. D. Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen, J. Ruge, Multilevel adaptive
aggregation for Markov chains, with application to web ranking, SIAM J. Sci. Comput., 30 (2008),
2235–2262. https://doi.org/10.1137/070685142

21. Z. L. Shen, T. Z. Huang, B. Carpentieri, C. Wen, X. M. Gu, Block-accelerated aggregation
multigrid for Markov chains with application to PageRank problems, Commun. Nonlinear Sci.
Numer. Simul., 59 (2018), 472–487. https://doi.org/10.1016/j.cnsns.2017.11.031

22. D. F. Gleich, A. P. Gray, C. Greif, T. Lau, An inner-outer iteration for computing PageRank, SIAM
J. Sci. Comput., 32 (2010), 349–371. https://doi.org/10.1137/080727397

23. C. Q. Gu, F. Xie, K. Zhang, A two-step matrix splitting iteration for computing PageRank, J.
Comput. Appl. Math., 278 (2015), 19–28. https://doi.org/10.1016/j.cam.2014.09.022

24. C. Wen, T. Z. Huang, Z. L. Shen, A note on the two-step matrix splitting iteration for computing
PageRank, J. Comput. Appl. Math., 315 (2017), 87–97. https://doi.org/10.1016/j.cam.2016.10.020

25. Z. L. Tian, Y. Liu, Y. Zhang, Z. Y. Liu, M. Y. Tian, The general inner-outer iteration method
based on regular splittings for the PageRank problem, Appl. Math. Comput., 356 (2019), 479–501.
https://doi.org/10.1016/j.amc.2019.02.066

26. M. Y. Tian, Y. Zhang, Y. D. Wang, A general multi-splitting iteration method for computing
PageRank, Comput. Appl. Math., 38 (2019), 1–29. https://doi.org/10.1007/s40314-019-0830-8

27. G. H. Golub, C. Greif, An Arnoldi-type algorithm for computing pagerank, BIT Numer. Math., 46
(2006), 759–771. https://doi.org/10.1007/s10543-006-0091-y

28. J. F. Yin, G. J. Yin, M. Ng, On adaptively accelerated Arnoldi method for computing PageRank,
Numer. Linear Algebra Appl., 19 (2012), 73–85. https://doi.org/10.1002/nla.789

29. Z. L. Shen, H. Yang, B. Carpentieri, X. M. Gu, C. Wen, A preconditioned variant of the
refined arnoldi method for computing PageRank eigenvectors, Symmetry, 13 (2021), 1327.
https://doi.org/10.3390/sym13081327

30. H. F. Zhang, T. Z. Huang, C. Wen, Z. L. Shen, FOM accelerated by an extrapolation
method for solving PageRank problems, J. Comput. Appl. Math., 296 (2016), 397–409.
https://doi.org/10.1016/j.cam.2015.09.027

AIMS Mathematics Volume 8, Issue 10, 25104–25130.

http://dx.doi.org/https://doi.org/10.1080/15427951.2009.10129185
http://dx.doi.org/https://doi.org/10.1145/775152.775190
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.08.034
http://dx.doi.org/https://doi.org/10.1016/j.crma.2005.01.015
http://dx.doi.org/https://doi.org/10.1016/j.cam.2010.02.005
http://dx.doi.org/https://doi.org/10.1016/j.laa.2003.12.008
http://dx.doi.org/https://doi.org/10.1137/070685142
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2017.11.031
http://dx.doi.org/https://doi.org/10.1137/080727397
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.09.022
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.10.020
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.02.066
http://dx.doi.org/https://doi.org/10.1007/s40314-019-0830-8
http://dx.doi.org/https://doi.org/10.1007/s10543-006-0091-y
http://dx.doi.org/https://doi.org/10.1002/nla.789
http://dx.doi.org/https://doi.org/10.3390/sym13081327
http://dx.doi.org/https://doi.org/10.1016/j.cam.2015.09.027


25129

31. G. Wu, Y. Wei, A power-Arnoldi algorithm for computing pagerank, Numer. Linear Algebra Appl.,
14 (2007), 521–546. https://doi.org/10.1002/nla.531

32. C. Q. Gu, X. L. Jiang, C. C. Shao, Z. B. Chen, A GMRES-Power algorithm
for computing PageRank problems, J. Comput. Appl. Math., 343 (2018), 113–123.
https://doi.org/10.1016/j.cam.2018.03.017

33. Q. Y. Hu, C. Wen, T. Z. Huang, Z. L. Shen, X. M. Gu, A variant of the Power-
Arnoldi algorithm for computing PageRank, J. Comput. Appl. Math., 381 (2021), 113034.
https://doi.org/10.1016/j.cam.2020.113034

34. C. Q. Gu, W. W. Wang, An Arnoldi-Inout algorithm for computing PageRank problems, J. Comput.
Appl. Math., 309 (2017), 219–229. https://doi.org/10.1016/j.cam.2016.05.026

35. D. F. Gleich, L. Zhukov, P. Berkhin, Fast parallel pagerank: A linear system approach, 2005.

36. Y. Lin, X. Shi, Y. Wei, On computing PageRank via lumping the Google matrix, J. Comput. Appl.
Math., 224 (2009), 702–708. https://doi.org/10.1016/j.cam.2008.06.003

37. Q. Yu, Z. Miao, G. Wu, Y. Wei, Lumping algorithms for computing Google’s PageRank
and its derivative, with attention to unreferenced nodes, Inf. Retr., 15 (2012), 503–526.
https://doi.org/10.1007/s10791-012-9183-2

38. A. N. Langville, C. D. Meyer, A reordering for the PageRank problem, SIAM J. Sci. Comput., 27
(2006), 2112–2120. https://doi.org/10.1137/040607551

39. Z. L. Shen, T. Z. Huang, B. Carpentieri, X. M. Gu, C. Wen, An efficient elimination
strategy for solving PageRank problems, Appl. Math. Comput., 298 (2017), 111–122.
https://doi.org/10.1016/j.amc.2016.10.031

40. Z. L. Shen, T. Z. Huang, B. Carpentieri, C. Wen, X. M. Gu, X. Y. Tan, Off-diagonal low-rank
preconditioner for difficult PageRank problems, J. Comput. Appl. Math., 346 (2019), 456–470.
https://doi.org/10.1016/j.cam.2018.07.015

41. Z. L. Shen, B. Carpentieri, Multi-Step Low-Rank Decomposition of Large PageRank Matrices,
In: The 7th international conference on fuzzy systems and data mining, 340 (2021), 397–404.
https://doi.org/10.3233/FAIA210212

42. D. J. Higham, N. J. Higham, MATLAB guide, SIAM press, 2016.

43. C. P. Lee, G. H. Golub, S. A. Zenios, Partial state space aggregation based on lumpability and its
application to PageRank, Tech. Rep. Stanford Univ., 2003.

44. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, G. H. Goloub, Exploiting the block structure of
the web for computing PageRank, Tech. Rep. Stanford Univ., 2003.

45. A. Scime, Web mining: Applications and techniques, IGI Global Press, 2005.
https://doi.org/10.4018/978-1-59140-414-9

46. Y. P. Hong, C. T. Pan, A lower bound for the smallest singular value, Linear Algebra Appl., 172
(1992), 27–32. https://doi.org/10.1016/0024-3795(92)90016-4

47. O. Axelsson, M. Neytcheva, A general approach to analyse preconditioners for two-by-two block
matrices, Numer. Linear Algebra Appl., 20 (2013), 723–742. https://doi.org/10.1002/nla.830

AIMS Mathematics Volume 8, Issue 10, 25104–25130.

http://dx.doi.org/https://doi.org/10.1002/nla.531
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.03.017
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.113034
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.05.026
http://dx.doi.org/https://doi.org/10.1016/j.cam.2008.06.003
http://dx.doi.org/https://doi.org/10.1007/s10791-012-9183-2
http://dx.doi.org/https://doi.org/10.1137/040607551
http://dx.doi.org/https://doi.org/10.1016/j.amc.2016.10.031
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.07.015
http://dx.doi.org/https://doi.org/10.3233/FAIA210212
http://dx.doi.org/https://doi.org/10.4018/978-1-59140-414-9
http://dx.doi.org/https://doi.org/10.1016/0024-3795(92)90016-4
http://dx.doi.org/ https://doi.org/10.1002/nla.830


25130

48. T. A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Softw.,
38 (2011), 1–25.

49. P. Boldi, S. Vigna, The webgraph framework I: Compression techniques, In:
Proceedings of the 13th international conference on World Wide Web, 2004, 595–602.
https://doi.org/10.1145/988672.988752

50. P. Boldi, M. Rosa, M. Santini, S. Vigna, Layered label propagation: A multiresolution coordinate-
free ordering for compressing social networks, In: Proceedings of the 20th international conference
on World Wide Web, 2011, 587–596. https://doi.org/10.1145/1963405.1963488

51. P. Boldi, B. Codenotti, M. Santini, S. Vigna, Ubicrawler: A scalable fully distributed Web crawler,
Softw. Pract. Exp., 34 (2004), 711–726. https://doi.org/10.1002/spe.587

52. Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Comput., 7 (1986), 856–869.
https://doi.org/10.1137/0907058

53. M. Bollhöefer, Y. Saad, O. Schenk, ILUPACK-preconditioning software package, 2010.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 10, 25104–25130.

http://dx.doi.org/https://doi.org/10.1145/988672.988752
http://dx.doi.org/https://doi.org/10.1145/1963405.1963488
http://dx.doi.org/ https://doi.org/10.1002/spe.587
http://dx.doi.org/https://doi.org/10.1137/0907058
http://creativecommons.org/licenses/by/4.0

	Introduction
	Existed lumping algorithms for computing PageRank
	Lumping the graph nodes into two types (Lump-2)
	Lumping the web matrix into three types (Lump-3)
	The recursive lumping method for PageRank (Lump-R)
	Lumping the web matrix into five types (Lump-5)

	A recursive 5-types lumping algorithm for Google's PageRank
	A numerical experiment

	Two-stages elimination of PageRank linear systems
	The single stage elimination strategy (SSES)
	Two-stage elimination strategy

	Numerical experiments
	Conclusions

