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Abstract: In this study, a new event-triggered impulsive control strategy is used to solve the problem
of pinning synchronization in coupled impulsive dynamical neural networks with hybrid delays. In
view of discontinuous coupling terms and system dynamics, the inner delay and the impulsive delay
are both investigated. Compared with the traditional pinning impulsive control, event-triggered pinning
impulsive control (EPIC) generates impulse instants only when an event occurs, and is therefore more
in line with practical applications. In order to deal with the complexities of mixed delays, some
generalized inequalities related to hybrid delays based on Lyapunov functions are proposed, which
are subject to the designed event-triggered rule. Then, in order to ensure network synchronization,
linear matrix inequalities (LMIs) can provide some sufficient conditions with less conservatism while
a proposed event-triggered function could successfully eliminate Zeno behavior. In addition, numerical
examples are presented to prove the feasibility of the presented EPIC method.
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1. Introduction

Due to its diverse potential applications, including secure communication, information science and
parallel image processing, the synchronization of coupled dynamical neural networks has received
much attention in recent years [1,2]. Frequent impulsive effects are common phenomena of dynamical
neural networks in actual situations, which means abrupt changes in the state of nodes of such
neural neural networks caused by switching phenomena and instantaneous perturbations at certain
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moments. An impulsive differential dynamical system with continuous and discontinuous behavior
can be represented by such a network, which is one of the most typical hybrid systems [3]. In
fact, impulsive effects can greatly affect dynamical neural networks, and can be categorized into
desynchronizing impulses and synchronizing impulses. In particular, if impulsive effects occur during
the signal transmission between nodes, the term of coupling may be rewritten into a discontinuous
form. It is therefore challenging to explore the synchronization of coupled dynamical neural networks
with impulsive effects. Several interesting results have been obtained in [4–7]. In consideration of
the difficulties in synchronization between all network nodes caused by the topological structure of
a network and in the achievement of dynamical behaviors of all the nodes, there are many control
strategies available to solve this issue, such as pinning control [8], impulsive control [9, 10], adaptive
control [11] and event-triggered control [12, 13].

An example of discontinuous control is impulsive control, which is only applied at certain discrete
moments to achieve a goal, and thus has been favored by many scholars for its low cost, high
efficiency, and simple structure. A number of noteworthy studies have shown that impulsive control
can synchronize complex neural networks [14–18]. Pinning control [8, 9, 19] is another method for
synchronizing dynamical neural networks with only a small fraction of nodes controlled. In [8], a
pinning control strategy has been successfully proposed to address synchronization issues of complex
neural networks, and has been proven to be one of the most powerful methods. The method
of combining impulsive control and pinning control was presented for dynamical networks with
delays [9], in which a scheme of choosing the pinning nodes was given. This mechanism inherits
the merits of the two methods, that is, the lower cost of control and saving resources. For just this
reason, some excellent results about pinning impulsive control strategy have emerged. For instance, Yi
et al. [20] examined how pinning impulsive controls synchronized neural networks with hybrid delays,
where internal delay, three kinds of coupling delays and two impulsive effects are considered. As a
method to achieve exponential synchronization, Shen et al. [21] presented impulsive pinning control,
which uses the average impulsive interval and introduces impulse pinned proportions. More related
work can be seen in [22–24]. Although the control methods mentioned above are easy to implement,
the impulsive instants are artificially determined in advance or dependent on some special conditions.
In other words, information transmission may be hampered by time-triggered control strategies that
consume unnecessary resources and waste control resources. Therefore, researchers have turned their
attention to event-triggered control, which is considered to be able to prevent these defects.

Event-triggered mechanism (ETM) has already attracted a huge amount of interest due to its
practical advantages in low cost of controller updates and high efficiency [25–29]. That is to say,
control mechanisms like this improve the efficiency with which limited bandwidth resources are used.
More recently, there has been widespread adoption of the event- triggered impulsive control (ETIC)
method by scholars, by which impulsive instants are generated when certain events occur according to
the states of a system rather than being designed beforehand. More relevant studies on ETIC can be
found in [13,30–32], where ETIC is applied to various systems. For instance, a study of the Lyapunov
stability problem of an impulsive system was carried out using ETIC [13] and the exponential stability
was investigated for continuous-time dynamic systems and applied to memristive neural networks
based on an ETIC approach [30]. All these studies are evidence of the superiority of the ETIC
mechanism, though time delay is not included in the argument of the studies. On the other hand, there
has been much discussion of SIS and SIR epidemic models in the field of epidemic disease spreading
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research [33]. In the view of contact among individuals, it is obvious that the infected propagation
is related to the degree of individuals, which means the number of edges to connect the individuals
with others. Therefore, many disease epidemic models can be characterized by complex networks.
By applying ETIC to the network nodes, the disease can be controlled and resources can be saved,
which has a certain reference value to the practical work. Some typical works are as follows: [34]
design an epidemic control mechanism based on data instead of the subjective empirical method. [35]
investigates the stability and optimal control for SIS epidemic systems with birth and death in directed
complex networks and the reference therein.

It is noted that time delay is ubiquitous in actual systems on account of various factors, such as signal
transmission, sampling and controller calculations [36]. A time delay within dynamic nodes is called
an internal delay, while that during the transmission of information between nodes is called a coupling
delay. In particular, delays that occur during signal exchange at impulsive instants are called impulsive
delays. For impulsive delays, we need to analyze whether the information obtained at impulsive
instants exists in the current interval or in a previous interval. Considering time delays usually
weaken the synchronization performance of dynamical neural networks or make the analysis of the
synchronization more complex and challenging, it is worthwhile to study the synchronization problem
of complex networks with the existence of time delays. Meanwhile, scholars have made painstaking
efforts and have achieved excellent results [20, 37–42]. For example, an experiment in signed delayed
neural networks was conducted by Mu et al. [43] in which quasi-bipartite synchronization was
examined under impulsive conditions, in which the nodes have cooperative as well as antagonistic
interactions. In [44], the synchronization problem of complex neural networks with the existence of
impulsive delays and system inner delays with unknown boundaries was discussed. Nevertheless, in
these studies about ETIC, either the impulse instants are artificially determined, or only one kind of
time delay is considered. There are few studies on the event-triggered pinning impulsive control (EPIC)
mechanism for synchronization of dynamical neural networks with hybrid delays to our knowledge.
Therefore, the following are several main contributions in this paper pertaining to the exponential
synchronization of dynamical neural networks with mixed delays under the appropriate EPIC method.

Motivated by the above discussion, this paper mainly focuses on the exponential synchronization
problem of dynamical neural networks with mixed delays under the appropriate EPIC method. The
main contributions are highlighted as follows:
1) An novel EPIC mechanism is designed to achieve synchronization for impulsive dynamical neural
networks with hybrid delays. There are impulsive effects when signals are exchanged between nodes,
which it should be noted that the coupling term is discontinuous. From a practical point of view, the
system internal delay and impulsive delay in this paper are considered simultaneously, which are both
limited. It becomes more challenging to analyze when mixed delays are present.
2) The designed event-triggered rule in the EPIC mechanism is based on the Lyapunov function,
where only one node needs to be controlled and well-designed event-triggered conditions determine the
impulsive instants, which is different from the predesigned impulse instants in [7] and [45]. Obviously,
this mechanism can effectively reduce the cost of controller and update frequency of the controller. To
ensure exponential synchronization, the parameter η is introduced in the event-triggered rule, which
differs from the proposed forced impulse sequence in [31]. In other words, no matter whether the event
occurs or not, the exponential synchronization can be reached in the end.
3) According to proposed the EPIC strategy, some generalized inequalities related to hybrid delays are
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proposed. In view of the above, the synchronization of dynamical neural networks can be analyzed
using LMIs technology to establish a number of sufficient criteria. Furthermore, Zeno behavior can be
excluded. In order to analyze the synchronization of dynamical neural networks, LMIs technology is
utilized to establish a number of sufficient criteria.

The remainder of this article is organized as follows. Section II gives some useful preliminaries,
which presents an important lemma for the achievement of exponential synchronization. The main
results are derived in Section III. A numerical example and simulation are provided in Section IV to
illustrate the effectiveness of the proposed method. Finally, the conclusion of this paper is given in
Section V.

Notations: Throughout this paper, Z, Z+,R, and R+ denote the set of integer numbers, positive
integer numbers, real numbers, and nonnegative real numbers, respectively. Rn stands for n-
dimensional real spaces equipped with the Euclidean norm ‖ · ‖, and Rn×m stands for the set of n × m
real matrices. A positive (negative) definite matrix W ∈ Rn×n is denoted by W > 0(W < 0). λmax(W)
(λmin(W)) denotes the maximum (minimum) eigenvalue of a matrix W ∈ Rn×n . I represents an identity
matrix. The symmetrical part of W is defined as W s = (W +WT )/2. ⊗ stands for the Kronecker product.
For J ⊆ R,S ⊆ Rm(1 ≤ m ≤ n), PC(J,S) := {φ : J→ S | φ is piecewise right continuous }.

2. Preliminaries

By coupling of N neurons in a neural network, we consider the following coupled impulsive
dynamical neural networks with hybrid delays:

ẋi(t) = Axi(t) + B1 f (xi(t)) + B2g(xi(t − τ(t)))
+c

∑N
j=1 hi jΓx j(t) + ui(t), t , tk

x j(t+
k ) − xi(t+

k ) = Ck(x j(t−k ) − xi(t−k )) + Dk(x j(t−k − τk)
−xi(t−k − τk)), (i, j) satisfies hi j > 0

xi(θ) = ϕi(θ), θ ∈ [t0 − τ, t0],

(2.1)

where i = 1, 2, · · · ,N, xi(t) ∈ Rn denotes the state with respect to the ith neuron and f (·) and g(·) ∈ Rn

are the activation functions. c > 0 represents the coupling strength. ui(t) is the ith control input, which
is designed later. Γ = diag{γ1, γ2, · · · , γn} > 0 is the inner coupling matrix. H = (hi j)N×N indicates
the coupling weights matrix, which is defined as follows: if there is a connection from neuron j to
neuron i, then hi j > 0, otherwise hi j = 0. Moreover, the diagonal elements of matrix H is defined
as hii = −

∑N
j=1, j,i hi j, i = 1, 2, · · · ,N. τ(t) and τk are system internal time-vary delay and impulsive

delay, respectively, which meet 0 ≤ τ(t) ≤ τ. A, B1, B2 ∈ R
n×n are constant matrices. Ck and Dk

denotes control gains. The impulsive sequence {tk}
∞
k=1 determined by the event-triggered rule satisfies

tk − τk ∈ [tk−1, tk), k ∈ Z+. We always assume that x(tk) = x(t+
k ), and φi(t) ∈ PC([t0 − τ, t0],Rn) is the

initial condition of the ith neuron.
In this paper, the isolated dynamical model can be seen as an objective trajectory, which can be

represented by the following equation:ṡ(t) = As(t) + B1 f (s(t)) + B2g
(
s(t − τ(t))

)
,

s(θ) = ψ(θ), θ ∈ [t0 − τ, t0],
(2.2)
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where ψ(θ) ∈ PC([t0 − τ, t0],Rn) is the initial condition.
In this paper, the synchronization problem between (2.1) and (2.2) by using the EPIC method

is investigated. Without loss of generality, the first node of dynamical networks is selected to be
controlled, and the impulsive controller can be designed as follows:

ui(t) =


∑∞

k=1
[
Ck(x1(t) − s(t)) − (x1(t) − s(t))

+Dk(x1(t − τk) − s(t − τk))
]
δ(t − tk), i = 1

0, i = 2, · · · ,N,

(2.3)

where δ(t) is the Dirac function.

Remark 2.1. In this study, synchronizing the network requires only one node to be controlled. At
the same time, the impulsive instants are determined by the ETM designed later. By reducing the
cost of control updates and communication waste, it is more efficient than a general time-triggered
mechanism. Meanwhile, the same control purpose can also be achieved in the case of reducing the
number of controllers, which is compared with the impulsive control strategy triggered by events. From
controller (2.3), it can be seen that the jump of state variable x(t) at t = tk is dependent on the state
information at the instants t−k − τk and the current instants t−k , simultaneously. This paper only takes
the synchronizing impulsive effects into account.

Let ei(t) = xi(t) − s(t), i = 1, · · · ,N be the synchronization error. Then, the compact form of error
system with impulsive controller (2.3) has the following form:

ė(t) = (IN ⊗ A)e(t) + (IN ⊗ B1)F̂(e(t))
+(IN ⊗ B2)Ĝ(e(t − τ(t))) + c(H ⊗ Γ)e(t), t , tk,

e j(t+
k ) − ei(t+

k ) = Ck
(
e j(t−k ) − ei(t−k )

)
+ Dk

(
e j(t−k − τk)

−ei(t−k − τk)
)
, (i, j) satisfies hi j > 0,

e1(t+
k ) = Cke1(t−k ) + Dke1(t−k − τk),

e(θ) = χ(θ), θ ∈ [t0 − τ, t0],

(2.4)

where e(t) =
[
eT

1 (t), · · · , eT
N(t)

]T
, f̂ (ei(t)) = f (xi(t)) − f (s(t)), F̂(e(t)) =

[
f̂ T (e1(t)), · · · , f̂ T (eN(t))

]T ,
ĝ(ei(t − τ(t))) = g(xi(t − τ(t)) − g(s(t − τ(t))), Ĝ(e(t − τ(t))) =

[
ĝT (e1(t − τ(t))), · · · , ĝT (eN(t − τ(t)))

]T .
The initial condition χ(θ) = [χ1(θ), · · · , χN(θ)]T , χi(θ) = ϕi(θ) − ψ(θ) ∈ PC([t0 − τ, t0],Rn). The norm
of χ(θ) is defined as |χ(θ)| = supt0−τ≤θ≤t0 ‖χ(θ)‖.

Definition 2.1. The impulsive dynamical network (2.1) is deemed to achieve the globally exponential
synchronization with (2.2), if there exist some constants T > 0, M̃ > 0 and ε > 0, such that ∀χ(θ) ∈
PC([t0 − τ, t0],RnN),

‖e(t)‖ ≤ M̃e−εt

holds for all t > T.

Assumption 2.1. The activation functions of neurons f (·) and g(·) satisfy the Lipschitz condition,
f (0) = 0 and g(0) = 0, that is, there exist positive constants l1, l2 such that ∀η1, η2 ∈ R

n∥∥∥ f (η1) − f (η2)
∥∥∥ ≤ l1

∥∥∥η1 − η2

∥∥∥,∥∥∥g(η1) − g(η2)
∥∥∥ ≤ l2

∥∥∥η1 − η2

∥∥∥.
AIMS Mathematics Volume 8, Issue 10, 25060–25078.
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Lemma 2.1. [46] For any vectors x, y, there exist a matrix S > 0 and a constant ξ > 0, such that

2xT y ≤ ξxTSx +
1
ξ

yTS−1y.

Lemma 2.2. [47] For an irreducible matrix H with non-negative off-diagonal elements, which satisfies
the zero-row-sum condition, the following propositions can be formulated:
(1) If λ is an eigenvalue of H and λ , 0, then Re(λ) < 0.
(2) H has an eigenvalue 0 with multiplicity 1 and its corresponding right eigenvector is [1, 1, · · · , 1]T .
(3) ξ = [ξ1, ξ2, · · · , ξN]T ∈ RN is the left eigenvector of H corresponding to the eigenvalue 0 and
satisfies ξT H = 0, where ξi ∈ (0, 1], i = 1, 2, · · · ,N.

Next, by virtue of a suitable Lyapunov function V(t) given in the sequel, the adopted ETM is defined
as follows:

tk = inf
{
t > tk−1, e

η(t−t0)V(t−) ≥ eak max{eη(tk−1−t0)V(tk−1),Vt0}
}
, (2.5)

where Vt0 = supt0−τ≤s≤t0 V(s), η > 0, ak > 0 satisfies

lim
k→+∞

k∑
l=1

al → +∞. (2.6)

Before an important lemma is presented, the following general impulsive delayed system should be
considered first to ensure the universality of the proposed lemma.

ż(t) = F(t, z(t), z(t − τ(t))), t , tk,

z(t+
k ) = G(z(t−k ), z(t−k − τk)),

z(s) = z0(s), s ∈ [t0 − τ, t0],

(2.7)

where z(t) ∈ Rn represents the state of the general impulsive delayed system, τ(t) and τk represent
the system internal delay and impulsive delay, respectively, and 0 ≤ τ(t) ≤ τ. {tk}

∞
k=1 is the impulse

sequence. z0(s) is the initial value of the general impulsive delayed system.

Lemma 2.3. A general impulsive system with mixed delays (2.7) is said to be global exponential stable,
if the inequality (2.6) holds and there exists a K∞ function α1, α2, a differential nonnegative function
V(z(t)) : Rn → R+ and some positive constants c1, c2, ak, bk,τk,M, η, k ∈ Z+ satisfies the following
conditions:

(H1) α1(‖z(t)‖) ≤ V(z(t)) ≤ α2(‖z(t)‖), ∀z(t) ∈ Rn,

(H2) V(t+
k ) ≤ e−bkV(t−k ) + e−(bk+ητk)V(t−k − τk),

and the derivative of V(t) along (2.7) with initial conditions z0(s) ∈ PC([t0 − τ, t0],Rn) satisfies

(H3) D+V(t) ≤ (c1 + c2e
M+ητ)V(t), for all t ∈ [t∗k , tk),

whenever D+V(t) ≤ c1V(t) + c2V(t − τ(t)), t , tk,
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where {tk, k ∈ Z+} are triggering instants determined by the ETM (2.5), t∗k is given later, the triggering
parameter ak and the impulsive parameter bk satisfy

m∑
i=1

(ak−i − b
′

k−i) + ak ≤ M,∀m ∈ {1, 2, · · · , k − 1}, (2.8)

where a0 − b
′

0 = 0, b
′

k = bk + ln 1
2 , k ∈ Z+.

Proof. For the sake of simplicity, an auxiliary function is first introduced as

U(t) =

eη(t−t0)V(t), t ≥ t0,

Vt0 , t ∈ [t0 − τ, t0).

Then the ETM (2.5) can be rewritten as

tk = inf
{
t > tk−1, U(t−) ≥ eak max{U(tk−1),Vt0}

}
. (2.9)

Therefore, for k = 1, it can be obtained from the ETM (2.9) and the inequality (2.8) that

U(t−1 ) = ea1 max{U(t0),Vt0} = ea1Vt0 ,

and

U(t) ≤ ea1 max{U(t0),Vt0} = ea1Vt0 ≤ e
MVt0 , t ∈ [t0, t1).

Thus, ∃ t∗1 ∈ [t0, t1), such that t∗1 = sup
{
t ≥ t0, U(t) ≤ max{U(t0),Vt0}

}
, i.e. U(t∗1) = max{U(t0),Vt0} =

Vt0 . For t ∈ [t∗1, t1),U(t) ≥ U(t∗1), which implies for θ ∈ [−τ, 0], when t0 ≤ t + θ < t1,

U(t + θ) ≤ eMVt0 ≤ e
MU(t),

when t0 − τ ≤ t + θ < t0,

U(t + θ) = Vt0 ≤ U(t),

To sum up, U(t + θ) ≤ eMU(t), t ∈ [t∗1, t1).
When t = t1, on the basis of (H2) and ETM (2.9), one can get that

U(t1) ≤ e−b1U(t−1 ) + e−b1U(t−1 − τ1)

≤ 2e−b1U(t−1 ) = e−b
′

1U(t−1 ) = ea1−b
′

1Vt0 .

For k = 2, from the ETM (2.9),

U(t−2 ) = ea2 max{U(t1),Vt0}

= ea2 max{ea1−b
′

1Vt0 ,Vt0}

= max{ea2+a1−b
′

1Vt0 , e
a2Vt0} ≤ e

MVt0 ,

and
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U(t) ≤ U(t−2 ), t ∈ [t1, t2).

Similarly, ∃ t∗2 ∈ [t1, t2), such that t∗2 = sup
{
t ≥ t1,U(t) ≤ max{U(t1),Vt0}

}
, i.e. U(t∗2) = max{U(t1),Vt0}.

For t ∈ [t∗2, t2),U(t) ≥ U(t∗2) ≥ Vt0 , which illustrates ∀θ ∈ [−τ, 0], when t1 ≤ t + θ < t2,

U(t + θ) ≤ U(t−2 ) ≤ ea2U(t),

when t1 ≤ t + θ < t2,

U(t + θ) ≤ ea1Vt0 ≤ e
a1U(t),

when t0 − τ ≤ t + θ < t0,

U(t + θ) = Vt0 ≤ U(t),

In conclusion, U(t + θ) ≤ eMU(t), t ∈ [t∗2, t2).
When t = t2, we have

U(t2) ≤ e−b2U(t−2 ) + e−b2U(t−2 − τ2)

≤ 2e−b2U(t−2 ) = e−b
′

2U(t−2 ) = max{ea2−b
′

2+a1−b
′

1 , ea2−b
′

2}Vt0 .

Repeating the above derivation by using the recursive approach, it is verifiable that ∀k ∈ Z+,

U(t−k ) = eak max{U(tk−1),Vt0} = max{eΩk , eak}Vt0 ≤ e
MVt0 ,

and

U(t) ≤ U(t−k ), t ∈ [tk−1, tk),

where Ωk = max∀m∈{1,··· ,k−1}
{
ak +

∑m
i=1(ak−i − b

′

k−i)
}
. Then, ∃ t∗k ∈ [tk−1, tk), such that t∗k = sup{t ≥

tk−1,U(t) ≤ max{U(tk−1),Vt0}}, i.e. U(t∗k) = max{U(tk−1),Vt0}. For t ∈ [t∗k , tk), U(t) ≥ U(t∗k) ≥ Vt0 , which
indicates that when θ ∈ [−τ, 0],

U(t + θ) ≤


U(t−k ) ≤ max{eΩk , eak}U(t), tk−1 ≤ t + θ < tk

...

U(t−1 ) ≤ ea1U(t), t0 ≤ t + θ < t1

Vt0 ≤ U(t), t0 − τ ≤ t + θ < t0

≤ eMU(t).

Given the above, ∀t ∈ [t∗k , tk), from the condition (H3),

D+U(t) = eη(t−t0)D+V(t) + ηeη(t−t0)V(t)
≤ eη(t−t0)[c1V(t) + c2V(t − τ(t))] + ηU(t)
≤ c1U(t) + c2e

ητU(t − τ(t)) + ηU(t)
≤ (c1 + c2e

ητ+M + η)U(t).
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Then, it leads to

U(t) ≤ e(c1+c2e
ητ+M+η)(t−t∗k )U(t∗k).

Thus

U(t−k ) ≤ e(c1+c2e
ητ+M+η)(tk−t∗k )U(t∗k)

≤ e(c1+c2e
ητ+M+η)(tk−tk−1)U(t∗k).

That is

tk − tk−1 ≥
ak

c1 + c2eητ+M + η
, k ∈ Z+. (2.10)

Accumulating the inequality (2.10), we have

tk ≥
1

c1 + c2eητ+M + η

k∑
l=1

al + t0.

Finally, considering (2.6), tk → +∞ as k → +∞, which shows that the ETM (2.5) will not induce Zeno
behavior.

From the above analysis, for any k ∈ Z+, one can derive that

U(t) ≤ eMVt0 , t ≥ t0.

That is

V(t) ≤ e−η(t−t0)+MVt0 , t ≥ t0.

Combining (H1), it can be obtained that the system with mixed delays (2.7) is global exponential
stable. �

Remark 2.2. It should be noted that the impulsive delay τk should satisfy τk ∈ [0, ak
c1+c2eητ+M+η

], which
means that the impulsive delay is small-delay. Furthermore, tk − τk ∈ [tk−1, tk) can prevent the case that
the current state is affected by the state of former impulsive interval. On the other hand, tk → +∞ as
k → +∞ means that infinite triggers do not occur in a finite interval. In addition, this lemma shows
how to deal with the stability of impulsive systems with mixed delays, so it can also be applied to the
delayed dynamical network with impulsive effects proposed in this paper.

3. Main results

In this part, the exponential synchronization for the directed impulsive dynamical network under
the EPIC method is expounded. The theoretical analysis mentioned above is applied to the
dynamical network to verify the feasibility and effectiveness of Lemma 2.3. With that in mind, some
sufficient synchronization criterion will be established by choosing an appropriate Lyapunov function.
Meanwhile, Zeno phenomenon can be avoided.

According to the fact that H is an irreducible matrix, define diagonal matrix Ξ = diag{ξ1, · · · , ξN},
where ξi(i = 1, · · · ,N) satisfies Lemma 2.2. It can be verified that ΞH + HT Ξ is zero-row-sum and
λmax(ΞH + HT Ξ) = 0.
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Theorem 3.1. Suppose Assumption 2.1 holds. If there exist some positive constants ζ1, ζ2, bk, η, τk,
positive-definite matrices S 1, S 2 ∈ R

n×n satisfy the following conditions.

(a)


A + AT + l2

1λmax(S 1)In − ζ1In B1 B2

∗ −S 1 0
∗ ∗ −S 2

 < 0;

(b) ζ2 = λmax(S 2)l2
2;

(c) Wk =

[
CT

k Ck − e
−bk In CT

k Dk

∗ DT
k Dk − e

−(bk+ητk)In

]
< 0.

Then, the exponential synchronization of the dynamical network (2.1) and the target trajectory (2.2)
can be achieved under the ETM (2.5) and the impulsive pinning controller (2.3). In the meantime,
there is no Zeno behavior for system (2.7) coupled with ETM (2.9).

Proof. Choose the Lyapunov function as:

V(t) =

N∑
i=1

ξieT
i (t)ei(t) = eT (t)(Ξ ⊗ In)e(t).

Then from the error system (2.4), D+V(t) can be calculated as follows.
When t ∈ [tk−1, tk) with k ∈ Z+,

D+V(t) = 2eT (t)(Ξ ⊗ In)ė(t) = eT (t)
(
Ξ ⊗ (A + AT )

)
e(t)

+ 2eT (t)(Ξ ⊗ B1)F̂(e(t)) + 2eT (t)(Ξ ⊗ B2)Ĝ(e(t − τ(t))) + 2ceT (t)(ΞH ⊗ Γ)e(t). (3.1)

According to Assumption 2.1 and Lemma 2.1,

2eT (t)(Ξ ⊗ B1)F̂(e(t)) ≤ eT (t)(Ξ ⊗ B1S −1
1 BT

1 )e(t) + F̂T (e(t))(Ξ ⊗ S 1)F̂(e(t))
≤ eT (t)

(
Ξ ⊗ (B1S −1

1 BT
1 + l2

1λmax(S 1)In)
)
e(t).

Similarly,

2eT (t)(Ξ ⊗ B2)Ĝ(e(t − τ(t))) = eT (t)(Ξ ⊗ B2S −1
2 BT

2 )e(t) + ĜT (e(t − τ(t)))(Ξ ⊗ S 2)Ĝ(e(t − τ(t)))
≤ eT (t)(Ξ ⊗ B2S −1

2 BT
2 )e(t) + l2

2λmax(S 2)eT (t − τ(t))(Ξ ⊗ In)e(t − τ(t)).

The following inequality can be reduced from the fact that λmax(ΞH + HT Ξ) = 0.

2ceT (t)(ΞH ⊗ Γ)e(t) = 2ceT (t)
(
(ΞH)s ⊗ Γ

)
e(t)

≤ cλmax(ΞH + HT Ξ)
N∑

j=1

eT
j (t)Γe j(t) = 0.

Combining the inequalities mentioned above and conditions (a), (b), (3.1) can be further deduced as

D+V(t) =eT (t)
(
Ξ ⊗ (A + AT + B1S −1

1 BT
1 + l2

1λmax(S 1)In + B2S −1
2 BT

2 )
)
e(t)

+ l2
2λmax(S 2)eT (t − τ(t))(Ξ ⊗ In)e(t − τ(t))

≤ζ1V(t) + ζ2V(t − τ(t)). (3.2)
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Since H is irreducible, ∀ j , 1, j ∈ {1, · · · ,N}, there exist m1,m2, · · · ,ms ∈ {1, · · · ,N}, such that
hm1, j > 0, hms,ms−1 > 0, · · · , h1,ms > 0. Thus, for ∀ j = 2, 3, · · · ,N,

e j(t+
k ) − e1(t+

k ) = (e j(t+
k ) − em1(t

+
k )) + (em1(t

+
k ) − em2(t

+
k )) + · · · + (ems(t

+
k ) − e1(t+

k ))
= Ck

(
e j(t−k ) − em1(t

−
k )

)
+ Dk

(
e j(t−k − τk) − em1(t

−
k − τk)

)
+ · · · + Ck

(
ems(t

−
k ) − e1(t−k )

)
+ Dk

(
ems(t

−
k − τk) − e1(t−k − τk)

)
= Ck

(
e j(t−k ) − e1(t−k )

)
+ Dk

(
e j(t−k − τk) − e1(t−k − τk)

)
.

Combining with the single controller (2.3), we obtain

e j(t+
k ) = Cke j(t−k ) + Dke j(t−k − τk),∀ j ∈ {1, 2, · · · ,N}.

Hence, when t = tk, according to the condition (c)

V(tk) =

N∑
i=1

ξieT
i (t+

k )ei(t+
k )

=

N∑
i=1

ξi
(
Ckei(t−k ) + Dkei(t−k − τk)

)T (Ckei(t−k ) + Dkei(t−k − τk)
)

=

N∑
i=1

ξi

{ [
eT

i (t−k ) eT
i (t−k − τk)

]
Wk

[
ei(t−k )

ei(t−k − τk)

]
+ e−bk‖ei(t−k )‖2 + e−(bk+ητk)‖eT

i (t−k − τk)‖2
}

≤ e−bkV(t−k ) + e−(bk+ητk)V(t−k − τk). (3.3)

It follows from the definition of V(t) that

min
i=1,··· ,N

{ξi}‖e(t)‖2 ≤ V(t) ≤ max
i=1,··· ,N

{ξi}‖e(t)‖2. (3.4)

It is not hard to verify that the inequalities (3.2), (3.3) and (3.4) can satisfy the conditions of

Lemma 2.3. With the aid of Lemma 2.3, we can calculate ‖e(t)‖ ≤ e
−η(t−t0)+M

2

√
max∀i{ξi}

min∀i{ξi}
|χ(θ)|. Thus,

the synchronization of (2.1) and (2.2) can be achieved and the Zeno behavior can be avoided. To sum
up, the proof is completed. �

Remark 3.1. It should be noticed that Theorem 3.1 is the special case of Lemma 2.3. In other
words, Lemma 2.3 is more general. In addition, the single event-triggered impulsive pinning controller
actually acts on the whole directed network with impulsive effect, which not only saves the cost of
the controller, but also improves the control efficiency. Compared with the single impulsive controller
in [7], the impulsive instants are generated by the ETM (2.5) rather than designed in advance, which
avoids the unnecessary waste of resources.

Note that the nonidentical parameters ak, b
′

k,Ck,Dk, τk, k ∈ N+ may raise the calculating burden.
Therefore, for the sake of simplicity, we suppose that b

′

k = ak = a > 0, bk = a − ln 1
2 ,Ck = C,Dk =

D, τk = τ̃. Accordingly, the event-triggered condition (2.5) can be weakened to

tk = inf
{
t > tk−1, e

η(t−t0)V(t−) ≥ ea max{eη(tk−1−t0)V(tk−1),Vt0}
}
, (3.5)

then we can derive the following results.
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Corollary 3.1. Suppose Assumption 2.1 holds. If there exist some positive constants ζ1, ζ2, a, bk, η, τ̃,
positive-definite matrices S 1, S 2 ∈ R

n×n satisfy the condition (a) and (b) of Theorem 3.1 and the
following condition.

(c) W =

[
CTC − e−bk In CT D

∗ DT D − e−(bk+ητ̃)In

]
< 0;

where bk = a − ln
1
2
.

Then, the exponential synchronization of the dynamical network (2.1) and the target trajectory (2.2)
can be achieved under the ETM (3.5), and the Zeno phenomenon also can be excluded.

If there is no delay in the dynamical network (2.1), i.e. B2 = 0,Dk = 0, k ∈ Z+, then from the
ETM (2.5),

tk = inf
{
t > tk−1, e

η(t−t0)V(t−) ≥ eak+η(tk−1−t0)V(tk−1)
}
, (3.6)

where η > 0, ak > 0 is defined by the (2.6).

Corollary 3.2. Assume the Assumption 2.1 holds. Under the ETM (3.6), the dynamical network (2.1)
and (2.2) can obtain the exponential synchronization. If there exist positive definite matrix S ∈ Rn×n

and some positive constants ζ, dk, M̃ satisfying

(a) A + AT + l2
1λmax(S )In + B1S −1BT

1 − ζIn ≤ 0;
(b) CT

k Ck ≤ e
−dk In,

where

k−1∑
i=1

(ai − di) + ak ≤ M̃. (3.7)

Proof. Under the conditions (a) and (b), one can get the following inequalities by the same analysis as
Theorem 3.1.

D+V(t) ≤ ζV(t), t ∈ [tk−1, tk), (3.8)

V(t+
k ) ≤ e−dkV(t−k ), t = tk, (3.9)

where the Lyapunov function V(t) is the same as Theorem 3.1. According to the ETM (3.6), let
W(t) = eη(t−t0)V(t), t ≥ t0, for k = 1, we have

W(t−1 ) = ea1W(t0),

and

W(t) ≤ ea1W(t0), t ∈ [t0, t1).
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When t = t1, it follows the fact (3.9) that

W(t1) = e−d1W(t−1 ) = ea1−d1W(t0).

Repeat the preceding steps, for any k ∈ Z+, one can obtain

W(t) ≤ e
∑k−1

i=1 (ai−di)+akW(t0), t ∈ [tk−1, tk).

Furthermore, on the basis of the inequality (3.7), it can be reduced as

V(t) ≤ e−η(t−t0)e
∑k−1

i=1 (ai−di)+akV(t0) ≤ e−η(t−t0)+M̃V(t0).

Finally

‖e(t)‖ ≤ e
(
−η(t−t0)+M̃

)
/2

√
max∀i ξi

min∀i ξi
‖e(t0)‖.

Thus, the exponential synchronization can be achieved.
On the other hand, the Zeno behavior also can be excluded, which is the same as the proof of

Lemma 2.3. �

Remark 3.2. For a no-delay network, the parameter η in event-triggered condition (3.6) plays a
significant function in the proof of the synchronization process, which differs from the forced impulse
sequence in [31]. In other words, the auxiliary function W(t) can eventually be covered by an
exponential function, that is, no matter whether the event occurs or not, the exponential synchronization
can be reached in the end.

4. Numerical simulation

In this part, some numerical examples are given to illuminate the effectiveness of the proposed
EIPC strategy. Consider the dynamical neural networks (2.1) with N = 5 nodes. Choose

n = 3, c = 0.2, τ = 1,Γ = In, A = −In, B1 =


0.58 −0.75 −0.75
−0.75 0.58 1
−0.6 1 0.58

 , B2 =


0.55 −0.5 0.75
1.25 −0.8 −1
0.6 −0.6 −0.75

 , H =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2


, Ξ = diag{0.3, 0.5, 1, 0.4, 0.4}. Let f (xi(t)) =

(
tanh(xi1(t)), tanh(xi2(t)), tanh(xi3(t))

)T , g(xi(t)) = 0.1 ∗
(
tanh(xi1(t)), tanh(xi2(t)), tanh(xi3(t))

)T , η =

0.003, τ̃ = 0.0112, a = 3.
Then, the state trajectory of the dynamical neural networks (2.1) is shown in Figure 1a. By using the

MATLAB matrix toolbox, the feasible solutions of LMIs in Theorem 3.1 can be obtained, which shows
that ζ1 = 216.4738, ζ2 = 2.5408.According to the Differential mean value theorem, it is easily designed
l1 = 9.3696, and l2 = 0.101, thus the Assumption 2.1 always can be ensured. C̃ = 0.127In, D̃ =
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0.08In, Ĉ = −0.146In, D̂ = −0.055In. It should noted that C2k = C̃,D2k = D̃,C2k−1 = Ĉ,D2k−1 = D̂, k ∈
Z+, which is more universal than fixed gain matrix in [36]. All the conditions in Theorem 3.1 are
satisfied by checking. Then, the exponential synchronization between (2.1) and (2.2) can be achieved,
which illustrates that the proposed EIPC scheme is effective. The trajectory of the error is depicted
in Figure 1b. At the same time, the triggering instants (impulsive instants) are shown in Figure 1c. It
can be seen from the above figures that, when η = 0.003, the dynamical neural networks (2.1) and the
target trajectory (2.2) can approximately synchronize in 4.5s.

(a) The dynamical behaviors of the nodes x(t) for the delayed
network.

(b) The trajectory of synchronization error e(t) via EPIC
strategy.
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(c) Impulsive instants (triggering instants) tk of the dynamical
network with hybrid delays.

Figure 1. The simulation of the example with 5 coupled neural networks.

On the other hand, it can be found that the convergence rate of the synchronization error is related
to the parameter η in ETM (3.5). In other words, the impulsive instants tk determined by the ETM (3.5)
with different parameters η are different, which can be shown in Table 1. Correspondingly, the time to
achieve synchronization is shown in Table 1, which indicates that when the parameter η = 0.01, the
synchronization is faster, but the frequency of controller update is also faster, which means that the
cost of the controller update is more. Nevertheless, when η = 0.003, the interevent time tk− tk−1, k ∈ Z+

are larger. As a specific numerical measure of synchronization effect, the less the synchronization time
is realized, the better the synchronization effect is. As we can see from Table 1, when the value of
the parameter η is decreasing, the synchronization takes longer, but the control updates are fewer. The
above illustrates that our proposed EIPC strategy is effective, but the specific selection of parameter η
depends on the specific situation.
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Table 1. The influence of η on the synchronization performance of the system.

η Triggering instants (impulsive instants) The time to achieve synchronization
0.01 300 2.25

0.008 149 2.98
0.005 35 3.85
0.003 12 5.93

5. Conclusions

In this paper, an event-triggered impulsive pinning control method for coupled impulsive dynamical
neural networks with hybrid delays has been presented and the impulsive effects are taken into account
in modeling. Different from the literature in existence [14, 22, 25], impulsive instants rely on the
ETM rather than being set in advance. Moreover, on the basis of the proposed EIPC strategy and
stability theory, some sufficient synchronization conditions are established to address the exponential
synchronization problem and eliminate the Zeno behavior. Finally, the feasibility of the EIPC algorithm
has been verified by the numerical simulation.

Furthermore, in the future, considering that the information transmitted through the communication
network of the epidemic model is vulnerable to impulsive malicious effects [34], the EIPC design
strategy of dynamical networks acts on the disease epidemic model to provide a reference for practice
is an interesting problem, which needs to be studied further.
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