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Abstract: We prove the existence of a nontrivial singular trace τ defined on an ideal J closed with
respect to the logarithmic submajorization such that τ(Aρ(α)) = 0, where Aρ(α) ∶ L2(0,1) → L2(0,1),
[Aρ(α) f ](θ) = ∫

1
0 ρ(αθ/x) f (x)dx , 0 < α ≤ 1. We also show that τ(Aρ(α)) = 0 for every τ nontrivial

singular trace on J . Finally, we give a recursion formula from which we can evaluate all the traces
Tr (Ar

ρ(α)), r ∈ N, r ≥ 2.
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1. Introduction

Let B(H) be the algebra of all bounded linear operators on a separable complex Hilbert space H.
The adjoint of an operator T ∈ B(H) is denoted by T∗ and the symbol I stands for identity maps.
Denote by {sn(T)}n≥1 the sequence of singular values of a compact operator T ∈ B(H). If 0 < p < ∞
we say that T ∈ S p(H) if ∑∞

n=1 sp
n(T) <∞; the set S p(H) is a two-side ideal in B(H). The sets S 1(H)

and S 2(H) will denote, respectively, the set of nuclear and Hilbert-Schmidt operators. By an ideal we
mean a two-sided ideal in B(H). A linear functional τ from the ideal J into C is said to be a trace if:

i) τ(U∗TU) = τ(T) for every T ∈ J and U ∈ B(H) unitary. Equivalently, τ(S T) = τ(TS ) for every
T ∈ J and S ∈ B(H).

ii) τ(T) ≥ 0 for every T ∈ J with T a non-negative operator. We denote by T ≥ 0 when T is a
non-negative operator.

Then a trace is a positive unitarily invariant linear functional.
Let T ∈ S 1(H), and let {ϕn}n≥1 be an orthonormal system in H. By [13, p. 56], we have

n

∑
j=1

∣⟨Tϕ j, ϕ j⟩∣ ≤
n

∑
j=1

s j(T) , ∀n ≥ 1.
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Therefore,

Tr (T) ∶=
∞
∑
n=1

⟨Tϕn, ϕn⟩

is well-defined, since the right-hand series converges absolutely, and its value does not depend on the
choice of the orthonormal basis {ϕn}n≥1. Clearly, this linear functional is a trace on the ideal S 1(H).
There is also the description of Tr as the sum of eigenvalues,

Tr (T) =
∞
∑
n=1
λn(T), (1.1)

where {λn(T)}n≥1 is the sequence of nonzero eigenvalues of T , ordered in such a way that ∣λn(T)∣ ≥
∣λn+1(T)∣, ∀n ∈ N and each one of them being counted according to its algebraic multiplicity. This
result was shown by Von Neumann in [26] for self-adjoint operators and by Lidskii in [19] in general
case. Formula (1.1) is called the Lidskii formula.

A natural question concerning the extension of the Lidskii formula to other ideals and traces on
these ideals has been addressed in [6, 13, 20–22]. Thus, the notion of spectral traces arises. A trace τ
on an ideal J is called spectral if for every T ∈ J, the value of τ(T) depends only on the eigenvalues of
T and their multiplicities. For example, the classical trace Tr on the ideal S 1(H) is spectral. Motivated
by the problem of identifying spectral traces, it is shown in [12, Corollary 2.4] that every trace on a
geometrically stable ideal is spectral. This result has been generalized in the setting of ideals closed
with respect to the logarithmic submajorization (see [24]).

A trace τ on an ideal J will be called singular if it vanishes on the set F(H) of finite rank operators.
This definition makes sense, since by the Calkin Theorem [9], each proper ideal in B(H) contains the
finite rank operators and is contained in the ideal K(H) of the compact linear operators on H.

In 1966, J. Dixmier proved the existence of singular traces [11]. These traces are called Dixmier
traces, and its importance is due to their applications in noncommutative geometry [10]. Other
examples of singular traces appeared in [1, 17, 25].

The question whether an operator belongs to the domain of some singular trace was answered
in [15]. Motivated by this, we give a nontrivial singular trace taking the value of zero on certain
integral operator related to the Riemann hypothesis.

In [2], J. Alcántara-Bode has reformulated the Riemann hypothesis as a problem of functional
analysis by means of the following theorem.

Theorem 1.1. Let (Aρ f )(θ) = ∫
1

0
ρ(θ

x
) f (x)dx, where ρ is the fractional part function, be considered

as an operator on L2(0,1). Then the Riemann hypothesis holds if and only if Ker(Aρ) = {0}, or if and
only if h ∉ Ran (Aρ) where h(x) = x.

It follows from Theorem 1.1 that the problem of verifying the condition h ∈ Ran (Aρ) is ill posed in
the sense of Hadamard [16, Definition 2.1.2]. This leads to regularizing the ill posed problem replacing
Aρ by

(Aρ(α) f )(θ) = ∫
1

0
ρ(αθ

x
) f (x)dx , 0 < α ≤ 1 , f ∈ L2(0,1).
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Observe that Aρ(1) = Aρ. Since Aρ is nonnuclear (see [2, Theorem 6]), it was proved in [23,
Theorem 4.3] that there exists a nontrivial singular trace τ with domain a geometrically stable ideal J
such that Aρ ∈ J and τ(Aρ) = 0. It follows from [24, Lemma 35] that J is closed with respect to the
logarithmic submajorization.

Let J be as in the previous paragraph. We show that if 0 < α ≤ 1 then Aρ(α) ∈ J , and that each
nontrivial singular trace on J takes the value of zero on Aρ(α). More precisely, our first main result of
the paper is the following theorem.

Theorem 1.2. If 0 < α ≤ 1 then τ(Aρ(α)) = 0 for every τ nontrivial singular trace on J , where J is
the geometrically stable ideal in the above paragraph.

The approach used to prove Theorem 1.2 is based on spectral traces and the fact that the operators
α(Aρ +Q f1) and Aρ +Q fα , where α ∈]0,1[, have the same nonzero eigenvalues with the same algebraic

and geometric multiplicities. Here Q f g = ⟨g, f ⟩h, h(x) = x, fα(x) = −α−1ρ(α
x
).

Finally, our second main result is a recursion formula to calculate the traces Tr (Ar
ρ(α)), r ∈ N, r ≥ 2.

Theorem 1.3. If 0 < α ≤ 1 then for every r ∈ N with r ≥ 2 we have

Tr(Ar+1
ρ (α))=−(r + 1)ar+1(α) − αar(α) −

r−1

∑
k=1

ar−k(α)Tr(Ak+1
ρ (α)), (1.2)

where

ar(α) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−α , r = 1
(−1)rαr(r+1)/2

r!r

r−1

∏
l=1
ζ(l + 1) , r ≥ 2.

In order to prove Theorem 1.3, we use the modified Fredholm determinant of I − uAρ(α) (see [3]).

2. Singular traces

Let l∞ the space of all bounded sequence of complex numbers and w a dilation invariant extended
limit on l∞, that is, w is an extended limit on l∞ and

w({x1, x2, . . .}) = w({x1, x1, x2, x2, . . .}) for all x = {x1, x2, . . .} ∈ l∞.

The Dixmier trace of T ∈ M1,∞(H) with T ≥ 0 is the number

Trw(T) ∶= w({ 1
log(n + 1)

n

∑
k=1

sk(T)}
n≥1

) ,

where

M1,∞(H) = {T ∈ K(H) ∶ ∥T∥1,∞ ∶= sup
n≥1

{ 1
log(n + 1)

n

∑
k=1

sk(T)} <∞} .

AIMS Mathematics Volume 8, Issue 10, 24971–24983.



24974

It was shown in [11] that the weight Trw defines a positive, unitarily invariant, additive and positive
homogeneous function on the positive cone of M1,∞(H), that can uniquely be extended to a singular
trace on all of M1∞(H), i.e., for an arbitrary T ∈ M1,∞(H), its Dixmier trace is defined by

Trw(T) ∶= w({ 1
log(n + 1)

n

∑
k=1

sk(T1) − sk(T2) + isk(T3) − isk(T4)}
n≥1

) ,

where T = T1 − T2 + iT3 − iT4, 0 ≤ T j ∈ M1,∞(H), j = 1,2,3,4. In addition to this, the Dixmier trace
vanishes on the ideal S 1(H) and is continuous in the norm ∥⋅∥1,∞.

The existence of a singular trace which is nontrivial on a compact operator T , i.e., on the two-sided
ideal generated by T ,

(T) =
∞
⋃
r=1

{
r

∑
i=1

XiTYi ; Xi, Yi ∈ B(H)}

was studied by J. Varga [25], and it has been completely characterized in [1]. This leads to study
irregular, eccentric and generalized eccentric operators.

Definition 2.1. We say that a compact operator T ∈ B(H) is

a) regular if
n

∑
k=1

sk(T) = O(nsn(T)) (n→∞);

b) irregular if it is not regular;
c) eccentric if it is irregular but not nuclear;

d) generalized eccentric if 1 is a limit point of the sequence {S 2n(T)
S n(T) }

n≥1

, where

S n(T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
k=1

sk(T) , T ∉ S 1(H)

n

∑
k=1

sk(T) − Tr(∣T ∣) , T ∈ S 1(H).

Remark 2.2. By [25, Lemma 1], the class of generalized eccentric operators which are not nuclear
coincides with the class of eccentric operators.

By [1, Lemma 2.6], that an operator is generalized eccentric can be reformulated as follows.

Lemma 2.3. Let T ∈ B(H) be a compact operator. Then T is generalized eccentric if and only if there

exists an increasing sequence of natural numbers {pn}n≥1 such that lim
k→+∞

S kpk(T)
S pk(T) = 1.

In this context, the main result in [1] is the following.

Theorem 2.4. Let T ∈ B(H) be a compact operator. Then the following are equivalent:

a) There exists a singular trace τ such that 0 < τ(∣T ∣) <∞.
b) T is generalized eccentric.
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The process to construct the singular trace given by a) is as follows:
We introduce a triple Ω = (T,w,{nk}k≥1), where T is a generalized eccentric operator, w is an

extended limit and nk = kpk, k ∈ N, where {pk}k≥1 is the sequence given in Lemma 2.3. Associated
with the triple Ω, on the positive part of the ideal (T), we defined the functional

τΩ(A) ∶= w({S nk(A)
S nk(T)}k≥1

)

and by [1, Theorem 2.11], this functional extends linearly to a singular trace on the ideal (T).

Remark 2.5.

a) By Theorem 2.4, finite rank operators cannot by generalized eccentric.
b) The question whether an operator belongs to the domain of some singular trace is treated in [15].

By [15, Theorem 3.1 (i)], every compact operator A is in the kernel (hence in the domain) of some
singular trace. The main idea for proving this theorem is the existence of a generalized eccentric
operator B such that A ∈ (B)0 ⊂ (B). Here (B)0 denotes the kernel of (B) (see [15]).

Example 2.6. Let V ∶ L2(0,1)→ L2(0,1) be the integral operator

(V f )(t) = 2i∫
t

0
f (s)ds.

By [14, p. 250], sn(V) = 4
(2n − 1)π , n = 1,2, . . .. Therefore, by Remark 2.2, V is a generalized

eccentric operator. Let Re(V) and Im(V) be the real and imaginary parts of V , respectively. Then

(Re(V) f )(t) = i∫
1

0
sign(t − s) f (s)ds

and

(Im(T) f )(t) = ∫
1

0
f (s)ds.

By [14, p. 172], sn(Re(V)) = 2
(2n − 1)π , n = 1,2, . . ., it follows that Re(V) is a generalized eccentric

operator. However, the operator Im(V) has rank one, and by Remark 2.5 (a), Im(V) is not an eccentric
operator.

3. Commutator subspace

Now we concentrate on the commutator subspace of geometrically stable ideals and ideals closed
with respect to the logarithmic submajorization, terminologies used in [18, 24], respectively.

Definition 3.1. Let J an ideal in B(H). The subspace

Com(J) ∶= span{[A,B] ∶ A ∈ J , B ∈ B(H)} ,

where [A,B] = AB − BA, is called the commutator subspace of J.
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Definition 3.2. An ideal J of B(H) is called geometrically stable if a diagonal operator
diag{s1, s2, . . .} ∈ J, where s1 ≥ s2 ≥ . . . ≥ 0, then diag{u1,u2, . . .} ∈ J, where un = (s1s2 . . . sn)1/n.

The following theorem [18, Theorem 3.3] characterizes in terms of arithmetic means the
commutator subspace of geometrically stable ideals.

Theorem 3.3. Suppose that J is a geometrically stable ideal of B(H). Then T ∈ Com(J) if and only if
diag{1

n(λ1(T) + . . . + λn(T))} ∈ J.

In order to extend the previous result, ideals closed with respect to the logarithmic submajorization
are introduced in [24].

Definition 3.4. If A,C ∈ B(H), then the operator C is logarithmically submajorized by the operator A
(written C ≺≺log A) if

n

∏
k=1

sk(C) ≤
n

∏
k=1

sk(A) , n ≥ 1.

Definition 3.5. An ideal J is said to be closed with respect to the logarithmic submajorization if C ≺≺log

A ∈ J implies C ∈ J.

Remark 3.6. By [24, Lemma 35], every geometrically stable ideal is closed with respect to the
logarithmic submajorization. However, by [24, Theorem 36 (c)], the converse assertion fails.

The following theorem [24, Theorem 7] extends Theorem 3.3 to ideals closed with respect to the
logarithmic submajorization.

Theorem 3.7. Let an ideal J be closed with respect to the logarithmic submajorization and let T ∈ J.
Then T ∈ Com(J) if and only if diag{1

n(λ1(T) + . . . + λn(T))} ∈ J.

A Lidskii-type formula holds for every trace defined on ideals closed with respect to the logarithmic
submajorization (see [24, Theorem 8]), the statement is the following.

Theorem 3.8. Let J be an ideal in B(H) and let τ be a trace on J. If J is closed with respect to the
logarithmic submajorization, then τ is a spectral trace.

Example 3.9.

a) Let L1,∞(H) be the ideal

L1,∞(H) = {T ∈ K(H) ∶ sup
n≥1

{nsn(T)} <∞} .

Since L1,∞(H) is a quasi-Banach ideal with the complete quasi-norm ∥T∥L1,∞(H) = sup
n≥1

{nsn(T)}
and every quasi-Banach ideal is geometrically stable (see [18, Proposition 3.2]), then by
Remark 3.6, L1,∞(H) is closed with respect to the logarithmic submajorization.

b) It can be shown that the integral operator V ∶ L2(0,1) → L2(0,1), (V f )(t) = 2i∫
t

0
f (s)ds

has no eigenvalues ( [14, p. 178]). Since V ∈ L1,∞(L2(0,1)), then by Theorem 3.7, V ∈
Com(L1,∞(L2(0,1))). Hence τ(V) = 0 for every τ trace on L1,∞(L2(0,1)).
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4. Modified Fredholm determinant

If T ∈ S 2(H) and {λn(T)}n≥1 is the sequence of non-zero eigenvalues of T , each repeated according
to its algebraic multiplicity and ordered in such a way that ∣λn(T)∣ ≥ ∣λn+1(A)∣, ∀n ∈ N then

det2(I − λT) =
∞
∏
n=1

[1 − λλn(T)]eλλn(T)

is an entire function, known as the modified Fredholm determinant of I − λT . By the formula of
Plemelj-Smithies [13, p. 166], it follows that

det2(I − λT) =
∞
∑
n=0

dnλ
n,

where d0 = 1 and

dn =
(−1)n

n!

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

0 n − 1 0 . . . 0 0
σ2(T) 0 n − 2 . . . 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋮ ⋮

σn−1(T) σn−2(T) σn−3(T) . . . 0 1
σn(T) σn−1(T) σn−2(T) . . . σ2(T) 0

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

, n ≥ 1

and σn(T) = Tr (T n) =
∞
∑
j=1
λn

j(T), n ≥ 2.

In particular, for Hilbert-Schmidt integral operators of the form

(T f )(t) = ∫
b

a
k(t, s) f (s)ds,

where k is a measurable function and ∫
b

a
∫

b

a
∣k(t, s)∣2 dtds <∞, the modified Fredholm determinant

of I − λT is equal to its Hilbert-Carleman determinant (see [13, p. 176]). More precisely,

det2(I − λT) = 1 +
∞
∑
n=2

bnλ
n (4.1)

where

bn =
1
n! ∫(a,b)n

RRRRRRRRRRRRRRRRRRR

0 k(t1, t2) . . . k(t1, tn)
k(t2, t1) 0 . . . k(t2, tn)

⋮ ⋮ ⋱ ⋮
k(tn, t1) k(tn, t2) . . . 0

RRRRRRRRRRRRRRRRRRR

dt1 . . .dtn , n ≥ 2.

5. The integral operator Aρ

To study the Riemann hypothesis, J. Alcántara-Bode [2] introduced the integral operator

Aρ ∶ L2(0,1)→ L2(0,1), (Aρ f )(θ) = ∫
1

0
ρ(θ

x
) f (x)dx. By Theorem 1.1, the Riemann hypothesis

holds if and only if Ker(Aρ) = {0}, or if and only if h ∉ Ran(Aρ) where h(x) = x.
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As we have seen in the introduction, the operators Aρ(α) arise from the attempt to verify the
condition h ∈ Ran (Aρ).

We briefly summarize properties of Aρ(α) established in [2, 3].

i) Aρ(α), 0 < α ≤ 1, is Hilbert-Schmidt, but neither nuclear, nor normal, nor monotone.
ii) λ ∈ σ(Aρ(α)) ∖ {0} (σ(Aρ(α)) is the spectrum of Aρ(α)), 0 < α ≤ 1, if and only if Tα(λ−1) = 0

where

Tα(u) = 1 − αu +
+∞
∑
r=1

(−1)r+1 α(r+1)(r+2)/2

(r + 1)!(r + 1)
r

∏
l=1
ζ(l + 1)ur+1.

iii) The modified Fredholm determinant of I − uAρ(α) is

det2(I − uAρ(α)) = eαuTα(u) , u ∈ C.

6. Main results

For a given compact operator T ∉ S 1(H), where H is a separable complex Hilbert space, the
following theorem shows the existence of a nontrivial singular trace defined on an ideal closed with
respect to the logarithmic submajorization taking the value of zero on T .

Theorem 6.1. For every compact operator T ∉ S 1(H) there exists an ideal I closed with respect to the
logarithmic submajorization and a nontrivial singular trace τ on I , such that T ∈ I and τ(T) = 0.

Proof. By Remark 2.5, there exists a generalized eccentric operator B such that T ∈ (B)0 ⊂ (B). As
we explained in the construction of the singular trace in Theorem 2.4, we can take the triple Ω =
(B,w,{nk}k≥1). Associated with Ω, on the positive part of (B), we have the functional

tΩ(A) = w({S nk(A)
S nk(B)}k≥1

)

that extends linearly to a singular trace on the ideal (B). We also denote this extension by tΩ. Clearly
tΩ(∣B∣) = 1. Since T ∉ S 1(H), it follows that B ∉ S 1(H) and then

tΩ(A) = w

⎛
⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nk

∑
i=1

si(A)
nk

∑
i=1

si(B)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭k≥1

⎞
⎟⎟⎟⎟
⎠
. (6.1)

It follows from (6.1) that tΩ is bounded with respect to the norm ∥⋅∥B, where

∥A∥B = sup
n≥1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n

∑
k=1

sk(A)
n

∑
k=1

sk(B)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

so it extends by continuity to a singular trace t̃Ω ∶ (B)
∥⋅∥B → C. Here (B)

∥⋅∥B denotes the closure of (B)
with respect to ∥⋅∥B. By [20, Lemma 5.5.9] and Remark 3.6 the ideal (B)

∥⋅∥B is closed with respect to
the logarithmic submajorization. Finally, it follows from [15, Proposition 2.7] that τ̃Ω(T) = 0. �

AIMS Mathematics Volume 8, Issue 10, 24971–24983.
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Since Aρ ∉ S 1(L2(0,1)), it follows from Theorem 6.1 that there exists an ideal J of B(L2(0,1))
closed with respect to the logarithmic submajorization that contains Aρ and a nontrivial singular trace
τ on J such that τ(Aρ) = 0. The following theorem shows that every nontrivial singular trace on J
take the value of zero on Aρ.

Theorem 6.2. τ(Aρ) = 0 for every τ nontrivial singular trace on J .

Proof. Let τ be a nontrivial singular trace on J (since Aρ ∉ S 1(L2(0,1)), the existence of J and a
nontrivial singular trace on J are guaranteed by Theorem 6.1. If 0 < α < 1, by [5], the operators
α(Aρ + Q f1) and Aρ + Q fα have the same nonzero eigenvalues with the same algebraic and geometric
multiplicities, where Q f (g) = ⟨g, f ⟩h, f1(x) = −ρ(1

x) and fα(x) = −α−1ρ(αx ). It follows from
Theorem 3.8 that τ is a spectral trace and, therefore,

τ(α(Aρ + Q f1)) = τ(Aρ + Q fα). (6.2)

Hence, by definition of singular trace, it follows from (6.2) that τ(Aρ) = 0. �

Remark 6.3.

i) It follows from Theorem 3.8 that the singular trace given in Theorem 6.1 is spectral.
ii) If 0 < α < 1, by [5], the kernel of the operators α(Aρ + Q f1) and Aρ + Q fα is trivial if and only if

the Riemann hypothesis is true.
iii) It is easily checked that if 0 < α ≤ 1 and Vα ∶ L2(0,1)→ L2(0,1), (Vα f )(x) = f ( x

α
)χ[0,α](x), then

(V∗
α f )(x) = α f (αx)

Aρ(α) =
1
α

V∗
αAρ (6.3)

Aρ(α)Vα = αAρ. (6.4)

The operator Vα was introduced in [4].
We have from (6.4) that Aρ(α) ∈ J for every α ∈ J .

We are now ready to prove the first main result of the paper.

Proof of Theorem 1.2. First, we prove that if 0 < α, β ≤ 1 then

Aρ(α) = AρV∗
α + α⟨⋅, χ[α,1]

1
h
⟩h, (6.5)

where h(x) = x. Indeed, by the Müntz-Szasz Theorem [8, Theorem 2.2], it is sufficient to verify (6.5)
for hr with r ∈ N. To this end, we use the identity [7, p. 312]

∫
1

0
ρ(θ

x
) xrdx = θ

r
− ζ(r + 1)

r + 1
θr+1 , Re(r) > −1. (6.6)

Evaluating the right-hand side of (6.5) we have

AρV∗
α(hr)(θ) + α(∫

1

0
hr(x)χ[α,1](x) 1

h(x)dx)h(θ)
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= αr+1∫
1

0
ρ(θ

x
) xrdx + α

r
(1 − αr)θ.

It follows from (6.6) that

αr+1∫
1

0
ρ(θ

x
) xrdx + α

r
(1 − αr)θ = αr+1 (θ

r
− ζ(r + 1)

r + 1
θr+1)

+ α
r
(1 − αr)θ

= (Aρ(α)hr)(θ).

Hence, (6.5) is true for hr.
Let τ be a nontrivial singular trace on J . Applying τ in (6.5), we obtain

τ(Aρ(α)) = τ(AρV∗
α).

It follows from the definition of trace and (6.3) that

τ(Aρ(α)) =
1
α
τ(V∗

αAρ) =
1
α
τ(AρV∗

α).

Thus, for 0 < α < 1, we have τ(AρV∗
α) = 0 and hence τ(Aρ(α)) = 0. Since τ(Aρ)=0 and Aρ(1)=Aρ,

then τ(Aρ(α))=0 for every 0<α≤1. ◻

From now on, we concentrate on a recursion formula from which we can evaluate all the traces
Tr (Ar

ρ(α)), r ∈ N, r ≥ 2 and 0 < α ≤ 1. First, we require a preliminary lemma.

Lemma 6.4. Tr(A2
ρ(α)) = α2 − ζ(2)

2
α3.

Proof. It follows from (4.1) that

Tr (A2
ρ(α)) = ∫

1

0
∫

1

0
ρ(αθ

x
)ρ(αx

θ
)dxdθ.

Since

∫
1

0
∫

1

0
ρ(αθ

x
)ρ(αx

θ
)dxdθ = ∫

1

0
∫

θ

0
ρ(αθ

x
)ρ(αx

θ
)dxdθ + ∫

1

0
∫

1

θ
ρ(αθ

x
)ρ(αx

θ
)dxdθ

and
ρ (αx

θ
) = αx

θ
, 0 < x ≤ θ

ρ (αθx ) = αθ
x , θ < x ≤ 1

(6.7)

we get that

Tr (A2
ρ(α)) = ∫

1

0
∫

θ

0
ρ(αθ

x
) αx
θ

dxdθ + ∫
1

0
∫

1

θ

αθ

x
ρ(αx

θ
)dxdθ. (6.8)

It follows from (6.8) that

Tr (A2
ρ(α)) = ∫

1

0
∫

1

0
ρ(αθ

x
) αx
θ

dxdθ − ∫
1

0
∫

1

θ
ρ(αθ

x
) αx
θ

dxdθ+
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∫
1

0
∫

1

0

αθ

x
ρ(αx

θ
)dxdθ − ∫

1

0
∫

θ

0

αθ

x
ρ(αx

θ
)dxdθ.

Using (6.7) we obtain that

Tr (A2
ρ(α)) = 2∫

1

0
∫

1

0
ρ(αθ

x
) αx
θ

dxdθ − α2.

Finally, by (6.6) we conclude that

Tr (A2
ρ(α)) = 2α∫

1

0
α − ζ(2)

2
α2θdθ − α2

= α2 − ζ(2)
2

α3.

�

Proof of Theorem 1.3. By [3], we have

det2(I − uAρ(α)) = eαuTα(u) , u ∈ C (6.9)

where

Tα(u) = 1 − αu +
∞
∑
r=1

(−1)r+1 α(r+1)(r+2)/2

(r + 1)!(r + 1)
r

∏
l=1
ζ(l + 1)ur+1

is an entire function with an infinite number of zeros. It follows from [27, p. 349] that for u sufficiently
small we have

det′2(I − uAρ(α))
det2(I − uAρ(α))

= −
∞
∑
r=1

Tr (Ar+1
ρ (α))ur. (6.10)

Replacing (6.9) in (6.10), we get that

T ′
α(u) = Tα(u)(−α −

∞
∑
r=1

Tr (Ar+1
ρ (α))ur) . (6.11)

Moreover, we obtain from (6.11) and the Cauchy product formula that for r ≥ 2 we have

(r + 1)ar+1(α) = −αar(α) −
r−1

∑
k=1

ar−k(α)Tr (Ak+1
ρ (α)) − Tr (Ar+1

ρ (α)),

where

ar(α) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−α , r = 1
(−1)rαr(r+1)/2

r!r

r−1

∏
l=1
ζ(l + 1) , r ≥ 2.

This proves the assertion. ◻
Remark 6.5. Formula (1.2) is a recursion formula from which we can evaluate all the traces
Tr (Ar

ρ(α)), r ≥ 2. For example, it follows from Lemma 6.4 and Theorem 1.3 that

Tr(A3
ρ(α)) = −3a3(α) − αa2(α) − a1(α)Tr(A2

ρ(α))

= α
6

6
ζ(2)ζ(3) − 3α4

4
ζ(2) + α3.
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7. Conclusions

In this article we have shown the existence of a nontrivial singular trace τ defined on an ideal
J closed with respect to the logarithmic submajorization such that τ(Aρ(α)) = 0, where Aρ(α) ∶
L2(0,1) → L2(0,1), [Aρ(α) f ](θ) = ∫

1
0 ρ(αθ/x) f (x)dx , 0 < α ≤ 1. Based on the theory of spectral

traces and the results of [5], we have also shown that τ(Aρ(α)) = 0 for every τ nontrivial singular trace
on J .

Finally, using the modified Fredholm determinant of I − uAρ(α), a recursion formula is presented
to calculate all the traces Tr (Ar

ρ(α)), r ≥ 2.
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