

AIMS Mathematics, 8(10): 24971–24983. DOI: 10.3934/math.20231274 Received: 28 May 2023 Revised: 14 August 2023 Accepted: 17 August 2023 Published: 28 August 2023

http://www.aimspress.com/journal/Math

Research article

Traces of certain integral operators related to the Riemann hypothesis

Alfredo Sotelo-Pejerrey*

Faculty of Engineering, Universidad Continental, Lima, Peru

* Correspondence: Email: asotelop@continental.edu.pe.

Abstract: We prove the existence of a nontrivial singular trace τ defined on an ideal \mathcal{J} closed with respect to the logarithmic submajorization such that $\tau(A_{\rho}(\alpha)) = 0$, where $A_{\rho}(\alpha) : L^2(0,1) \to L^2(0,1)$, $[A_{\rho}(\alpha)f](\theta) = \int_0^1 \rho(\alpha\theta/x)f(x)dx$, $0 < \alpha \le 1$. We also show that $\tau(A_{\rho}(\alpha)) = 0$ for every τ nontrivial singular trace on \mathcal{J} . Finally, we give a recursion formula from which we can evaluate all the traces $\operatorname{Tr}(A_{\rho}^r(\alpha)), r \in \mathbb{N}, r \ge 2$.

Keywords: singular trace; spectral trace; modified Fredholm determinant; Riemann hypothesis **Mathematics Subject Classification:** 35J62, 35A15, 35J20

1. Introduction

Let B(H) be the algebra of all bounded linear operators on a separable complex Hilbert space H. The adjoint of an operator $T \in B(H)$ is denoted by T^* and the symbol I stands for identity maps. Denote by $\{s_n(T)\}_{n\geq 1}$ the sequence of singular values of a compact operator $T \in B(H)$. If 0 $we say that <math>T \in S^p(H)$ if $\sum_{n=1}^{\infty} s_n^p(T) < \infty$; the set $S^p(H)$ is a two-side ideal in B(H). The sets $S^1(H)$ and $S^2(H)$ will denote, respectively, the set of nuclear and Hilbert-Schmidt operators. By an ideal we mean a two-sided ideal in B(H). A linear functional τ from the ideal J into \mathbb{C} is said to be a trace if:

- *i*) $\tau(U^*TU) = \tau(T)$ for every $T \in J$ and $U \in B(H)$ unitary. Equivalently, $\tau(ST) = \tau(TS)$ for every $T \in J$ and $S \in B(H)$.
- *ii*) $\tau(T) \ge 0$ for every $T \in J$ with T a non-negative operator. We denote by $T \ge 0$ when T is a non-negative operator.

Then a trace is a positive unitarily invariant linear functional.

Let $T \in S^{1}(H)$, and let $\{\varphi_{n}\}_{n \ge 1}$ be an orthonormal system in *H*. By [13, p. 56], we have

$$\sum_{j=1}^n |\langle T\varphi_j, \varphi_j \rangle| \leq \sum_{j=1}^n s_j(T) \quad , \quad \forall n \geq 1.$$

Therefore,

$$\operatorname{Tr}(T) \coloneqq \sum_{n=1}^{\infty} \langle T\varphi_n, \varphi_n \rangle$$

is well-defined, since the right-hand series converges absolutely, and its value does not depend on the choice of the orthonormal basis $\{\varphi_n\}_{n\geq 1}$. Clearly, this linear functional is a trace on the ideal $S^1(H)$. There is also the description of Tr as the sum of eigenvalues,

$$\operatorname{Tr}(T) = \sum_{n=1}^{\infty} \lambda_n(T), \qquad (1.1)$$

where $\{\lambda_n(T)\}_{n\geq 1}$ is the sequence of nonzero eigenvalues of *T*, ordered in such a way that $|\lambda_n(T)| \geq |\lambda_{n+1}(T)|$, $\forall n \in \mathbb{N}$ and each one of them being counted according to its algebraic multiplicity. This result was shown by Von Neumann in [26] for self-adjoint operators and by Lidskii in [19] in general case. Formula (1.1) is called the Lidskii formula.

A natural question concerning the extension of the Lidskii formula to other ideals and traces on these ideals has been addressed in [6, 13, 20–22]. Thus, the notion of spectral traces arises. A trace τ on an ideal *J* is called spectral if for every $T \in J$, the value of $\tau(T)$ depends only on the eigenvalues of *T* and their multiplicities. For example, the classical trace Tr on the ideal $S^1(H)$ is spectral. Motivated by the problem of identifying spectral traces, it is shown in [12, Corollary 2.4] that every trace on a geometrically stable ideal is spectral. This result has been generalized in the setting of ideals closed with respect to the logarithmic submajorization (see [24]).

A trace τ on an ideal *J* will be called singular if it vanishes on the set $\mathcal{F}(H)$ of finite rank operators. This definition makes sense, since by the Calkin Theorem [9], each proper ideal in B(H) contains the finite rank operators and is contained in the ideal K(H) of the compact linear operators on *H*.

In 1966, J. Dixmier proved the existence of singular traces [11]. These traces are called Dixmier traces, and its importance is due to their applications in noncommutative geometry [10]. Other examples of singular traces appeared in [1, 17, 25].

The question whether an operator belongs to the domain of some singular trace was answered in [15]. Motivated by this, we give a nontrivial singular trace taking the value of zero on certain integral operator related to the Riemann hypothesis.

In [2], J. Alcántara-Bode has reformulated the Riemann hypothesis as a problem of functional analysis by means of the following theorem.

Theorem 1.1. Let $(A_{\rho}f)(\theta) = \int_{0}^{1} \rho\left(\frac{\theta}{x}\right) f(x) dx$, where ρ is the fractional part function, be considered as an operator on $L^{2}(0, 1)$. Then the Riemann hypothesis holds if and only if $\text{Ker}(A_{\rho}) = \{0\}$, or if and only if $h \notin \text{Ran}(A_{\rho})$ where h(x) = x.

It follows from Theorem 1.1 that the problem of verifying the condition $h \in \text{Ran}(A_{\rho})$ is ill posed in the sense of Hadamard [16, Definition 2.1.2]. This leads to regularizing the ill posed problem replacing A_{ρ} by

$$(A_{\rho}(\alpha)f)(\theta) = \int_0^1 \rho\left(\frac{\alpha\theta}{x}\right) f(x)dx , \ 0 < \alpha \le 1 \ , \ f \in L^2(0,1).$$

AIMS Mathematics

Observe that $A_{\rho}(1) = A_{\rho}$. Since A_{ρ} is nonnuclear (see [2, Theorem 6]), it was proved in [23, Theorem 4.3] that there exists a nontrivial singular trace τ with domain a geometrically stable ideal \mathcal{J} such that $A_{\rho} \in \mathcal{J}$ and $\tau(A_{\rho}) = 0$. It follows from [24, Lemma 35] that \mathcal{J} is closed with respect to the logarithmic submajorization.

Let \mathcal{J} be as in the previous paragraph. We show that if $0 < \alpha \le 1$ then $A_{\rho}(\alpha) \in \mathcal{J}$, and that each nontrivial singular trace on \mathcal{J} takes the value of zero on $A_{\rho}(\alpha)$. More precisely, our first main result of the paper is the following theorem.

Theorem 1.2. If $0 < \alpha \le 1$ then $\tau(A_{\rho}(\alpha)) = 0$ for every τ nontrivial singular trace on \mathcal{J} , where \mathcal{J} is the geometrically stable ideal in the above paragraph.

The approach used to prove Theorem 1.2 is based on spectral traces and the fact that the operators $\alpha(A_{\rho} + Q_{f_1})$ and $A_{\rho} + Q_{f_{\alpha}}$, where $\alpha \in]0, 1[$, have the same nonzero eigenvalues with the same algebraic and geometric multiplicities. Here $Q_f g = \langle g, f \rangle h$, h(x) = x, $f_{\alpha}(x) = -\alpha^{-1}\rho\left(\frac{\alpha}{x}\right)$.

Finally, our second main result is a recursion formula to calculate the traces $\text{Tr}(A_{\rho}^{r}(\alpha)), r \in \mathbb{N}, r \geq 2$.

Theorem 1.3. *If* $0 < \alpha \le 1$ *then for every* $r \in \mathbb{N}$ *with* $r \ge 2$ *we have*

$$\operatorname{Tr}(A_{\rho}^{r+1}(\alpha)) = -(r+1)a_{r+1}(\alpha) - \alpha a_{r}(\alpha) - \sum_{k=1}^{r-1} a_{r-k}(\alpha)\operatorname{Tr}(A_{\rho}^{k+1}(\alpha)),$$
(1.2)

where

$$a_{r}(\alpha) = \begin{cases} -\alpha & , r = 1\\ \frac{(-1)^{r} \alpha^{r(r+1)/2}}{r! r} \prod_{l=1}^{r-1} \zeta(l+1) & , r \ge 2. \end{cases}$$

In order to prove Theorem 1.3, we use the modified Fredholm determinant of $I - uA_{\rho}(\alpha)$ (see [3]).

2. Singular traces

Let l^{∞} the space of all bounded sequence of complex numbers and w a dilation invariant extended limit on l^{∞} , that is, w is an extended limit on l^{∞} and

$$w(\{x_1, x_2, \ldots\}) = w(\{x_1, x_1, x_2, x_2, \ldots\})$$
 for all $x = \{x_1, x_2, \ldots\} \in l^{\infty}$.

The Dixmier trace of $T \in M^{1,\infty}(H)$ with $T \ge 0$ is the number

$$\operatorname{Tr}_{w}(T) \coloneqq w\left(\left\{\frac{1}{\log(n+1)}\sum_{k=1}^{n}s_{k}(T)\right\}_{n\geq 1}\right),$$

where

$$M^{1,\infty}(H) = \left\{ T \in K(H) : \|T\|_{1,\infty} := \sup_{n \ge 1} \left\{ \frac{1}{\log(n+1)} \sum_{k=1}^n s_k(T) \right\} < \infty \right\}.$$

AIMS Mathematics

It was shown in [11] that the weight Tr_w defines a positive, unitarily invariant, additive and positive homogeneous function on the positive cone of $M^{1,\infty}(H)$, that can uniquely be extended to a singular trace on all of $M^{1\infty}(H)$, i.e., for an arbitrary $T \in M^{1,\infty}(H)$, its Dixmier trace is defined by

$$\operatorname{Tr}_{w}(T) := w\left(\left\{\frac{1}{\log(n+1)}\sum_{k=1}^{n}s_{k}(T_{1}) - s_{k}(T_{2}) + is_{k}(T_{3}) - is_{k}(T_{4})\right\}_{n \ge 1}\right)$$

where $T = T_1 - T_2 + iT_3 - iT_4$, $0 \le T_j \in M^{1,\infty}(H)$, j = 1, 2, 3, 4. In addition to this, the Dixmier trace vanishes on the ideal $S^1(H)$ and is continuous in the norm $\|\cdot\|_{1,\infty}$.

The existence of a singular trace which is nontrivial on a compact operator T, i.e., on the two-sided ideal generated by T,

$$(T) = \bigcup_{r=1}^{\infty} \left\{ \sum_{i=1}^{r} X_i T Y_i ; X_i, Y_i \in B(H) \right\}$$

was studied by J. Varga [25], and it has been completely characterized in [1]. This leads to study irregular, eccentric and generalized eccentric operators.

Definition 2.1. We say that a compact operator $T \in B(H)$ is

- a) regular if $\sum_{k=1}^{n} s_k(T) = \mathcal{O}(ns_n(T)) \ (n \to \infty);$
- b) irregular if it is not regular;
- c) eccentric if it is irregular but not nuclear;

d) generalized eccentric if 1 is a limit point of the sequence $\left\{\frac{S_{2n}(T)}{S_n(T)}\right\}_{n\geq 1}$, where

$$S_{n}(T) = \begin{cases} \sum_{k=1}^{n} s_{k}(T) & , T \notin S^{1}(H) \\ \sum_{k=1}^{n} s_{k}(T) - \operatorname{Tr}(|T|) & , T \in S^{1}(H). \end{cases}$$

Remark 2.2. By [25, Lemma 1], the class of generalized eccentric operators which are not nuclear coincides with the class of eccentric operators.

By [1, Lemma 2.6], that an operator is generalized eccentric can be reformulated as follows.

Lemma 2.3. Let $T \in B(H)$ be a compact operator. Then T is generalized eccentric if and only if there exists an increasing sequence of natural numbers $\{p_n\}_{n\geq 1}$ such that $\lim_{k\to+\infty} \frac{S_{kp_k}(T)}{S_{p_k}(T)} = 1$.

In this context, the main result in [1] is the following.

Theorem 2.4. Let $T \in B(H)$ be a compact operator. Then the following are equivalent:

- a) There exists a singular trace τ such that $0 < \tau(|T|) < \infty$.
- b) T is generalized eccentric.

The process to construct the singular trace given by a) is as follows:

We introduce a triple $\Omega = (T, w, \{n_k\}_{k\geq 1})$, where *T* is a generalized eccentric operator, *w* is an extended limit and $n_k = kp_k$, $k \in \mathbb{N}$, where $\{p_k\}_{k\geq 1}$ is the sequence given in Lemma 2.3. Associated with the triple Ω , on the positive part of the ideal (*T*), we defined the functional

$$\tau_{\Omega}(A) \coloneqq w\left(\left\{\frac{S_{n_k}(A)}{S_{n_k}(T)}\right\}_{k\geq 1}\right)$$

and by [1, Theorem 2.11], this functional extends linearly to a singular trace on the ideal (T).

Remark 2.5.

- *a)* By Theorem 2.4, finite rank operators cannot by generalized eccentric.
- b) The question whether an operator belongs to the domain of some singular trace is treated in [15]. By [15, Theorem 3.1 (i)], every compact operator A is in the kernel (hence in the domain) of some singular trace. The main idea for proving this theorem is the existence of a generalized eccentric operator B such that $A \in (B)_0 \subset (B)$. Here $(B)_0$ denotes the kernel of (B) (see [15]).

Example 2.6. Let $V: L^2(0,1) \rightarrow L^2(0,1)$ be the integral operator

$$(Vf)(t) = 2i \int_0^t f(s) ds$$

By [14, p. 250], $s_n(V) = \frac{4}{(2n-1)\pi}$, n = 1, 2, ... Therefore, by Remark 2.2, V is a generalized eccentric operator. Let Re(V) and Im(V) be the real and imaginary parts of V, respectively. Then

$$(\operatorname{Re}(V)f)(t) = i \int_0^1 sign(t-s)f(s)ds$$

and

$$(\operatorname{Im}(T)f)(t) = \int_0^1 f(s)ds$$

By [14, p. 172], $s_n(\text{Re}(V)) = \frac{2}{(2n-1)\pi}$, n = 1, 2, ..., it follows that Re(V) is a generalized eccentric operator. However, the operator Im(V) has rank one, and by Remark 2.5 (a), Im(V) is not an eccentric operator.

3. Commutator subspace

Now we concentrate on the commutator subspace of geometrically stable ideals and ideals closed with respect to the logarithmic submajorization, terminologies used in [18, 24], respectively.

Definition 3.1. Let J an ideal in B(H). The subspace

$$Com(J) \coloneqq span \{ [A, B] : A \in J, B \in B(H) \},\$$

where [A, B] = AB - BA, is called the commutator subspace of J.

Definition 3.2. An ideal J of B(H) is called geometrically stable if a diagonal operator diag $\{s_1, s_2, \ldots\} \in J$, where $s_1 \ge s_2 \ge \ldots \ge 0$, then diag $\{u_1, u_2, \ldots\} \in J$, where $u_n = (s_1 s_2 \ldots s_n)^{1/n}$.

The following theorem [18, Theorem 3.3] characterizes in terms of arithmetic means the commutator subspace of geometrically stable ideals.

Theorem 3.3. Suppose that *J* is a geometrically stable ideal of B(H). Then $T \in Com(J)$ if and only if $diag\{\frac{1}{n}(\lambda_1(T) + ... + \lambda_n(T))\} \in J$.

In order to extend the previous result, ideals closed with respect to the logarithmic submajorization are introduced in [24].

Definition 3.4. *If* $A, C \in B(H)$, then the operator C is logarithmically submajorized by the operator A (written $C \prec _{\log} A$) if

$$\prod_{k=1}^n s_k(C) \leq \prod_{k=1}^n s_k(A) \quad , \quad n \geq 1.$$

Definition 3.5. An ideal J is said to be closed with respect to the logarithmic submajorization if $C \prec_{\log} A \in J$ implies $C \in J$.

Remark 3.6. By [24, Lemma 35], every geometrically stable ideal is closed with respect to the logarithmic submajorization. However, by [24, Theorem 36 (c)], the converse assertion fails.

The following theorem [24, Theorem 7] extends Theorem 3.3 to ideals closed with respect to the logarithmic submajorization.

Theorem 3.7. Let an ideal J be closed with respect to the logarithmic submajorization and let $T \in J$. Then $T \in \text{Com}(J)$ if and only if $\text{diag}\{\frac{1}{n}(\lambda_1(T) + \ldots + \lambda_n(T))\} \in J$.

A Lidskii-type formula holds for every trace defined on ideals closed with respect to the logarithmic submajorization (see [24, Theorem 8]), the statement is the following.

Theorem 3.8. Let J be an ideal in B(H) and let τ be a trace on J. If J is closed with respect to the logarithmic submajorization, then τ is a spectral trace.

Example 3.9.

a) Let $\mathcal{L}_{1,\infty}(H)$ be the ideal

$$\mathcal{L}_{1,\infty}(H) = \left\{ T \in K(H) : \sup_{n \ge 1} \{ ns_n(T) \} < \infty \right\}.$$

Since $\mathcal{L}_{1,\infty}(H)$ is a quasi-Banach ideal with the complete quasi-norm $||T||_{\mathcal{L}_{1,\infty}(H)} = \sup_{\substack{n \ge 1 \\ n \ge 1}} \{ns_n(T)\}$ and every quasi-Banach ideal is geometrically stable (see [18, Proposition 3.2]), then by Remark 3.6, $\mathcal{L}_{1,\infty}(H)$ is closed with respect to the logarithmic submajorization.

b) It can be shown that the integral operator $V : L^2(0,1) \to L^2(0,1), (Vf)(t) = 2i \int_0^t f(s) ds$ has no eigenvalues ([14, p. 178]). Since $V \in \mathcal{L}_{1,\infty}(L^2(0,1))$, then by Theorem 3.7, $V \in \text{Com}(\mathcal{L}_{1,\infty}(L^2(0,1)))$. Hence $\tau(V) = 0$ for every τ trace on $\mathcal{L}_{1,\infty}(L^2(0,1))$.

4. Modified Fredholm determinant

If $T \in S^2(H)$ and $\{\lambda_n(T)\}_{n\geq 1}$ is the sequence of non-zero eigenvalues of T, each repeated according to its algebraic multiplicity and ordered in such a way that $|\lambda_n(T)| \geq |\lambda_{n+1}(A)|, \forall n \in \mathbb{N}$ then

$$\det_2(I - \lambda T) = \prod_{n=1}^{\infty} [1 - \lambda \lambda_n(T)] e^{\lambda \lambda_n(T)}$$

is an entire function, known as the modified Fredholm determinant of $I - \lambda T$. By the formula of Plemelj-Smithies [13, p. 166], it follows that

$$\det_2(I-\lambda T)=\sum_{n=0}^{\infty}d_n\lambda^n,$$

where $d_0 = 1$ and

$$d_{n} = \frac{(-1)^{n}}{n!} \begin{vmatrix} 0 & n-1 & 0 & \dots & 0 & 0 \\ \sigma_{2}(T) & 0 & n-2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \sigma_{n-1}(T) & \sigma_{n-2}(T) & \sigma_{n-3}(T) & \dots & 0 & 1 \\ \sigma_{n}(T) & \sigma_{n-1}(T) & \sigma_{n-2}(T) & \dots & \sigma_{2}(T) & 0 \end{vmatrix}, n \ge 1$$

and $\sigma_n(T) = \operatorname{Tr}(T^n) = \sum_{j=1}^{\infty} \lambda_j^n(T), n \ge 2.$

In particular, for Hilbert-Schmidt integral operators of the form

$$(Tf)(t) = \int_a^b k(t,s)f(s)ds,$$

where *k* is a measurable function and $\int_{a}^{b} \int_{a}^{b} |k(t,s)|^{2} dt ds < \infty$, the modified Fredholm determinant of $I - \lambda T$ is equal to its Hilbert-Carleman determinant (see [13, p. 176]). More precisely,

$$\det_2(I - \lambda T) = 1 + \sum_{n=2}^{\infty} b_n \lambda^n$$
(4.1)

where

$$b_n = \frac{1}{n!} \int_{(a,b)^n} \begin{vmatrix} 0 & k(t_1,t_2) & \dots & k(t_1,t_n) \\ k(t_2,t_1) & 0 & \dots & k(t_2,t_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(t_n,t_1) & k(t_n,t_2) & \dots & 0 \end{vmatrix} dt_1 \dots dt_n , n \ge 2$$

5. The integral operator A_{ρ}

To study the Riemann hypothesis, J. Alcántara-Bode [2] introduced the integral operator $A_{\rho}: L^2(0,1) \to L^2(0,1), \ (A_{\rho}f)(\theta) = \int_0^1 \rho\left(\frac{\theta}{x}\right) f(x) dx$. By Theorem 1.1, the Riemann hypothesis holds if and only if $\operatorname{Ker}(A_{\rho}) = \{0\}$, or if and only if $h \notin \operatorname{Ran}(A_{\rho})$ where h(x) = x.

As we have seen in the introduction, the operators $A_{\rho}(\alpha)$ arise from the attempt to verify the condition $h \in \text{Ran}(A_{\rho})$.

We briefly summarize properties of $A_{\rho}(\alpha)$ established in [2, 3].

- i) $A_{\rho}(\alpha)$, $0 < \alpha \le 1$, is Hilbert-Schmidt, but neither nuclear, nor normal, nor monotone.
- *ii*) $\lambda \in \sigma(A_{\rho}(\alpha)) \setminus \{0\}$ ($\sigma(A_{\rho}(\alpha)$) is the spectrum of $A_{\rho}(\alpha)$), $0 < \alpha \le 1$, if and only if $T_{\alpha}(\lambda^{-1}) = 0$ where

$$T_{\alpha}(u) = 1 - \alpha u + \sum_{r=1}^{+\infty} (-1)^{r+1} \frac{\alpha^{(r+1)(r+2)/2}}{(r+1)!(r+1)} \prod_{l=1}^{r} \zeta(l+1) u^{r+1}.$$

iii) The modified Fredholm determinant of $I - uA_{\rho}(\alpha)$ is

$$\det_2(I-uA_\rho(\alpha))=e^{\alpha u}T_\alpha(u),\ u\in\mathbb{C}.$$

6. Main results

For a given compact operator $T \notin S^1(H)$, where *H* is a separable complex Hilbert space, the following theorem shows the existence of a nontrivial singular trace defined on an ideal closed with respect to the logarithmic submajorization taking the value of zero on *T*.

Theorem 6.1. For every compact operator $T \notin S^1(H)$ there exists an ideal \mathcal{I} closed with respect to the logarithmic submajorization and a nontrivial singular trace τ on \mathcal{I} , such that $T \in \mathcal{I}$ and $\tau(T) = 0$.

Proof. By Remark 2.5, there exists a generalized eccentric operator *B* such that $T \in (B)_0 \subset (B)$. As we explained in the construction of the singular trace in Theorem 2.4, we can take the triple $\Omega = (B, w, \{n_k\}_{k\geq 1})$. Associated with Ω , on the positive part of (B), we have the functional

$$t_{\Omega}(A) = w\left(\left\{\frac{S_{n_k}(A)}{S_{n_k}(B)}\right\}_{k\geq 1}\right)$$

that extends linearly to a singular trace on the ideal (*B*). We also denote this extension by t_{Ω} . Clearly $t_{\Omega}(|B|) = 1$. Since $T \notin S^{1}(H)$, it follows that $B \notin S^{1}(H)$ and then

$$t_{\Omega}(A) = w \left(\left\{ \frac{\sum\limits_{i=1}^{n_k} s_i(A)}{\sum\limits_{i=1}^{n_k} s_i(B)} \right\}_{k \ge 1} \right).$$
(6.1)

It follows from (6.1) that t_{Ω} is bounded with respect to the norm $\|\cdot\|_{B}$, where

$$||A||_{B} = \sup_{n\geq 1} \left\{ \frac{\sum_{k=1}^{n} s_{k}(A)}{\sum_{k=1}^{n} s_{k}(B)} \right\},$$

so it extends by continuity to a singular trace $\tilde{t}_{\Omega} : \overline{(B)}^{\|\cdot\|_B} \to \mathbb{C}$. Here $\overline{(B)}^{\|\cdot\|_B}$ denotes the closure of (B) with respect to $\|\cdot\|_B$. By [20, Lemma 5.5.9] and Remark 3.6 the ideal $\overline{(B)}^{\|\cdot\|_B}$ is closed with respect to the logarithmic submajorization. Finally, it follows from [15, Proposition 2.7] that $\tilde{\tau}_{\Omega}(T) = 0$.

Since $A_{\rho} \notin S^{1}(L^{2}(0,1))$, it follows from Theorem 6.1 that there exists an ideal \mathcal{J} of $B(L^{2}(0,1))$ closed with respect to the logarithmic submajorization that contains A_{ρ} and a nontrivial singular trace τ on \mathcal{J} such that $\tau(A_{\rho}) = 0$. The following theorem shows that every nontrivial singular trace on \mathcal{J} take the value of zero on A_{ρ} .

Theorem 6.2. $\tau(A_{\rho}) = 0$ for every τ nontrivial singular trace on \mathcal{J} .

Proof. Let τ be a nontrivial singular trace on \mathcal{J} (since $A_{\rho} \notin S^{1}(L^{2}(0,1))$, the existence of \mathcal{J} and a nontrivial singular trace on \mathcal{J} are guaranteed by Theorem 6.1. If $0 < \alpha < 1$, by [5], the operators $\alpha(A_{\rho} + Q_{f_{1}})$ and $A_{\rho} + Q_{f_{\alpha}}$ have the same nonzero eigenvalues with the same algebraic and geometric multiplicities, where $Q_{f}(g) = \langle g, f \rangle h$, $f_{1}(x) = -\rho(\frac{1}{x})$ and $f_{\alpha}(x) = -\alpha^{-1}\rho(\frac{\alpha}{x})$. It follows from Theorem 3.8 that τ is a spectral trace and, therefore,

$$\tau(\alpha(A_{\rho}+Q_{f_1}))=\tau(A_{\rho}+Q_{f_{\alpha}}). \tag{6.2}$$

Hence, by definition of singular trace, it follows from (6.2) that $\tau(A_{\rho}) = 0$.

Remark 6.3.

- *i*) It follows from Theorem 3.8 that the singular trace given in Theorem 6.1 is spectral.
- *ii*) If $0 < \alpha < 1$, by [5], the kernel of the operators $\alpha(A_{\rho} + Q_{f_1})$ and $A_{\rho} + Q_{f_{\alpha}}$ is trivial if and only if the Riemann hypothesis is true.
- iii) It is easily checked that if $0 < \alpha \le 1$ and $V_{\alpha} : L^2(0,1) \to L^2(0,1)$, $(V_{\alpha}f)(x) = f(\frac{x}{\alpha})\chi_{[0,\alpha]}(x)$, then

$$(V_{\alpha}^{*}f)(x) = \alpha f(\alpha x)$$

$$A_{\rho}(\alpha) = \frac{1}{\alpha} V_{\alpha}^{*} A_{\rho}$$
(6.3)

$$A_{\rho}(\alpha)V_{\alpha} = \alpha A_{\rho}. \tag{6.4}$$

The operator V_{α} was introduced in [4]. We have from (6.4) that $A_{\rho}(\alpha) \in \mathcal{J}$ for every $\alpha \in \mathcal{J}$.

We are now ready to prove the first main result of the paper.

Proof of Theorem 1.2. First, we prove that if $0 < \alpha, \beta \le 1$ then

$$A_{\rho}(\alpha) = A_{\rho}V_{\alpha}^{*} + \alpha \left(\cdot, \chi_{[\alpha,1]}\frac{1}{h}\right)h, \qquad (6.5)$$

where h(x) = x. Indeed, by the Müntz-Szasz Theorem [8, Theorem 2.2], it is sufficient to verify (6.5) for h^r with $r \in \mathbb{N}$. To this end, we use the identity [7, p. 312]

$$\int_0^1 \rho\left(\frac{\theta}{x}\right) x^r dx = \frac{\theta}{r} - \frac{\zeta(r+1)}{r+1} \theta^{r+1} , \operatorname{Re}(r) > -1.$$
(6.6)

Evaluating the right-hand side of (6.5) we have

$$A_{\rho}V_{\alpha}^{*}(h^{r})(\theta) + \alpha \left(\int_{0}^{1}h^{r}(x)\chi_{[\alpha,1]}(x)\frac{1}{h(x)}dx\right)h(\theta)$$

AIMS Mathematics

$$=\alpha^{r+1}\int_0^1\rho\left(\frac{\theta}{x}\right)x^rdx+\frac{\alpha}{r}(1-\alpha^r)\theta.$$

It follows from (6.6) that

$$\alpha^{r+1} \int_0^1 \rho\left(\frac{\theta}{x}\right) x^r dx + \frac{\alpha}{r} (1 - \alpha^r) \theta = \alpha^{r+1} \left(\frac{\theta}{r} - \frac{\zeta(r+1)}{r+1} \theta^{r+1}\right) + \frac{\alpha}{r} (1 - \alpha^r) \theta = (A_\rho(\alpha) h^r)(\theta).$$

Hence, (6.5) is true for h^r .

Let τ be a nontrivial singular trace on \mathcal{J} . Applying τ in (6.5), we obtain

$$au(A_{
ho}(lpha)) = au(A_{
ho}V_{lpha}^*).$$

It follows from the definition of trace and (6.3) that

$$au(A_{
ho}(lpha)) = rac{1}{lpha} au(V_{lpha}^*A_{
ho}) = rac{1}{lpha} au(A_{
ho}V_{lpha}^*)$$

Thus, for $0 < \alpha < 1$, we have $\tau(A_{\rho}V_{\alpha}^*) = 0$ and hence $\tau(A_{\rho}(\alpha)) = 0$. Since $\tau(A_{\rho}) = 0$ and $A_{\rho}(1) = A_{\rho}$, then $\tau(A_{\rho}(\alpha)) = 0$ for every $0 < \alpha \le 1$.

From now on, we concentrate on a recursion formula from which we can evaluate all the traces $\text{Tr}(A_{\rho}^{r}(\alpha)), r \in \mathbb{N}, r \ge 2 \text{ and } 0 < \alpha \le 1$. First, we require a preliminary lemma.

Lemma 6.4. $\operatorname{Tr}(A_{\rho}^{2}(\alpha)) = \alpha^{2} - \frac{\zeta(2)}{2}\alpha^{3}.$

Proof. It follows from (4.1) that

$$\operatorname{Tr}\left(A_{\rho}^{2}(\alpha)\right) = \int_{0}^{1} \int_{0}^{1} \rho\left(\frac{\alpha\theta}{x}\right) \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta.$$

Since

$$\int_{0}^{1} \int_{0}^{1} \rho\left(\frac{\alpha\theta}{x}\right) \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta = \int_{0}^{1} \int_{0}^{\theta} \rho\left(\frac{\alpha\theta}{x}\right) \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta + \int_{0}^{1} \int_{\theta}^{1} \rho\left(\frac{\alpha\theta}{x}\right) \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta$$

and

$$\rho\left(\frac{\alpha x}{\theta}\right) = \frac{\alpha x}{\theta}, \ 0 < x \le \theta$$

$$\rho\left(\frac{\alpha \theta}{x}\right) = \frac{\alpha \theta}{x}, \ \theta < x \le 1$$
(6.7)

we get that

$$\operatorname{Tr}\left(A_{\rho}^{2}(\alpha)\right) = \int_{0}^{1} \int_{0}^{\theta} \rho\left(\frac{\alpha\theta}{x}\right) \frac{\alpha x}{\theta} dx d\theta + \int_{0}^{1} \int_{\theta}^{1} \frac{\alpha\theta}{x} \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta.$$
(6.8)

It follows from (6.8) that

$$\operatorname{Tr}\left(A_{\rho}^{2}(\alpha)\right) = \int_{0}^{1} \int_{0}^{1} \rho\left(\frac{\alpha\theta}{x}\right) \frac{\alpha x}{\theta} dx d\theta - \int_{0}^{1} \int_{\theta}^{1} \rho\left(\frac{\alpha\theta}{x}\right) \frac{\alpha x}{\theta} dx d\theta +$$

AIMS Mathematics

$$\int_0^1 \int_0^1 \frac{\alpha \theta}{x} \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta - \int_0^1 \int_0^\theta \frac{\alpha \theta}{x} \rho\left(\frac{\alpha x}{\theta}\right) dx d\theta.$$

Using (6.7) we obtain that

$$\operatorname{Tr}\left(A_{\rho}^{2}(\alpha)\right) = 2 \int_{0}^{1} \int_{0}^{1} \rho\left(\frac{\alpha\theta}{x}\right) \frac{\alpha x}{\theta} dx d\theta - \alpha^{2}.$$

Finally, by (6.6) we conclude that

$$\operatorname{Tr} \left(A_{\rho}^{2}(\alpha) \right) = 2\alpha \int_{0}^{1} \alpha - \frac{\zeta(2)}{2} \alpha^{2} \theta d\theta - \alpha^{2}$$
$$= \alpha^{2} - \frac{\zeta(2)}{2} \alpha^{3}.$$

Proof of Theorem 1.3. By [3], we have

$$\det_2(I - uA_\rho(\alpha)) = e^{\alpha u}T_\alpha(u) , \ u \in \mathbb{C}$$
(6.9)

where

$$T_{\alpha}(u) = 1 - \alpha u + \sum_{r=1}^{\infty} (-1)^{r+1} \frac{\alpha^{(r+1)(r+2)/2}}{(r+1)!(r+1)} \prod_{l=1}^{r} \zeta(l+1) u^{r+1}$$

is an entire function with an infinite number of zeros. It follows from [27, p. 349] that for *u* sufficiently small we have

$$\frac{\det_2'(I - uA_\rho(\alpha))}{\det_2(I - uA_\rho(\alpha))} = -\sum_{r=1}^\infty \operatorname{Tr}\left(A_\rho^{r+1}(\alpha)\right)u^r.$$
(6.10)

Replacing (6.9) in (6.10), we get that

$$T'_{\alpha}(u) = T_{\alpha}(u) \left(-\alpha - \sum_{r=1}^{\infty} \operatorname{Tr}\left(A_{\rho}^{r+1}(\alpha)\right) u^{r} \right).$$
(6.11)

Moreover, we obtain from (6.11) and the Cauchy product formula that for $r \ge 2$ we have

$$(r+1)a_{r+1}(\alpha) = -\alpha a_r(\alpha) - \sum_{k=1}^{r-1} a_{r-k}(\alpha) \operatorname{Tr}(A_{\rho}^{k+1}(\alpha)) - \operatorname{Tr}(A_{\rho}^{r+1}(\alpha)),$$

where

$$a_{r}(\alpha) = \begin{cases} -\alpha & , r = 1\\ \frac{(-1)^{r} \alpha^{r(r+1)/2}}{r! r} \prod_{l=1}^{r-1} \zeta(l+1) & , r \ge 2. \end{cases}$$

This proves the assertion.

Remark 6.5. Formula (1.2) is a recursion formula from which we can evaluate all the traces $Tr(A_{o}^{r}(\alpha)), r \geq 2$. For example, it follows from Lemma 6.4 and Theorem 1.3 that

$$\operatorname{Tr}(A_{\rho}^{3}(\alpha)) = -3a_{3}(\alpha) - \alpha a_{2}(\alpha) - a_{1}(\alpha)\operatorname{Tr}(A_{\rho}^{2}(\alpha))$$
$$= \frac{\alpha^{6}}{6}\zeta(2)\zeta(3) - \frac{3\alpha^{4}}{4}\zeta(2) + \alpha^{3}.$$

AIMS Mathematics

Volume 8, Issue 10, 24971–24983.

7. Conclusions

In this article we have shown the existence of a nontrivial singular trace τ defined on an ideal \mathcal{J} closed with respect to the logarithmic submajorization such that $\tau(A_{\rho}(\alpha)) = 0$, where $A_{\rho}(\alpha) : L^2(0,1) \to L^2(0,1), [A_{\rho}(\alpha)f](\theta) = \int_0^1 \rho(\alpha\theta/x)f(x)dx, 0 < \alpha \le 1$. Based on the theory of spectral traces and the results of [5], we have also shown that $\tau(A_{\rho}(\alpha)) = 0$ for every τ nontrivial singular trace on \mathcal{J} .

Finally, using the modified Fredholm determinant of $I - uA_{\rho}(\alpha)$, a recursion formula is presented to calculate all the traces Tr $(A_{\rho}^{r}(\alpha))$, $r \ge 2$.

Use of AI tools declaration

The author declares he/she has not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The author declares no conflicts of interest.

References

- 1. A. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, Singular traces and compact operators, *J. Funct. Anal.*, **137** (1996), 281–302. https://doi.org/10.1006/jfan.1996.0047
- 2. J. Alcántara-Bode, An integral equation formulation of the Riemann hypothesis, *Integr. Equat. Oper. Th.*, **17** (1993), 151–168. https://doi.org/10.1007/bf01200216.
- 3. J. Alcántara-Bode, An algorithm for the evaluation of certain Fredholm determinants, *Integr. Equat. Oper. Th.*, **39** (2001), 153–158. https://doi.org/10.1007/bf01195814
- 4. J. Alcántara-Bode, A completeness problem related to the Riemann hypotesis, *Integr. Equat. Oper. Th.*, **53** (2005), 301–309. https://doi.org/10.1007/s00020-004-1315-7
- 5. J. Alcántara-Bode, An example of two non-unitarily equivalent compact operators with the same traces and kernel, *Pro. Math.*, **23** (2009), 105–111.
- N. Azamov, F. Sukochev, A Lidskii type formula for Dixmier traces, C. R. Math. Acad. Sci. Paris, 340 (2005), 107–112. https://doi.org/10.1016/j.crma.2004.12.005
- 7. A. Beurling, A closure problem related to the Riemann zeta-function, *Proc. Nat. Acad. Sci.*, **41** (1955), 312–314. https://doi.org/10.1073/pnas.41.5.312
- P. Borwein, T. Erdelyi, The full Muntz theorem in C[0, 1] and L₁[0, 1], J. London Math. Soc., 54 (1996), 102–110. https://doi.org/10.1112/jlms/54.1.102
- 9. J. Calkin, Two-ideals and congruences in the ring of bounded operators in Hilbert space, *Ann. Math.*, **42** (1941), 839–873. https://doi.org/10.2307/1968771
- 10. A. Connes, Geometrie non commutative (Inter-Editions), Paris, 1990.
- 11. J. Dixmier, Existences de traces non normales, C. R. Acad. Sci. Paris, 262 (1966).

- 12. K. J. Dykema, N. J. Kalton, Spectral characterization of sums of commutators II, *J. Reine Angew. Math.*, **504** (1998), 127–137. https://doi.org/10.1515/crll.1998.103
- 13. I. Gohberg, S. Goldberg, N. Krupnik, *Traces and determinants of linear operators*, Operator Theory: Advances and Applications, Birkhauser Verlag, Basel, **116** (2000).
- 14. I. Gohberg, S. Goldberg, M. Kaashoek, Basic classes of linear operators, Birkhauser, 2003.
- 15. D. Guido, T. Isola, On the domain of singular traces, J. Funct. Anal., **13** (2002), 667–674. https://doi.org/10.1142/s0129167x02001447
- 16. S. I. Kabanikhin, *Inverse and III-posed problem: Theory and applications*, De Gruyter, 2012. https://doi.org/10.1515/9783110224016
- 17. N. J. Kalton, Unusual traces on operators ideals, *Math. Nachr.*, **134** (1987), 119–130. https://doi.org/10.1002/mana.19871340108
- N. J. Kalton, Spectral characterization of sums of commutators I, J. Reine Angew. Math., 504 (1998), 115–125. https://doi.org/10.1515/crll.1998.102
- V. Lidskii, Conditions for completeness of a system of root subspaces for nonselfadjoint operators with discrete spectrum, *Tr. Mosk. Mat. Obs.*, 8 (1959), 83–120. https://doi.org/10.1090/trans2/034/08
- 20. S. Lord, F. Sukochev, D. Zanin, Singular traces, theory and applications, De Gruyter, 2012.
- 21. A. Pietsch, Traces and shift invariant functionals, *Math. Nachr.*, **145** (1990), 7–43. https://doi.org/10.1002/mana.19901450102
- 22. A. Sedaev, F. Sukochev, D. Zanin, Lidskii-type formulae for Dixmier traces, *Integr. Equat. Oper. Th.*, **68** (2010), 551–572. https://doi.org/10.1007/s00020-010-1828-1
- 23. A. Sotelo-Pejerrey, Singular traces of an integral operator related to the Riemann hypothesis, *Pro. Math.*, **32** (2022), 55–71. Available from: https://revistas.pucp.edu.pe/index.php/promatematica/article/wiew/25729.
- 24. F. Sukochev, D. Zanin, Which traces are spectral? *Adv. Math.*, **252** (2014), 406–428. https://doi.org/10.1016/j.aim.2013.10.028
- 25. J. V. Varga, Traces on irregular ideals, *Proc. Amer. Math. Soc.*, **107** (1989), 715–723. https://doi.org/10.1090/s0002-9939-1989-0984818-8
- 26. J. Von Neumann, *Mathematische grundlagen der quantenmechanik*, Grundlehren Math. Wiss. Einzeldarstellungen, Bd. XXXVIII, Springer-Verlag, Berlin, 1932.
- 27. A. C. Zaanen, Linear analysis, North Holland, Amsterdam, 1984.

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)