Mathematics

Research article

On the maximum Graovac-Pisanski index of bicyclic graphs

Jian Lu* and Zhongxiang Wang

School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China

* Correspondence: Email: lujianmath@163.com.

Abstract: For a simple graph $G=(V(G), E(G))$, the Graovac-Pisanski index of G is defined as

$$
G P(G)=\frac{|V(G)|}{2|\operatorname{Aut}(G)|} \sum_{u \in V(G)} \sum_{\alpha \in \operatorname{Aut}(G)} d_{G}(u, \alpha(u)),
$$

where $\operatorname{Aut}(G)$ is the automorphism group of G and $d_{G}(u, v)$ is the length of a shortest path between the two vertices u and v in G. Obviously, $G P(G)=0$ if G has no nontrivial automorphisms. Let $B_{n}^{3,3}$ be the graph consisting of two disjoint 3 -cycles with a path of length $n-5$ joining them. In this article, we prove that among all those n-vertex bicyclic graphs in which every edge lies on at most one cycle, $B_{n}^{3,3}$ has the maximum Graovac-Pisanski index.

Keywords: modified Wiener index; Graovac-Pisanski index; automorphism; orbit; bicyclic graphs Mathematics Subject Classification: 05C12, 05C25

1. Introduction

Molecular topological indices are graph invariants and have various applications in mathematical chemistry. In recent decades, a number of topological indices have been extensively studied such as the Randić index $[2,16]$ and Estrada index [19,20]. One of the most well-known molecular topological indices is the Wiener index [23], which was developed by Harry Wiener in 1947. It is described as the sum of the distance between each pair of vertices in a graph. Since Wiener's foundational work, several iterations of the Wiener index have been developed. One of these is the Graovac-Pisanski index [7], which is similarly based on distances. Since the symmetry of a graph affects the characteristics of a molecule [15], this index has an advantage over other distance-based indices.

Let $G=(V(G), E(G))$ be a graph. The distance $d_{G}(u, v)$ between two vertices u and v in G is the length of the shortest path between u and v. An automorphism of G is a permutation α of its vertex set which preserves adjacency: If $u v \in E(G)$, then $\alpha(u) \alpha(v) \in E(G)$. For every graph G, the set $\operatorname{Aut}(G)$
containing all of its automorphisms is known as the automorphism group of G. The Graovac-Pisanski index of G is defined as

$$
G P(G)=\frac{|V(G)|}{2|\operatorname{Aut}(G)|} \sum_{u \in V(G)} \sum_{\alpha \in \operatorname{Aut}(G)} d_{G}(u, \alpha(u)) .
$$

It was shown in [1] that the quotient of the Wiener index and the Graovac-Pisanski index is strongly correlated with the topological efficiency for some nanostructures. The topological efficiency was introduced in [3] as a tool for the classification of the stability of molecules. A correlation between the Graovac-Pisanski index and the melting points of some families of hydrocarbon molecules was established in [5]. For more recent studies on the Graovac-Pisanski index of some linear polymers, nanostructures and some particular fullerenes, see [9, 13, 14, 18, 21].

The mathematical properties of the Graovac-Pisanski index were also investigated. Some general results on the Graovac-Pisanski index were obtained $[8,12,17]$. The exact value of the GraovacPisanski index for Sierpiński graphs were obtained [6] and the closed formulae for carbon nanotubes were calculated [22]. Note that if there is no nontrivial automorphisms in a graph G, then $G P(G)=0$. Hence, it only makes sense to consider the maximum value of $G P(G)$. Denoted by P_{n} / C_{n} the path/cycle of length n. Let H_{n} be the graph produced from $P_{n}-5$ by adding two pendant vertices to either end of $P_{n}-5$. Knor et al. considered the maximum Graovac-Pisanski indices of trees and unicyclic graphs $[10,11]$, and they proposed the following conjecture.

Conjecture 1.1. [10,11] Among all graphs on n vertices, P_{n-1}, H_{n} and C_{n} have the maximum GraovacPisanski index if $n \geq 8$.

For a connected graph G, we define the 2 -core of G, denoted by $B(G)$, as the graph obtained from G by recursively deleting pendant vertices until no pendant vertices remain. We denote by $B_{n}^{p, q}(p, q \geq 3)$ the graph obtained from the two cycles C_{p} and C_{q} by adding a $P_{n+1-p-q}$ between them. If G contains some $B_{n}^{p, q}$ as a 2 -core, then we say G is an ∞-shape bicycle graph.

In this article, we concentrate on the maximum Graovac-Pisanski index over all connected ∞-shape bicycle graphs and prove the following theorem, which implies Conjecture 1.1 is true for ∞-shape bicyclic graphs.

Theorem 1.2. Among all connected ∞-shape bicyclic graphs on n vertices, only $B_{n}^{3,3}$ has the maximum Graovac-Pisanski index and

$$
G P\left(B_{n}^{3,3}\right)= \begin{cases}\frac{n^{3}}{8}-\frac{5 n}{8}, & \text { if } n \text { is odd } ; \\ \frac{n^{3}}{8}-\frac{n}{2}, & \text { if } n \text { is even } .\end{cases}
$$

2. Preliminaries

We focus only on simple connected graphs that are finite, undirected and unlabelled in this article. Let $G=(V(G), E(G))$ be a graph. For $S \subseteq V(G) \cup E(G)$, we denote by $G[S]$ the subgraph induced by S, and $G-S$ the subgraph obtained from G by deleting S. For a vertex u in G, the orbit which contains u is the vertex set $V_{u}=\{\alpha(u) \mid \alpha \in \operatorname{Aut}(G)\}$ and u is called the representative of V_{u}. The order of an orbit is the number of vertices it contains. We denote by $W_{V_{u}}(u)=\sum_{v \in V_{u}} d_{G}(u, v)$. Note that, for each vertex $x \in V_{u}$, the value of $W_{V_{u}}(x)$ is same.

Let V_{1}, \cdots, V_{t} be all the orbits determined by $\operatorname{Aut}(G)$ in G with the representatives v_{1}, \cdots, v_{t}, respectively. There is a simple expression of the Graovac-Pisanski index in terms of orbits,

$$
\begin{equation*}
G P(G)=\frac{|V(G)|}{2} \sum_{i=1}^{t} W_{V_{i}}\left(v_{i}\right)=\frac{|V(G)|}{2} G P_{a}(G), \tag{1}
\end{equation*}
$$

where $G P_{a}(G)=\sum_{i=1}^{t} W_{V_{i}}\left(v_{i}\right)($ see $[4])$.
Example 2.1. Let G_{i} be the graph as depicted in Figure 1, where $1 \leq i \leq 5$ (each orbit in G_{i} is colored with a different color). By Eq (1), we can obtain that

$$
\begin{gathered}
G P\left(G_{1}\right)=\frac{5}{2} \times(4+2)=15, G P\left(G_{2}\right)=\frac{5}{2} \times(1+1+0)=5, \\
G P\left(G_{3}\right)=\frac{5}{2} \times(2+0+0+0)=5, G P\left(G_{4}\right)=\frac{5}{2} \times(1+0+0+0)=\frac{5}{2}, \\
G P\left(G_{5}\right)=\frac{5}{2} \times(5+0)=\frac{25}{2} .
\end{gathered}
$$

Figure 1. The graphs $G_{1}-G_{5}$ and their orbits.

Obviously, if we consider the maximum value of the Graovac-Pisanski index of an n-vertex graph G, we only need to consider the maximum value of $G P_{a}(G)$ by (1).

Theorem 2.2. [10] Let T be a tree on n vertices, then

$$
G P_{a}(T) \leq \begin{cases}\frac{n^{2}-1}{4}, & \text { when } n \text { is odd } \\ \frac{n^{2}}{4}, & \text { when } n \text { is even }\end{cases}
$$

Moreover, when $n \geq 8$, then the equality holds if and only if $G \cong P_{n-1}$ or $G \cong H_{n}$.
A bicycle graph G is the graph with the property $|E(G)|=|V(G)|+1$. It is well know that there are two types of bicyclic graphs. We call G a Θ-shape bicycle graph if the two cycles in G share one common edge, otherwise, we call G an ∞-shape bicyclic graph. For $V_{1}, V_{2} \subseteq V(G)$, if $\left|V_{1}\right|=\left|V_{2}\right|$ and there exists a permutation $\alpha \in \operatorname{Aut}(G)$ such that $\alpha(x) \in V_{2}$ for any $x \in V_{1}$, then we denote $\alpha\left(V_{1}\right)=V_{2}$.

Observation 2.3. Let G be an ∞-shape bicycle graph, and let $B:=B(G)$ be the 2 -core of G which is formed from two cycles C_{p} and C_{q} with $a(u, v)$-path P_{l} joining them, where $u \in V\left(C_{p}\right)$ and $v \in V\left(C_{q}\right)$. Suppose there is some $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$. Then for any vertex $r \in V(B), r$ is in an orbit V_{r} of order 1 or 2 or 4 . Moreover, $\left|V_{r}\right|=1$ only if l is even and r is the vertex in the (u, v)-path P_{l} with $d_{G}(r, u)=\frac{l}{2}$.
Proof. Since u and v are the only two vertices with degree 3 in the 2 -core B of G, we have $\gamma(u)=v$ or $\gamma(u)=u$ for any $\gamma \in \operatorname{Aut}(G)$. Recall that γ is a permutation which preserves adjacency, hence for every $x \in V(B)$,

$$
d_{G}(x, u)=d_{G}(\gamma(x), \gamma(u)) .
$$

Let $V_{r} \subseteq V(B)$ be an orbit with representative r.
Case 1. $r \in V\left(C_{p}\right) \cup V\left(C_{q}\right)$.
Without loss of generality, we assume $r \in V\left(C_{p}\right)$. Since $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$, then $\alpha(u)=v$. Hence, the vertex $\alpha(r) \in V\left(C_{q}\right)$ with $d_{G}(\alpha(r), v)=d_{G}(r, u)$ is in V_{r}. Let $w \in V\left(C_{p}\right)$ be the vertex different from r with $d_{G}(r, u)=d_{G}(w, u)$ (if it exists). If there exists $\beta \in \operatorname{Aut}(G)$ such that $\beta(r)=w$, then

$$
V_{r}=\{r, w, \alpha(r), \alpha(w)\}
$$

is an orbit of order 4. If for any $\gamma \in \operatorname{Aut}(G), \gamma(r) \neq w$ or w does not exist, then $V_{r}=\{r, \alpha(r)\}$ is an orbit of order 2 .

Case 2. $r \in V\left(P_{l}\right)$.
Obviously, $\gamma(r) \in V\left(P_{l}\right)$ for any $\gamma \in \operatorname{Aut}(G)$. If l is even and $r \in V\left(P_{l}\right)$ is the vertex with $d_{G}(r, u)=\frac{l}{2}$, then r is unique vertex in B with $d_{G}(r, u)=d_{G}(r, v)$. Hence, for any $\gamma \in \operatorname{Aut}(G), \gamma(r)=r$ and $V_{r}=\{r\}$ is the unique orbit of order 1. Otherwise, $V_{r}=\{r, \alpha(r)\}$ is an orbit of order 2, where $\alpha(r) \in V\left(P_{l}\right)$ with $d_{G}(r, u)=d_{G}(\alpha(r), v)$.

3. The maximum $G P_{a}(G)$ of ∞-shape bicycle graphs

In this section, unless otherwise specified, we always let G be an ∞-shape bicyclic graph of order n, and $B:=B(G)$ be the 2 -core of G which is formed from two cycles C_{p}, C_{q} with a (u, v)-path P_{l} joining them, where $u \in V\left(C_{p}\right)$ and $v \in V\left(C_{q}\right)$.

Let T_{w} be a component of $G-E(B)$, where $w \in V(B)$. A tree T_{w} in G is trivial if $\left|V\left(T_{w}\right)\right|=1$. Obviously, $G=B$ when all trees T_{w} are trivial. We remark that all the rooted trees T_{w} with root w in the same orbit $V_{w} \subseteq V(B)$ are mutually isomorphic. A subgraph of G isomorphic to a path is a ray, if its first vertex has degree at least 3 in G, its last vertex has degree 1 in G, and all the other vertices have degree 2 in G.
Lemma 3.1. Let G be a connected tree or ∞-shape bicyclic graph and let k be an integer larger than 1 . Suppose V_{r} is an orbit of G with representative r and there is a partition $V_{1}, V_{2}, \cdots, V_{k}$ of V_{r} such that for any vertex $x \in V_{i}(1 \leq i \leq k)$, the value of $W_{V_{i}}(x)$ is same. Then $W_{V_{r}}(r) \geq \sum_{i=1}^{k} W_{V_{i}}(x)$.
Proof. Since the value of $W_{V_{i}}(x)$ is the same for each vertex $x \in V_{i}$, we choose the vertex r_{i} which is closest to r in each V_{i} as the representative for $1 \leq i \leq k$. Obviously, if we prove that $d_{G}(r, x) \geq d_{G}\left(r_{i}, x\right)$ for every vertex $x \in V_{i}$, then we have $W_{V_{r}}(r) \geq \sum_{i=1}^{k} W_{V_{i}}\left(r_{i}\right)=\sum_{i=1}^{k} W_{V_{i}}(x)$. Note that $W_{V_{i}}\left(r_{i}\right)=0$ if
$V_{i}=\left\{r_{i}\right\}$, hence we may assume each V_{i} contains at least two vertices for $1 \leq i \leq k$. Let x be an arbitrary vertex in $V_{i} \backslash\left\{r_{i}\right\}$, where $1 \leq i \leq k$.

Case 1. G is a tree.
Let T be the tree with the minimum number of vertices among all subtrees of G that contain r, r_{i}, x as leafs. It is known that every tree has either 1 or 2 central vertices. Since r, r_{i}, x are in the same orbit V_{r}, they are equidistant from some central vertex of T.

Denote by z the central vertex in T that is closest to r. Recall that r_{i} is the vertex closest to r in V_{i}. Hence, if there is a subtree $T^{\prime} \subseteq T$ with leafs r, r_{i} and central vertex z^{\prime} such that $d_{G}\left(z^{\prime}, r\right) \leq d_{G}(z, u)$, then

$$
d_{G}(r, x)=d_{G}\left(r, z^{\prime}\right)+d_{G}\left(z^{\prime}, x\right)=d_{G}\left(r_{i}, z^{\prime}\right)+d_{G}\left(z^{\prime}, x\right)=d_{G}\left(r_{i}, x\right) .
$$

Otherwise, there is a subtree $T^{\prime \prime} \subseteq T$ with leafs r_{i}, x and central vertex $z^{\prime \prime}$ such that $d_{G}\left(z^{\prime \prime}, r\right)>d_{G}(z, r)$. Note that $d_{G}\left(z^{\prime \prime}, x\right) \leq d_{G}(z, r)$. Hence,

$$
d_{G}(r, x)=d_{G}\left(z^{\prime \prime}, r\right)+d_{G}\left(z^{\prime \prime}, x\right)>d_{G}(z, r)+d_{G}\left(z^{\prime \prime}, x\right) \geq 2 d_{G}\left(z^{\prime \prime}, x\right)=d_{G}\left(r_{i}, x\right) .
$$

Therefore, we always have $d_{G}(r, x) \geq d_{G}\left(r_{i}, x\right)$ for any vertex $x \in V_{i}$, where $1 \leq i \leq k$.
Case 2. G is an ∞-shape bicyclic graph.
We may assume that r is in the root tree T_{w}, where $w \in V(B)$. Note that w is in an orbit $V_{w} \subseteq V(B)$ with order 1, 2 or 4, and by Observation 2.3, $\left|V_{w}\right|=4$ only if there exists some $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$. Obviously, if $\left|V_{w}\right|=1$, then r, r_{i} and x are in the same rooted tree T_{w}. Hence, by case $1, d_{G}(r, x) \geq d_{G}\left(r_{i}, x\right)$ for any vertex $x \in V_{i}$. Thus, we may assume $\left|V_{w}\right|=2$ or 4 in the following.

We first consider $r_{i} \in V\left(T_{w}\right)$. If $x \in V\left(T_{w}\right)$, then by case $1, d_{G}(r, x) \geq d_{G}\left(r_{i}, x\right)$. If $x \in V\left(T_{w_{1}}\right)$, where $w_{1} \in V_{w} \backslash\{w\}$, then

$$
d_{G}(r, x)=d_{G}(r, w)+d_{G}\left(w, w_{1}\right)+d_{G}\left(w_{1}, x\right) .
$$

Since r, r_{i}, x are in the same orbit V_{r},

$$
d_{G}(r, w)=d_{G}\left(r_{i}, w\right)=d_{G}\left(x, w_{1}\right) .
$$

Hence,

$$
d_{G}(r, x)=d_{G}\left(r_{i}, w\right)+d_{G}\left(w, w_{1}\right)+d_{G}\left(w_{1}, x\right)=d_{G}\left(r_{i}, x\right)
$$

Therefore, we have $d_{G}(r, x) \geq d_{G}\left(r_{i}, x\right)$.
Now, we consider $r_{i} \notin V\left(T_{w}\right)$. Obviously, if x and r_{i} are in the same root tree, then $d_{G}(r, x)>$ $d_{G}\left(r_{i}, x\right)$. Hence, we assume x and r_{i} are in different root trees. And since r_{i} is the vertex in V_{i} closest to $r, x \notin V\left(T_{w}\right)$. It follows that $\left|V_{w}\right|=4$, say $V_{w}=\left\{w, w_{1}, w_{2}, w_{3}\right\}$. Without loss of generality, we may assume $\left\{w, w_{1}\right\} \subseteq V\left(C_{p}\right)$ and $\left\{w_{2}, w_{3}\right\} \subseteq V\left(C_{q}\right)$. If $r_{i} \in V\left(T_{w_{1}}\right)$, then $x \in V\left(T_{w_{j}}\right)$ with

$$
d_{G}(r, w)=d_{G}\left(r_{i}, w_{1}\right)=d_{G}\left(x, w_{j}\right),
$$

where $2 \leq j \leq 3$. Note that

$$
d_{G}\left(w, w_{j}\right)=d_{G}\left(w_{1}, w_{j}\right)
$$

where $2 \leq j \leq 3$. Hence,

$$
d_{G}(r, x)=d_{G}(r, w)+d_{G}\left(w, w_{j}\right)+d_{G}\left(w_{j}, x\right)=d_{G}\left(r_{i}, w_{1}\right)+d_{G}\left(w_{1}, w_{j}\right)+d_{G}\left(w_{j}, x\right)=d_{G}\left(r_{i}, x\right) .
$$

If $r_{i} \in V\left(T_{w_{j}}\right)$, say $r_{i} \in V\left(T_{w_{2}}\right)$, then $x \in V\left(T_{w_{3}}\right)$ as r_{i} is the vertex in V_{i} closest to r. Note that $d_{G}\left(w, w_{3}\right) \geq d_{G}\left(w_{2}, w_{3}\right)$. Hence,

$$
d_{G}(r, x)=d_{G}(r, w)+d_{G}\left(w, w_{3}\right)+d_{G}\left(w_{3}, x\right) \geq d_{G}\left(r_{i}, w_{2}\right)+d_{G}\left(w_{2}, w_{3}\right)+d_{G}\left(w_{3}, x\right)=d_{G}\left(r_{i}, x\right) .
$$

Therefore, we always have $d_{G}(r, x) \geq d_{G}\left(r_{i}, x\right)$ for any vertex $x \in V_{i}$.
We now introduce some graph operations. By the graph operations of cutting down a rooted tree T_{x} in G and attaching a path P_{l} to $y \in V(G)$, we mean deleting the vertices $V\left(T_{x}\right) \backslash\{x\}$ in G and identifying one end of P_{l} to y, respectively. By the graph operation of changing a rooted tree T_{x} to a path, we mean cutting down T_{x} and then attaching a path of order $\left|V\left(T_{x}\right)\right|$ to x.

Lemma 3.2. Let $s \geq 1$ be an integer and let G be an ∞-shape bicycle graph with the 2 -core $B:=B(G)$. Suppose $V_{v_{1}}=\left\{v_{1}, v_{2}, \cdots, v_{s+1}\right\} \subseteq V(B)$ is an orbit and each vertex $v_{i} \in V_{v_{1}}$ is the root of a nontrivial tree $T_{v_{i}}$, where $1 \leq i \leq s+1$. Let G^{\prime} be the graph obtained from G by changing each $T_{v_{i}}$ to a path for $1 \leq i \leq s+1$. Then, $G P_{a}(G) \leq G P_{a}\left(G^{\prime}\right)$.

Proof. We will prove $G P_{a}(G) \leq G P_{a}\left(G^{\prime}\right)$ through a series of graph operations. Note that since the roots of each $T_{v_{i}}(1 \leq i \leq s+1)$ are in the same orbit $V_{v_{1}}$, all $T_{v_{i}}$ in G are isomorphic. If each $T_{v_{i}}$ is a ray, then $G=G^{\prime}$. Hence, each $T_{v_{i}}$ contains at least two vertices with degree more than 2 . Let $u_{i 1}, \ldots, u_{i r}$ be the vertices in $V\left(T_{v_{i}}\right)$ that are furthest away from v_{i} with degree at least 3 and lie in the same orbit of G, where $1 \leq i \leq s+1$ and $r \geq 1$. Then $V_{u_{11}}=\left\{u_{11}, u_{12}, \cdots, u_{1 r}, \cdots, u_{(s+1) r}\right\}$ is an orbit of G.

Let $S_{u_{i j}} \subseteq G$ be the graph induced by the vertices contained in all the rays with $u_{i j}$ as the first vertex for $1 \leq i \leq s+1$ and $1 \leq j \leq r$. Obviously, all $S_{u_{i j}}$ are isomorphic and for any two distinct vertices $x \in S_{u_{i j}}$ and $y \in S_{u_{i^{\prime} j^{\prime}}}$, if the rays containing x and y are of equal length and $d_{G}\left(x, u_{i j}\right)=d_{G}\left(y, u_{i^{\prime} j^{\prime}}\right)$, then x and y are in the same orbit, where $1 \leq i \leq i^{\prime} \leq s+1$ and $1 \leq j \leq j^{\prime} \leq r$. Now, we consider the following two cases.

Case 1. Each $S_{u_{i j}}$ has at least two rays of the same length, where $1 \leq i \leq s+1$ and $1 \leq j \leq r$.
Recall that all $S_{u_{i j}}$ are isomorphic, hence we may assume there are $k(k \geq 2)$ rays in each $S_{u_{i j}}$ with the same length l for $1 \leq i \leq s+1$ and $1 \leq j \leq r$. Let G_{1} be the graph obtained from G by cutting down all the k rays of length l in each $S_{u_{i j}}$ and attaching a path $P_{k l}$ to each $u_{i j}$ (see Figure 2(a)). Denote by $S_{u_{i j}}^{\prime} \subseteq G_{1}$ the graph obtained from $S_{u_{i j}}$ after the graph operation, where $1 \leq i \leq s+1$ and $1 \leq j \leq r$.

Figure 2. The process of constructing graphs G_{1} and G_{2}.

Note that for each orbit V_{u} which contains the vertices in the rays of length $k l$ in each $S_{u_{i j}}^{\prime} \subseteq G_{1}$, V_{u} may also contains the vertices in the rays of length $k l$ in G if such rays exist in some rooted tree isomorphic to $T_{v_{i}}$ in G. We denote by V_{u}^{\prime} the subset of each V_{u} which only contains the vertices in the path $P_{k l}$ of each $S_{u_{i j}}^{\prime} \subseteq G_{1}$, where $1 \leq i \leq s+1$ and $1 \leq j \leq r$.

Let \mathcal{V} be the set consisting of the orbits which contain the vertices in the $k r(s+1)$ rays of length l in each $S_{u_{i j}} \subseteq G$. Let \mathcal{V}^{\prime} be the set consisting of the sets V_{u}^{\prime} which contain the vertices in the $r(s+1)$ rays of length $k l$ in each $S_{u_{i j}}^{\prime} \subseteq G_{1}$. For convenience, for any set in \mathcal{V} or \mathcal{V}^{\prime}, we always choose the vertex in $S_{u_{11}}$ or $S_{u_{11}}^{\prime}$ as representative, respectively. According to the distance between the representatives of each set to u_{11}, we can obtain $|\mathcal{V}|=k$ and $\left|\mathcal{V}^{\prime}\right|=k l$.

Note that, after the process of constructing G_{1} from G, some orbits of G may merge into a new orbit of G_{1} and the orbit V_{u} of G_{1} may also contains some orbits of G. By Lemma 3.1, we can see that the vertices in these orbits will increase the value of $G P_{a}(G)$ after the process. Hence, if we can prove $\sum_{V_{x} \in \mathcal{V}} W_{V_{x}}(x) \leq \sum_{V_{y}^{\prime} \in \mathcal{V}^{\prime}} W_{V_{y}^{\prime}}(y)$, where V_{x} is the orbit in \mathcal{V} with representative x and V_{y}^{\prime} is the set in \mathcal{V}^{\prime} with representative y, then we have $G P_{a}\left(G_{1}\right) \geq G P_{a}(G)$.

Let V_{f} be the orbit in \mathcal{V} which contains the representative x_{f} in some ray of length l in $S_{u_{11}}$ with $d_{G}\left(x_{f}, u_{11}\right)=f(1 \leq f \leq l)$, and let V_{t}^{\prime} be the set in \mathcal{V}^{\prime} which contains the representative y_{t} in the path $P_{k l}$ of $S_{u_{11}}^{\prime}$ with $d_{G_{1}}\left(y_{t}, u_{11}\right)=t(1 \leq t \leq k l)$. Then,

$$
\begin{aligned}
\sum_{t=1}^{k l} W_{V_{t}^{\prime}}\left(y_{t}\right)-\sum_{f=1}^{l} W_{V_{f}}\left(x_{f}\right) & =\sum_{t=1}^{k l}\left(2 t(r-1)+2 t r s+W_{V_{u_{11}}}\left(u_{11}\right)\right)-\sum_{f=1}^{l}\left(2 f k r(s+1)-2 f+k W_{V_{u_{11}}}\left(u_{11}\right)\right) \\
& =k^{2}\left(l^{2} r s+l^{2} r-l^{2}\right)-k\left(l^{2} r s+l^{2} r+l\right)+l^{2}+l \\
& \geq l^{2}(2 r s+2 r-3)-l \geq 0
\end{aligned}
$$

as $k \geq 2, s \geq 1, l \geq 1$ and $r \geq 1$. Therefore, $G P_{a}\left(G_{1}\right) \geq G P_{a}(G)$.
Case 2. All the rays in each $S_{u_{i j}}$ have different length, where $1 \leq i \leq s+1$ and $1 \leq j \leq r$.
We may assume that in each $S_{u_{i j}}$, there are two rays of length l_{1} and l_{2} respectively, where $l_{2}>l_{1}$. Let G_{2} be the graph obtained from G by cutting down the ray of length l_{1} in each $S_{u_{i j}}$ and attaching a path of length l_{1} to the end vertex of the ray of length l_{2} in each $S_{u_{i j}}$, where $1 \leq i \leq s+1$ and $1 \leq j \leq r$ (see Figure 2(b)). Denote by $S_{u_{i j}}^{\prime \prime} \subseteq G_{2}$ the graph obtained from $S_{u_{i j}}$ after the graph operation. For each orbit V_{u} which contains the vertices in the rays of length $l_{1}+l_{2}$ in each $S_{u_{i j}}^{\prime \prime} \subseteq G_{2}$, we denote by $V_{u}^{\prime \prime}$ the subset of each V_{u} that contains only the vertices in rays of length $l_{1}+l_{2}$ that are not in G, where $1 \leq i \leq s+1$ and $1 \leq j \leq r$.

Analogously to Case 1 , let \mathcal{V} and \mathcal{V}^{\prime} be the set consisting of the orbits which contain the vertices in the $r(s+1)$ rays of length l_{1} and l_{2} in each $S_{u_{i j}} \subseteq G$, respectively. Let $\mathcal{V}^{\prime \prime}$ be the set consisting of the sets $V_{u}^{\prime \prime}$ which contain the vertices in the $r(s+1)$ rays of length $l_{1}+l_{2}$ in each $S_{u_{i j}}^{\prime \prime} \subseteq G_{2}$. Denote by V_{t} the orbit in \mathcal{V} which contains the representative x_{t} in some ray of length l_{1} in $S_{u_{11}}$ with

$$
d_{G}\left(x_{t}, u_{11}\right)=t, \quad\left(1 \leq t \leq l_{1}\right),
$$

$V_{t^{\prime}}$ the orbit in \mathcal{V}^{\prime} which contains the representative $y_{t^{\prime}}$ in some ray of length l_{2} in $S_{u_{11}}$ with

$$
d_{G}\left(y_{t^{\prime}}, u_{11}\right)=t^{\prime}, \quad\left(1 \leq t^{\prime} \leq l_{2}\right),
$$

and $V_{t^{\prime \prime}}$ the set in $\mathcal{V}^{\prime \prime}$ contains the representative $z_{t^{\prime \prime}}$ in some ray of length $l_{1}+l_{2}$ in $S_{u_{11}}^{\prime \prime}$ with

$$
d_{G_{2}}\left(z_{t^{\prime \prime}}, u_{11}\right)=t^{\prime \prime}, \quad\left(1 \leq t^{\prime \prime} \leq l_{1}+l_{2}\right)
$$

As we mentioned in Case 1, if some different orbits of G merge into a new orbit in G_{2}, then such orbits will increase the value of $G P_{a}(G)$. Hence, we only need to consider the difference between $\sum_{V_{t} \in \mathcal{V}} W_{V_{t}}\left(x_{t}\right)+\sum_{V_{t^{\prime}} \in \mathcal{V}^{\prime}} W_{V_{t^{\prime}}}\left(y_{t^{\prime}}\right)$ and $\sum_{V_{t^{\prime \prime}} \in \mathcal{V}^{\prime \prime}} W_{V_{t^{\prime \prime}}}\left(z_{t^{\prime \prime}}\right)$. Since $s \geq 1, r \geq 1$ and $l_{2}>l_{1} \geq 1$, we have

$$
\begin{aligned}
\sum_{V_{t^{\prime \prime}} \in \mathcal{V}^{\prime \prime}} W_{V_{t^{\prime \prime}}}\left(z_{t^{\prime \prime}}\right)-\left(\sum_{V_{t} \in \mathcal{V}} W_{V_{t}}\left(x_{t}\right)+\sum_{V_{t^{\prime}} \in \mathcal{V}^{\prime}} W_{V_{t^{\prime}}}\left(y_{t^{\prime}}\right)\right) & =\sum_{t^{\prime \prime}=l_{1}+1}^{l_{1}+l_{2}} W_{V_{t^{\prime \prime}}}\left(y_{t^{\prime \prime}}\right)-\sum_{t^{\prime}=1}^{l_{2}} W_{V_{t^{\prime}}}\left(y_{t^{\prime}}\right) \\
& =\sum_{t^{\prime \prime}=l_{1}+1}^{l_{1}+l_{2}}\left(2 t^{\prime \prime} r s+W_{V_{u_{11}}}\left(u_{11}\right)\right)-\sum_{t^{\prime}=1}^{l_{2}}\left(2 t^{\prime} r s+W_{V_{u_{11}}}\left(u_{11}\right)\right) \\
& >0 .
\end{aligned}
$$

Therefore, $G P_{a}\left(G_{2}\right) \geq G P_{a}(G)$.
By repeating the two processes of constructing G_{1} and G_{2} from G, we can get the final result.
For the (u, v)-path P_{l} in B, if l is odd, then we say the middle edge of P_{l} is the edge $x y$ in P_{l} with $d_{G}(u, x)=d_{G}(y, v)$; if l is even, then we say the middle edge of P_{l} are the two edges incident to w, where w is the vertex in P_{l} with $d_{G}(u, w)=d_{G}(w, v)$. The graph operation of subdividing $P_{l} k$ times means changing the middle edge of P_{l} to a path of length $k+1$.

Suppose there is some $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$. Let M denote the graph obtained from G by cutting down each rooted tree T_{w}, where $w \in V\left(P_{l}\right)$ and subdividing the (u, v)-path P_{l} by $\sum_{w \in V\left(P_{l}\right)}\left(\left|T_{w}\right|-1\right)$ times (see Figure 3). Let F denote the graph obtained from M by changing each nontrivial rooted tree T_{r} to a path, where $r \in V\left(C_{p}\right) \cup V\left(C_{q}\right)$.

Figure 3. The process of constructing M from G.
Lemma 3.3. If there exists some $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$, then $G P_{a}(G) \leq G P_{a}\left(B_{n}^{p, p}\right)$. Proof. Since $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$, we may assume $\left|V\left(C_{p}\right)\right|=\left|V\left(C_{q}\right)\right|=p$. Let M and F be the graphs defined above. We will show

$$
G P_{a}(G) \leq G P_{a}(M) \leq G P_{a}(F) \leq G P_{a}\left(B_{n}^{p, p}\right)
$$

in the following.

We first state that $G P_{a}(G) \leq G P_{a}(M)$. Denote by $P_{l^{\prime}}$ the (u, v)-path in the 2-core $B(M)$ of M. Let

$$
\widetilde{V}=\left\{x \mid x \in V\left(T_{w}\right), w \in V\left(P_{l}\right) \subseteq V(G)\right\}, \widehat{V}=\left\{x \mid x \in V\left(P_{l^{\prime}}\right) \subseteq V(M)\right\} .
$$

It can be seen that any orbit $V_{x} \subseteq V(G)$ belongs to \widetilde{V} or $V(G) \backslash \widetilde{V}$ and any orbit $V_{y} \subseteq V(M)$ belongs to \widehat{V} or $V(M) \backslash \widehat{V}$. The orbits in $V(G) \backslash \widetilde{V}$ and $V(M) \backslash \widehat{V}$ are same. Since $d_{M}(u, v) \geq d_{G}(u, v)$, by the definition of $W_{V_{x}}(x)$, we can directly obtain the

$$
\sum_{V_{x} \subseteq V(G) \backslash \widetilde{V}} W_{V_{x}}(x) \leq \sum_{V_{y} \subseteq V(M) \backslash \widetilde{V}} W_{V_{y}}(y) .
$$

And since $G[\widetilde{V}]$ is a tree and $G[\widehat{V}]$ is a path, by Theorem 2.2, we have

$$
\sum_{V_{x} \subseteq \widetilde{V}} W_{V_{x}}(x) \leq \sum_{V_{y} \subseteq \widehat{V}} W_{V_{y}}(y) .
$$

Therefore,

$$
\begin{aligned}
G P_{a}(G) & =\sum_{V_{x} \leq \widetilde{V}} W_{V_{x}}(x)+\sum_{V_{x} \leq V(G) \backslash \widetilde{V}} W_{V_{x}}(x) \\
& \leq \sum_{V_{y} \leq \widehat{V}} W_{V_{y}}(y)+\sum_{V_{y} \leq V(M) \backslash \widehat{V}} W_{V_{y}}(y)=G P_{a}(M) .
\end{aligned}
$$

Next, we show $G P_{a}(M) \leq G P_{a}(F)$. Recall that the orbits in $V(G) \backslash \widetilde{V}$ and $V(M) \backslash \widehat{V}$ are the same. Hence, by Observation 2.3, each orbit in $V(M) \backslash \widehat{V}$ is of order 2 or 4. Let V_{r} be an orbit in $V(M) \backslash \widehat{V}$ and let M^{\prime} be the graph obtained from M by changing each rooted tree T_{y} to a path, where $y \in V_{r}$. Then by Lemma 3.2, we have $G P_{a}(M) \leq G P_{a}\left(M^{\prime}\right)$. Next, by repeating the process of constructing M^{\prime} from M, we can finally get the graph F from M and we have $G P_{a}(M) \leq G P_{a}(F)$.

Finally, we show $G P_{a}(F) \leq G P_{a}\left(B_{n}^{p, p}\right)$. We remark that any vertex

$$
r \in V\left(C_{p}\right) \cup V\left(C_{q}\right) \subseteq V(B(F))
$$

belongs to an orbit V_{r} of order 2 or 4 and each rooted tree with root in V_{r} is a path of same length. Let $T_{t_{0}}$ be the rooted tree of minimum length among all nontrivial paths with roots in $V\left(C_{p}\right) \cup V\left(C_{q}\right)$. Denote by $V_{t_{0}}=\left\{t_{0}, t_{1}, \cdots, t_{k}\right\}$ the orbit which contains t_{0}, where $k \in\{1,3\}$. Let F^{\prime} be the graph obtained from F by deleting the end vertices of all paths with roots in $V_{t_{0}}$ and subdividing the (u, v)-path in $B(F)$ by $\left|V_{t_{0}}\right|$ times (Figure 4 depicts the case with $\left|V_{t_{0}}\right|=4$). Obviously, if we can show $G P_{a}(F) \leq G P_{a}\left(F^{\prime}\right)$, then by repeating the process of constructing F^{\prime} from F, we can finally get $G P_{a}(F) \leq G P_{a}\left(B_{n}^{p, p}\right)$.

Figure 4. The process of constructing F^{\prime} from F.

Let the length of the (u, v)-path in $B(F)$ be l_{1}. Then, $0 \leq l_{1} \leq n-5$. Recall that $\left|V_{t_{0}}\right|=4$ or 2 .
Case 1. $\left|V_{t_{0}}\right|=4$.
Let $V_{t_{0}}=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$ with

$$
d_{F}\left(t_{0}, u\right)=d_{F}\left(t_{1}, u\right)=d_{F}\left(t_{2}, v\right)=d_{F}\left(t_{3}, v\right)=l_{2}
$$

Let the length of the nontrivial path rooted at t_{i} be l_{3}, where $0 \leq i \leq 3$. Then, $1 \leq l_{2} \leq\left\lfloor\frac{p}{2}\right\rfloor$ and $0 \leq l_{3} \leq \frac{n+1-2 p-l_{1}}{4}$. Denote by V^{\prime} the set consisting of the vertices closer to v in all orbits of F^{\prime}. Since the length of the (u, v)-path in $B\left(F^{\prime}\right)$ is $l_{1}+4$, it can be seen that except the two vertices adding into the (u, v)-path, each vertex in V^{\prime} contributes 4 more to $G P_{a}\left(F^{\prime}\right)$ than to $G P_{a}(F)$. Hence, if n is odd, then the positive contribution of the vertices in V^{\prime} to $G P_{a}\left(F^{\prime}\right)$ is $\frac{n-5}{2} \times 4+2+4=2 n-4$; if n is even, then the positive contribution of the vertices in V^{\prime} to $G P_{a}\left(F^{\prime}\right)$ is $\frac{n-4}{2} \times 4+1+3=2 n-4$. Note that $d_{F}\left(t_{0}, t_{1}\right)=\min \left\{p-2 l_{2}, 2 l_{2}\right\}$. If $d_{F}\left(t_{0}, t_{1}\right)=p-2 l_{2} \geq 1$, then

$$
\begin{aligned}
G P_{a}\left(F^{\prime}\right)-G P_{a}(F) & =2 n-4-\left[2 l_{3}+\left(p-2 l_{2}\right)+2 \times\left(2 l_{3}+2 l_{2}+l_{1}\right)\right] \\
& \geq 2 n-4-6\left(\frac{n+1-2 p-l_{1}}{4}\right)-p-2 l_{2}-2 l_{1} \\
& =\frac{n-l_{1}}{2}+2\left(p-l_{2}\right)-\frac{11}{2}>0
\end{aligned}
$$

as $n-l_{1} \geq 5$ and $p-l_{2} \geq 1+l_{2} \geq 2$. If $d_{F}\left(t_{0}, t_{1}\right)=2 l_{2} \geq 2$, then

$$
\begin{aligned}
G P_{a}\left(F^{\prime}\right)-G P_{a}(F) & =2 n-4-\left[2 l_{3}+2 l_{2}+2 \times\left(2 l_{3}+2 l_{2}+l_{1}\right)\right] \\
& \geq \frac{n-l_{1}}{2}+3\left(p-2 l_{2}\right)-\frac{11}{2}>0
\end{aligned}
$$

as $p-2 l_{2} \geq 2 l_{2} \geq 2$.
Case 2. $\left|V_{t_{0}}\right|=2$.
Let $V_{t_{0}}=\left\{t_{0}, t_{1}\right\}$ with $d_{F}\left(t_{0}, u\right)=d_{F}\left(t_{1}, v\right)=l_{2}^{\prime}$. Let the length of the nontrivial path rooted at t_{i} be l_{3}^{\prime}, where $0 \leq i \leq 1$. Note that in this case, the length of the (u, v)-path in $B\left(F^{\prime}\right)$ is $l_{1}+2$. Hence, by a similar analysis as in Case 1, we have

$$
G P_{a}\left(F^{\prime}\right)-G P_{a}(F)=n-1-\left(2 l_{3}^{\prime}+2 l_{2}^{\prime}+l_{1}\right) \geq p-1>0
$$

as $2 l_{3}^{\prime}+2 l_{2}^{\prime}+l_{1} \leq n-p$.
Therefore, by repeating the process of constructing F^{\prime} from F, we can get finally get the graph $B_{n}^{p, q}$ from F and we have $G P_{a}(G) \leq G P_{a}\left(B_{n}^{p, q}\right)$.

Next, we will show that Theorem 1.2 holds by proving the following theorem.
Theorem 3.4. Let G be a connected ∞-shape bicyclic graph. Then

$$
G P_{a}(G) \leq \begin{cases}\frac{n^{2}}{4}-\frac{5}{4}, & \text { if } n \text { is odd } ; \\ \frac{n^{2}}{4}-1, & \text { if } n \text { is even },\end{cases}
$$

and the equality holds if and only if $G \cong B_{n}^{3,3}$.

Proof. Recall that the 2-core B of G is formed from two cycles C_{p}, C_{q} with a (u, v)-path P_{l} joining them, where $u \in V\left(C_{p}\right)$ and $v \in V\left(C_{q}\right)$. Any $\gamma \in \operatorname{Aut}(G)$ is a permutation of $V(G)$ which preserves adjacency. Hence for any vertex $r \in V\left(C_{p}\right)$, we have $\gamma(r) \in V\left(C_{p}\right)$ or $\gamma(r) \in V\left(C_{q}\right)$. It follows that for any $\gamma \in \operatorname{Aut}(G)$,

$$
\gamma\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)
$$

or

$$
\gamma\left(V\left(C_{p}\right)\right)=V\left(C_{p}\right) .
$$

Case 1. There exists some $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(V\left(C_{p}\right)\right)=V\left(C_{q}\right)$.
By Lemma 3.3, $G P_{a}(G) \leq G P_{a}\left(B_{n}^{p, p}\right)$. Let V_{1} be the set containing the vertices in the two cycles C_{p} in $B_{n}^{p, p}$ other than u and v and $V_{2}=V\left(B_{n}^{p, p}\right) \backslash V_{1}$. It can be seen that any orbit in $B_{n}^{p, p}$ belongs to V_{1} or V_{2}.

For each orbit $V_{r} \subseteq V\left(B_{n}^{p, p}\right)$, we choose the vertex closest to u in V_{r} as the representative r. Denote $d=d_{B_{n}^{p, p}}(r, u)$. If $V_{r} \subseteq V_{1}$, then $1 \leq d \leq\left\lfloor\frac{p}{2}\right\rfloor$. By Observation 2.3, if p is even and $d=\frac{p}{2}$, then $\left|V_{r}\right|=2$. Otherwise, $\left|V_{r}\right|=4$. Therefore, we have

$$
W_{V_{r}}(r)= \begin{cases}2 d+2(2 d+(n+1-2 p))=2 n+2+6 d-4 p, & \text { if } 1 \leq d \leq\left\lfloor\frac{p}{4}\right\rfloor \\ (p-2 d)+2(2 d+(n+1-2 p))=2 n+2+2 d-3 p, & \text { if }\left\lceil\frac{p}{4}\right\rceil \leq d \leq\left\lceil\frac{p}{2}\right\rceil-1 \\ 2 \times \frac{p}{2}+(n+1-2 p)=n+1-p, & \text { if } p \text { is even and } d=\frac{p}{2}\end{cases}
$$

If $V_{r} \subseteq V_{2}$, then $\left|V_{r}\right|=2$ or 1 . Moreover, $\left|V_{r}\right|=1$ only if n is odd and $d=\frac{n+1-2 p}{2}$, and we have $W_{V_{r}}(r)=n+1-2 p-2 d$, where $0 \leq d \leq\left\lfloor\frac{n+1-2 p}{2}\right\rfloor$.

Next, we will show $G P_{a}\left(B_{n}^{p, p}\right) \leq G P_{a}\left(B_{n}^{3,3}\right)$ by a direct calculation.
Subcase 1.1. $p=0(\bmod 4)$.
Then $p \geq 4$. If n is odd, we have

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right)= & \sum_{d=1}^{\frac{p}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+4}{4}}^{\frac{p-2}{2}}(2 n+2+2 d-3 p)+(n+1-p) \\
& +\sum_{d=0}^{\frac{n+1-2 p}{2}}(n+1-2 p-2 d) \\
= & \frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{1}{4}<\frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 4$. Similarly, if n is even, then

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right)= & \sum_{d=1}^{\frac{p}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+4}{4}}^{\frac{p-2}{2}}(2 n+2+2 d-3 p)+(n+1-p) \\
& +\sum_{d=0}^{\frac{n-2 p}{2}}(n+1-2 p-2 d) \\
= & \frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p<\frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 4$.
Subcase 1.2. $p=1(\bmod 4)$.
Then $p \geq 5$. If n is odd, we have

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right) & =\sum_{d=1}^{\frac{p-1}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+3}{4}}^{\frac{p-1}{2}}(2 n+2+2 d-3 p)+\sum_{d=0}^{\frac{n+1-2 p}{2}}(n+1-2 p-2 d) \\
& =\frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{7}{8}<\frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 5$. Similarly, if n is even, then

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right) & =\sum_{d=1}^{\frac{p-1}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+3}{4}}^{\frac{p-1}{2}}(2 n+2+2 d-3 p)+\sum_{d=0}^{\frac{n-2 p}{2}}(n+1-2 p-2 d) \\
& =\frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{5}{8}<\frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 5$.
Subcase 1.3. $p=2(\bmod 4)$.
Then $p \geq 6$. If n is odd, we have

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right)= & \sum_{d=1}^{\frac{p-2}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+2}{4}}^{\frac{p-2}{2}}(2 n+2+2 d-3 p)+(n+1-p) \\
& +\sum_{d=0}^{\frac{n+1-2 p}{2}}(n+1-2 p-2 d) \\
= & \frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{3}{4}<\frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 6$. Similarly, if n is even, then

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right)= & \sum_{d=1}^{\frac{p-2}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+2}{4}}^{\frac{p-2}{2}}(2 n+2+2 d-3 p)+(n+1-p) \\
& +\sum_{d=0}^{\frac{n-2 p}{2}}(n+1-2 p-2 d) \\
= & \frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{1}{2}<\frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 6$.
Subcase 1.4. $p=3(\bmod 4)$.

Then $p \geq 3$. If n is odd, we have

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right) & =\sum_{d=1}^{\frac{p-3}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+1}{4}}^{\frac{p-1}{2}}(2 n+2+2 d-3 p)+\sum_{d=0}^{\frac{n+1-2 p}{2}}(n+1-2 p-2 d) \\
& =\frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{7}{8} \leq \frac{n^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

as $p \geq 3$ and the equality holds only if $p=3$. Similarly, if n is even, then

$$
\begin{aligned}
G P_{a}\left(B_{n}^{p, p}\right) & =\sum_{d=1}^{\frac{p-3}{4}}(2 n+2+6 d-4 p)+\sum_{d=\frac{p+1}{4}}^{\frac{p-1}{2}}(2 n+2+2 d-3 p)+\sum_{d=0}^{\frac{n-2 p}{2}}(n+1-2 p-2 d) \\
& =\frac{n^{2}}{4}-\frac{3 p^{2}}{8}+p-\frac{5}{8} \leq \frac{n^{2}}{4}-1
\end{aligned}
$$

as $p \geq 3$ and the equality holds only if $p=3$.
Case 2. For any $\gamma \in \operatorname{Aut}(G), \gamma\left(V\left(C_{p}\right)\right)=V\left(C_{p}\right)$.
Let

$$
\begin{aligned}
& \mathcal{V}_{1}=\left\{x \mid x \in V\left(T_{w}\right), w \in V\left(C_{p}\right) \backslash\{u\}\right\}, \\
& \mathcal{V}_{2}=\left\{x \mid x \in V\left(T_{w}\right), w \in V\left(C_{q}\right) \backslash\{v\}\right\}
\end{aligned}
$$

and

$$
\mathcal{V}_{3}=V(G) \backslash\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}\right)
$$

It can be seen that any orbit of G belongs to $\mathcal{V}_{1}, \mathcal{V}_{2}$ or \mathcal{V}_{3}. Let $\left|\mathcal{V}_{i}\right|=n_{i}$ for $1 \leq i \leq 3$. Then $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}+n_{3}=n$. Since each $G\left[\mathcal{V}_{i}\right]$ is a tree, by Theorem 2.2, we have

$$
G P_{a}\left(G\left[\mathcal{V}_{i}\right]\right) \leq \frac{n_{i}^{2}-1}{4}
$$

for $1 \leq i \leq 3$. Note that some orbits in $\mathcal{V}_{i} \subseteq V(G)$ may merge into a new orbit of $G\left[\mathcal{V}_{i}\right]$ for $1 \leq i \leq 3$. Hence by Lemma 3.1, we have

$$
G P_{a}(G) \leq \sum_{1 \leq i \leq 3} G P_{a}\left(G\left[\mathcal{V}_{i}\right]\right) \leq \frac{n_{1}^{2}-1}{4}+\frac{n_{2}^{2}-1}{4}+\frac{\left(n-n_{1}-n_{2}\right)^{2}-1}{4}<\frac{n^{2}}{4}-\frac{5}{4}
$$

as $n_{1}, n_{2} \geq 2$ and $n \geq 5$.
Therefore, we have $G P_{a}(G) \leq G P_{a}\left(B_{n}^{3,3}\right)$.

4. Conclusions

In this paper, we consider the Graovac-Pisanski index of ∞-shape bicyclic graphs. Through a series of graph operations, we obtain the maximum Graovac-Pisanski index for all ∞-shaped bicyclic graphs and determine the corresponding extremal graphs. But for the maximum Graovac-Pisanski index of Θ-shape bicyclic graphs, we have not found a good solution, although we conjecture that its maximum
value is less than $\frac{n^{3}}{8}-\frac{n}{2}$.
In addition, for other graph classes such as cactus graphs or even random graphs, we believe that computing the maximum Gravats-Pisansky indices for these graphs are also worthwhile research topics.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by Anhui Provincial Natural Science Foundation (No. 2108085MA01), Outstanding Youth Scientific Research Projects of Anhui Provincial Department of Education (No. 2022AH030073) and Key Projects in Natural Science Research of Anhui Provincial Department of Education (No. 2022AH050594).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. A. R. Ashrafi, F. Koorepazan-Moftakhar, M. V. Diudea, O. Ori, Graovac-Pisanski index of fullerenes and fullerene-like molecules, Fullerenes Nanotubes Carbon Nanostruct., 24 (2016) 779785. https://doi.org/10.1080/1536383X.2016.1242483
2. S. Bermudo, J. E. Nápoles, J. Rada, Extremal trees for the Randić index with given domination number, Appl. Math. Comput., 375 (2020), 125122. https://doi.org/10.1016/j.amc.2020.125122
3. F. Cataldo, O. Ori, S. Iglesias-Groth, Topological lattice descriptors of graphene sheets with fullerene-like nanostructures, Mol. Simul., 36 (2010), 341-353. https://doi.org/10.1080/08927020903483262
4. M. Črepnjak, M. Knor, N. Tratnik, P. Ž. Pleteršek, The Graovac-Pisanski index of connected bipartite graphs with applications to hydrocarbon molecules, Fullerenes Nanotubes Carbon Nanostruct., 29 (2021), 884-889. https://doi.org/10.1080/1536383X.2021.1910675
5. M. Črepnjak, N. Tratnik, P. Ž. Pleteršek, Predicting melting points of hydrocarbons by the Graovac-Pisanski index, Fullerenes Nanotubes Carbon Nanostruct., 26 (2018), 239-245. https://doi.org/10.1080/1536383X.2017.1386657
6. K. Fathalikhani, A. Babai, S. S. Zemljič, The Graovac-Pisanski index of Sierpiński graphs, Discrete Appl. Math., 285 (2020), 30-42. https://doi.org/10.1016/j.dam.2020.05.014
7. A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem., 8 (1991), 53-62. https://doi.org/10.1007/BF01166923
8. M. Ghorbani, S. Klavžar, Modified Wiener index via canonical metric representation, and some fullerene patches, ARS Math. Contemp., 11 (2016), 247-254. https://doi.org/10.26493/18553974.918.0b2
9. M. Hakimi-Nezhaad, M. Ghorbani, On the Graovac-Pisanski index, Kraǵujevac J. Sci., 39 (2017), 91-98. https://doi.org/10.5937/KgJSci1739091H
10. M. Knor, R. Škrekovski, A. Tepeh, Trees with the maximal value of Graovac-Pisanski index, Appl. Math. Comput., $\mathbf{3 5 8}$ (2019), 287-292. https://doi.org/10.1016/j.amc.2019.04.034
11. M. Knor, J. Komorník, R. Škrekovski, A. Tepeh, Unicyclic graphs with the maximal value of Graovac-Pisanski index, ARS Math. Contemp., 17 (2019), 455-466. https://doi.org/10.26493/18553974.1925.57a
12. M. Knor, R. Škrekovski, A. Tepeh, On the difference between Wiener index and Graovac-Pisanski index, MATCH Commun. Math. Comput. Chem., 83 (2020), 109-120.
13. F. Koorepazan-Moftakhar, A. R. Ashrafi, Combination of distance and symmetry in some molecular graphs, Appl. Math. Comput., 281 (2016), 223-232. https://doi.org/10.1016/j.amc.2016.01.065
14. F. Koorepazan-Moftakhar, A. R. Ashrafi, O. Ori, Symmetry groups and Graovac-Pisanski index of some linear polymers, Quasigroups Relat. Sys., 26 (2018), 87-102.
15. R. Pinal, Effect of molecular symmetry on melting temperature and solubility, Org. Biomol. Chem., 2 (2004), 2692-2699. https://doi.org/10.1039/B407105K
16. M. Randic, Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615. https://doi.org/10.1021/ja00856a001
17. H. Shabani, A. R. Ashrafi, The modified Wiener index of some graph operations, ARS Math. Contemp., 11 (2016), 277-284. https://doi.org/10.26493/1855-3974.801.968
18. H. Shabani, A. R. Ashrafi, Symmetry-moderated Wiener index, MATCH Commun. Math. Comput. Chem., 76 (2016), 3-18.
19. Y. Shang, The Estrada index of evolving graphs, Appl. Math. Comput., 250 (2015), 415-423. https://doi.org/10.1016/j.amc.2014.10.129
20. Y. Shang, Perturbation results for the Estrada index in weighted networks, J. Phys. A, 44 (2011), 075003. https://doi.org/10.1088/1751-8113/44/7/075003
21. N. Tratnik, The Graovac-Pisanski index of zig-zag tubulenes and the generalized cut method, J. Math. Chem., 55 (2017), 1622-1637. https://doi.org/10.1007/s10910-017-0749-5
22. N. Tratnik, P. Ž. Pleteršek, The Graovac-Pisanski index of armchair nanotubes, J. Math. Chem., 56 (2018), 1103-1116. https://doi.org/10.1007/s 10910-017-0846-5
23. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17-20. https://doi.org/10.1021/ja01193a005
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
