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Abstract: The chikungunya virus (CHIKV) infects macrophages and adherent cells and it can be
transmitted via a direct contact with the virus or with an already infected cell. Thus, the CHIKV
infection can have two routes. Furthermore, it can exhibit seasonal peak periods. Thus, in this paper,
we consider a dynamical system model of the CHIKV dynamics under the conditions of a seasonal
environment with a general incidence rate and two routes of infection. In the first step, we studied
the autonomous system by investigating the global stability of the steady states with respect to the
basic reproduction number. In the second step, we establish the existence, uniqueness, positivity and
boundedness of a periodic orbit for the non-autonomous system. We show that the global dynamics
are determined by using the basic reproduction number denoted by R0 and they are calculated using
the spectral radius of an integral operator. We show the global stability of the disease-free periodic
solution if R0 < 1 and we also show the persistence of the disease if R0 > 1 where the trajectories
converge to a limit cycle. Finally, we display some numerical investigations supporting the theoretical
findings.
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1. Introduction

The chikungunya virus (CHIKV) is an arbovirus (i.e., a virus transmitted by arthropods) whose
vectors are female mosquitoes of the genus Aedes which are identifiable by the presence of black and
white stripes. The two implicated species are Aedes aegypti and Aedes albopictus. Aedes albopictus
is present in the south of France and Aedes aegypti in areas including Antilles, Guyana, French
Polynesia and New Caledonia. These two mosquitoes are also implicated in the transmission of other
arboviruses, including dengue, yellow fever and Zika virus. This disease has been prevalent on the
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African and Asian continents for more than 50 years. Over the past 30 years, mathematical modeling
has been applied to study several epidemic diseases [1–4]. Recently, the study of vector-borne diseases
has gained considerable attention and mathematics have become a useful tool for such studies; also,
several temporal deterministic models have been proposed for diseases like dengue, malaria, CHIKV,
etc. Several mathematical models have been developed and studied to explain a variety of features
influencing the transmission of CHIKV [5–12].

However, several infectious diseases including all diseases caused by the transmission of a
pathogenic agent exhibit seasonal peak periods. Studying the population behaviors associated with
a seasonal environment becomes a necessity for predicting the risk of transmission of such a disease .
In [13], the authors discuss the periodic “SIR” epidemic model. In [14], the authors study an “SEIRS”
epidemic model with periodic fluctuations. They calculated the basic reproduction number R0 by
using the time-averaged system and proved a sufficient but unnecessary condition such that the disease
could not persist. In [15], the authors consider a class of SIQRS models with periodic behavior of
the contact rate; they proved the existence of periodic trajectories. The authors of [16, 17] studied an
“SEIRS” epidemic model in a seasonal environment and proved some sufficient conditions for both
the persistence and the extinction of the disease. In [18], the authors give the definition of the basic
reproduction number for seasonal environments. The basic reproduction number R0 is defined in [19]
for several compartmental periodic epidemic models; the authors show that R0 is a threshold value to
prove the stability of the disease-free periodic solution. In [20], the authors propose an extension of
the “SVEIR” model by taking into account the seasonal environment.

The aim of this work is to propose a new class of dynamical systems that models CHIKV dynamics
under the conditions of a seasonal environment with a general incidence rate, and where the adherent
cells are the main target for CHIKV. We will establish the existence, uniqueness, positivity and
boundedness of a periodic solution. Therefore, we will study the global dynamics with respect to the
basic reproduction number that will be calculated by using the spectral radius of an integral operator.
The global stability of the disease free periodic solution will be proved for R0 < 1; however, the
persistence of the disease will be proved for R0 > 1 by proving that the trajectories will converge to a
limit cycle. Finally, some numerical simulations will be given to confirm the theoretical results.

2. Proposed mathematical model

CHIKV is spread as follows. Mosquitoes contract the virus by biting animals or humans infected
with it. They then spread the virus by biting uninfected people. CHIKV infects macrophages and
adherent cells and it can be transmitted via a direct contact with the virus or with an already infected
cell. Thus, the CHIKV infection can have two routes, i.e., CHIKV-to-cell and cell-to-cell infections
(see Figure 1). We adopt a general non-linear incidence rate for both routes of infection. Furthermore,
CHIKV dynamics can exhibit seasonal peak periods, which is why all parameters of the models are
T -periodic functions where T > 0 is the period. The considered epidemic model for the CHIKV
dynamics in a seasonal environment with a general form of the incidence rate is given by the following
four-dimensional ordinary differential equation system which generalizes the models given in [21,22].
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Ṡ (t) = m(t)S in(t) − m(t)S (t) − β1(t)P(t) f (S (t)) − β2(t)I(t) f (S (t)),
İ(t) = β1(t)P(t) f (S (t)) + β2(t)I(t) f (S (t)) − m(t)I(t),
Ṗ(t) = δ(t)I(t) − mp(t)P(t) − r(t)A(t)P(t),
Ȧ(t) = ma(t)Ain(t) + k(t)r(t)A(t)P(t) − ma(t)A(t),

(2.1)

with the positive initial condition (S 0, I0, P0, A0) ∈ R4
+ . S (t), I(t), P(t), and A(t) describe susceptible

cells, infected cells, CHIKV and antibodies, respectively. The uninfected cells are generated by a
periodic rate m(t)S in(t), die at a periodic rate m(t)s(t) and become infected by the virus and infected
cells at a periodic rate β1(t)P(t) f (S (t)) + β2(t)I(t) f (S (t)), where β1(t) and β2(t) are the periodic
incidence rates. The periodic variables m(t), mp(t), and ma(t) represent, respectively, the periodic
mortality rates for the infected cells, CHIKV and antibodies. δ(t) is the rate of periodic production
of CHIKV from infected cells. Antibodies attack the CHIKV at a periodic rate of r(t)A(t)P(t). Once
an antigen is encountered, the antibodies expand at a periodic rate of ma(t)Ain(t) and proliferate at a
periodic rate of k(t)r(t)A(t)P(t). All of the parameters of the model are positive periodic functions. We
give in Table 1 more epidemiological significance of the model parameters.

A(t) P(t) I(t)

ma(t)Ain(t) m(t)S in(t) S (t)

r(t)A(t)P(t) δ(t)I(t)

β 2(t
)I(

t) f (S
(t))β 1(t

)P(t)
f (S

(t))

m(t)I(t)mp(t)P(t)

m(t)S (t)

ma(t)A(t)

Figure 1. Diagram describing an epidemic compartmental model that takes into
consideration a seasonal environment for the CHIKV dynamics (inspired from [23, Figure
2]). Compartments S , I, P and A are described by circles; transition rates between
compartments are described by arrows and labels.

Throughout the rest of the paper, we will use the following assumptions:

Assumption 1. (1) f is an increasing, non-negative C1(R+) concave function such that f (0) = 0.
(2) S in(t), Ain(t),m(t),mp(t),ma(t), δ(t), k(t), β1(t), β2(t) and r(t) are non-negative continuous bounded

T-periodic functions.
(3) ma(t) ≤ mp(t), ∀t ≥ 0.

Assumption 1 expresses that the CHIKV-to-cell and cell-to-cell incidence rates increase with
increasing number of susceptible cells. Assumption 1 affirms also that no CHIKV-to-cell or cell-
to-cell infection can take place in the absence of susceptible cells. All of the model parameters are
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T -periodic functions influenced by the seasonal environment. We assume also that the instantaneous
CHIKV mortality rate is greater than the instantaneous antibody loss rate.

Lemma 1. The incidence rate f satisfies f ′(x)x ≤ f (x) ≤ f ′(0)x, ∀x > 0.

Proof. Let x, x1 ∈ R+, and the function g1(x) = f (x) − x f ′(x). Since f ′(x) ≥ 0 ( f is an increasing
function) and f ′′(x) ≤ 0 ( f is concave), g′1(x) = −x f ′′(x) ≥ 0 and g1(x) ≥ g1(0) = 0. Therefore,
f (x) ≥ x f ′(x). Similarly, let g2(x) = f (x)− x f ′(0); then, g′2(x) = f ′(x)− f ′(0) ≤ 0 when f is a concave
function. Thus g2(x) ≤ g2(0) = 0 and f (x) ≤ x f ′(0). �

Table 1. Significance of the variables and parameters of the proposed model (2.1).

Parameter Description
m(t)S in(t) Instantaneous uninfected cell recruitment rate
ma(t)Ain(t) Instantaneous antibody expansion rate

m(t) Instantaneous cell mortality rate
mp(t) Instantaneous CHIKV mortality rate
ma(t) Instantaneous antibody loss rate
δ(t) Rate of instantaneous production of the virus from infected cells
r(t) Rate of instantaneous attack of the virus by the antibodies
k(t) Instantaneous proliferation rate for antibodies

β1(t), β2(t) Instantaneous incidence coefficients

3. Mathematical analysis for the autonomous system

As a first step, we consider the autonomous form of the model (2.1) where its right-hand side is
independent of t i.e., all parameters are constants.

Ṡ = mS in − mS − β1P f (S ) − β2I f (S ),
İ = β1P f (S ) + β2I f (S ) − mI,
Ṗ = δI − mpP − rAP,
Ȧ = maAin + krAP − maA.

(3.1)

In this section, we will use the following additional assumption on the incidence rate.

Assumption 2. f (S in) <
m
β2

.

The given condition of Assumption 2 is a mathematical artifice and has no biological meaning; here,
it is only used to prove the existence and uniqueness of the positive steady state.

3.1. Basic properties

In this subsection, we give some basic properties for the model (3.1) such as the existence, positivity
and boundedness of the trajectories of (3.1), as well as the existence of an invariance set of all solutions
of system (3.1).
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Lemma 2.

Ω =

{
(S , I, P, A) ∈ R4

+ : S + I = S in, kP + A ≤ Ain +
δkS in

ma

}
is a positively invariant bounded set for system (3.1).

Proof. Note that if S = 0 then Ṡ = mS in > 0; if I = 0 then İ = β1P f (S ) ≥ 0; if P = 0 then
Ṗ = δI ≥ 0; if A = 0 then Ṡ = maAin > 0. Consider that F1(t) = S (t) + I(t) − S in and F2(t) =

kP(t) + A(t) −
δkS in

ma
− Ain. Then, one has that Ḟ1(t) = mS in − mS (t) − mI(t) = −mF1(t). Hence

F1(t) = F1(0)emt = (S (0) + I(0) − S in)e−mt. Then, F1(t) = 0 if F1(0) = 0. Furthermore, one has

Ḟ2(t) = δkI(t) − mpkP(t) + maAin − maA(t) ≤ δkS in + maAin − ma

(
kP(t) + A(t)

)
= −maF2(t).

Then F2(t) ≤ F2(0)e−mat. Hence F2(t) ≤ 0 if F2(0) ≤ 0. Thus, Ω is invariant for the model (2.1) since
all variables are non-negative. �

3.2. Basic reproduction number and steady states

When studying a disease, an important health question is whether the disease is spreading in the
population. The response can be obtained by calculating the average number of people an infectious
person infects while they are contagious. This average is known as the basic reproduction number
whose calculation is complex. It can be determined by using the values of the model parameters; thus,
we can determine if the disease spreads. The basic reproduction number can be calculated by using
several methods. For example, in the case of a single infected compartment, the basic reproduction
number is simply the product of the infection rate and its mean duration [24]. It can be calculated
by using graph, or network, theory [25, 26]. If there are several compartments representing infectious
individuals as in our case here, the next-generation matrix method introduced by Diekmann et al. [24]
and developed later in [27,28], divides the population into two compartments whose first compartment
represents the infected individuals. The goal is therefore to see the rate of change in the population
established in each of these compartments. The matrix approach calculating the basic reproduction
number explains the relationship between compartmental models and population matrix models. For
the dynamics given by (3.1), we shall calculate the basic reproduction number by using the next
generation matrix method. Therefore, we will calculate the steady states by proving their existence
and uniqueness.

F =


β2 f (S in) β1 f (S in) 0

0 0 0
0 0 0

 and V =


m 0 0
−δ rAin + mp 0
0 −krAin ma

 .
The determinant of V is given by det(V) = mam(rAin + mp) > 0; thus,

V−1 =
1

det (V)


ma(rAin + mp) 0 0

maδ mam 0
δkrAin mkrAin m(rAin + mp)
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and the next-generation matrix is given by

FV−1 =
1

mam(rAin + mp)


ma(rAin + mp)β2 f (S in) + maδβ1 f (S in) mamβ1 f (S in) 0

0 0 0
0 0 0

 .
Therefore, the basic reproduction number (i.e., spectral radius of FV−1) is given by:

R0 =
ma(rAin + mp)β2 f (S in) + maδβ1 f (S in)

mam(rAin + mp)

=
β2 f (S in)

m
+

δβ1 f (S in)
m(rAin + mp)

.
(3.2)

Lemma 3. • If R0 ≤ 1, then (3.1) admits only E0 = (S in, 0, 0, Ain) as an equilibrium point.
• If R0 > 1, then (3.1) admits two equilibrium points, i.e., E0 and an endemic equilibrium E∗ =

(S ∗, I∗, P∗, A∗).

Proof. Let E = (S , I, P, A) be an equilibrium point satisfying the following

0 = mS in − mS − β1P f (S ) − β2I f (S ),
0 = β1P f (S ) + β2I f (S ) − mI,
0 = δI − mpP − rAP,
0 = maAin + krAP − maA.

(3.3)

From Eq (3.3) we obtain the CHIKV-free steady state E0 = (S in, 0, 0, Ain). Furthermore, we have

A =
maAin

ma − krP
,

I =
mpP + rAP

δ
=

mpP
δ

+
rmaAinP

δ(ma − krP)
,

S =
mS in − mI

m
= S in −

mmpP
δm

−
rmaAinmP

δm(ma − krP)
,

β1P f (S ) = (m − β2 f (S ))I.

(3.4)

We define the function

g(P) = β1 f (S ) + (β2 f (S ) − m)
I
P

= β1 f
(
S in −

mmpP
δm

−
rmaAinmP

δm(ma − krP)

)
+
(
β2 f

(
S in −

mmpP
δm

−
rmaAinmP

δm(ma − krP)

)
− m

)(mp

δ
+

rmaAin

δ(ma − krP)

)
.

(3.5)

Then, we obtain

g(0) = β1 f (S in) + (β2 f (S in) − m)
mamp + rmaAin

δma

= m
mamp + rmaAin

δma

(β2 f (S in)
m

+
δmaβ1 f (S in)

m(mamp + rmaAin)
− 1

)
= m

mamp + rmaAin

δma
(R0 − 1) > 0 if R0 > 1.

lll (3.6)

AIMS Mathematics Volume 8, Issue 10, 24888–24913.



24894

Now, we have

lim
P→(ma/kr)−

(
S in −

mpmP
δm

−
rmaAinmP

δm(ma − krP)

)
= −∞

then,

lim
P→(ma/kr)−

β1 f
(
S in −

mpmP
δm

−
rmaAinmP

δm(ma − krP)

)
< 0

and
lim

P→(ma/kr)−
β2 f

(
S in −

mpmP
δm

−
rmaAinmP

δm(ma − krP)

)
< 0.

One deduces, therefore, that

lim
P→(ma/kr)−

g(P) < 0. (3.7)

The derivative of the function g is given by

g′(P) = − β1

(mpm
mδ

+
mrmaAin

mδ
ma

(ma − krp)2

)
f ′
(
S in −

mpmP
δm

−
rmaAinmP

δm(ma − krP)

)
− β2

(mp

δ
+

rmaAin

δ(ma − krP)

)(mpm
mδ

+
mrmaAin

mδ
ma

(ma − krP)2

)
× f ′

(
S in −

mpmP
δm

−
rmaAinmP

δm(ma − krP)

)
+

maAinkr2

δ(ma − krP)2

(
β2 f

(
S in −

mpmP
δm

−
rmaAinmP

δm(ma − krP)

)
− m

)
≤ −β1

(mpm
mδ

+
mrmaAin

mδ
ma

(ma − krp)2

)
f ′(S )

− β2

(mp

δ
+

rmaAin

δ(ma − krP)

)(mpm
mδ

+
mrmaAin

mδ
ma

(ma − krP)2

)
f ′(S )

+
maAinkr2

δ(ma − krP)2

(
β2 f (S in) − m

)
. (3.8)

By Assumption 1, we have that g′(P) ≤ 0 ∀ P ∈ (0,
ma

kr
). Then, the function g(P) admits a unique root

P∗ ∈ (0,
ma

kr
). Thus, we obtain

A∗ =
maAin

ma − krP∗
, (3.9)

I∗ =

mpP∗ +
rP∗maAin

ma − krP∗
δ

=
mpmaP∗ − krmpP∗2 + rP∗maAin

δ(ma − krP∗)
, (3.10)

S ∗ = S in −
m
m

mpmaP∗ − krmpP∗2 + rP∗maAin

δ(ma − krP∗)
≤ S in. (3.11)

Thus, the infected equilibrium E∗ = (S ∗, I∗, P∗, A∗) exists if R0 > 1.
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From the equilibrium point conditions of E∗, we have that mS in = mS ∗ + β1P∗ f (S ∗) + β2I∗ f (S ∗)→
mS ∗ + mI∗ = mS in; then, S ∗ + I∗ = S in. Furthermore, we have that mpkP∗ = δkI∗ + maAin −maA∗; then.

makP∗+maA∗ ≤ mpkP∗+maA∗ = δkI∗+maAin < δkS in+maAin, which means that kP∗+A∗ < Ain+
δkS in

ma
.

Thus, E∗ ∈
◦

Ω. �

3.3. Local stability

In this subsection, we aim to study the local stability of the steady states of system (3.1) by using
the linearization method with the Jacobian matrix.

Theorem 1. If R0 < 1, then E0 is locally asymptotically stable, and if R0 > 1, it is unstable.

Proof. The Jacobian matrix at point E0 is given by:

J0 =


−m −β2 f (S in) −β1 f (S in) 0
0 β2 f (S in) − m β1 f (S in) 0
0 δ −(mp + rAin) 0
0 0 krAin −ma

 .
J0 admits four eigenvalues; λ1 = −m < 0 and λ2 = −ma < 0. λ3 and λ4 are eigenvalues of the
sub-matrix

S j0 :=
(
β2 f (S in) − m β1 f (S in)

δ −(mp + rAin)

)
.

The trace of S j0 is given by

Tr(S j0) = β2 f (S in) − m − (mp + rAin)

≤ −(mp + rAin) − m
(
1 −

β2 f (S in)
m

−
δβ1 f (S in)

m(mp + rAin)

)
≤ −(mp + rAin) − m

(
1 − R0

)
and the determinant of S j0 is given by

Det(S j0) = −(mp + rAin)
(
β2 f (S in) − m

)
− δβ1 f (S in)

= −m(mp + rAin)
(β2 f (S in)

m
− 1 +

δβ1 f (S in)
m(mp + rAin)

)
= −m(mp + rAin)

(
R0 − 1

)
= m(mp + rAin)

(
1 − R0

)
.

Then, E0 is locally asymptotically stable if R0 < 1, and it is unstable if R0 > 1. �

Theorem 2. If R0 > 1, then E∗ is locally asymptotically stable.

Proof. The Jacobian matrix at a point E∗ = (S ∗, I∗, P∗, A∗) is given by:

J∗ =


−m − β1P∗ f ′(S ∗) − β2I∗ f ′(S ∗) −β2 f (S ∗) −β1 f (S ∗) 0
β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗) β2 f (S ∗) − m β1 f (S ∗) 0

0 δ −(mp + rA∗) −rP∗
0 0 krA∗ krP∗ − ma

 .
AIMS Mathematics Volume 8, Issue 10, 24888–24913.
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The characteristic polynomial is then given by:

P(X) =

∣∣∣∣∣∣∣∣∣∣∣
−X − m − β1P∗ f ′(S ∗) − β2I∗ f ′(S ∗) −β2 f (S ∗) −β1 f (S ∗) 0

β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗) −X + β2 f (S ∗) − m β1 f (S ∗) 0
0 δ −X − (mp + rA∗) −rP∗
0 0 krA∗ −X + krP∗ − ma

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
−(X + m) −(X + m) 0 0

β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗) −X + β2 f (S ∗) − m β1 f (S ∗) 0
0 δ −X − (mp + rA∗) −rP∗
0 0 krA∗ −X + krP∗ − ma

∣∣∣∣∣∣∣∣∣∣∣
= −(X + m)

∣∣∣∣∣∣∣∣∣
−X + β2 f (S ∗) − m β1 f (S ∗) 0

δ −X − (mp + rA∗) −rP∗
0 krA∗ −X + krP∗ − ma

∣∣∣∣∣∣∣∣∣
+(X + m)

∣∣∣∣∣∣∣∣∣
β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗) β1 f (S ∗) 0

0 −X − (mp + rA∗) −rP∗
0 krA∗ −X + krP∗ − ma

∣∣∣∣∣∣∣∣∣
= (X + m)

[
(X + m − β2 f (S ∗))

(
(X + mp + rA∗)(X + ma − krP∗) + kr2P∗A∗

)
−δβ1 f (S ∗)(X + ma − krP∗)

]
+ (β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗))(X + m)(

(X + mp + rA∗)(X + ma − krP∗) + kr2P∗A∗
)
.

The characteristic polynomial P(X) = 0 if, and only if

[
(X + m)(X + m − β2 f (S ∗)) + (β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗))(X + m)

]
(
(X + mp + rA∗)(X + ma − krP∗) + kr2P∗A∗

)
= δβ1 f (S ∗)(X + m)(X + ma − krP∗)

or if [
(X + m)(X + m − β2 f (S ∗)) + (β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗))(X + m)

]
=

δβ1 f (S ∗)(X + m)(X + ma − krP∗)(
(X + mp + rA∗)(X + ma − krP∗) + kr2P∗A∗

) .
Suppose that X is an eigenvalue with Re(X) ≥ 0; then, since (m − β2 f (S ∗)) =

β1P∗ f (S ∗)
I∗

and
P∗
I∗

=

δ

(mp + rA∗)
, the left-hand side satisfies the following condition:

∣∣∣∣(X + m)(X + m − β2 f (S ∗)) + (β1P∗ f ′(S ∗) + β2I∗ f ′(S ∗))(X + m)
∣∣∣∣

>(m − β2 f (S ∗))|X + m| =
β1P∗ f (S ∗)

I∗
|X + m| =

δβ1 f (S ∗)
mp + rA∗

|X + m| (3.12)
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and the right-hand side satisfies the following condition:∣∣∣∣ δβ1 f (S ∗)(X + m)(X + ma − krP∗)
(X + mp + rA∗)(X + ma − krP∗) + kr2P∗A∗

∣∣∣∣
<

∣∣∣∣δβ1 f (S ∗)(X + m)(X + ma − krP∗)
(X + mp + rA∗)(X + ma − krP∗)

∣∣∣∣
= δβ1 f (S ∗)

∣∣∣∣ (X + m)
(X + mp + rA∗)

∣∣∣∣
≤

δβ1 f (S ∗)
mp + rA∗

|X + m|.

(3.13)

This is impossible; then, Re(X) < 0 and E∗ is locally asymptotically stable. �

3.4. Global stability

In this subsection, we aim to study the global stability of the steady states of system (3.1) by using
the Lyapunov theory. Let us define the function G(z) = z − 1 − ln z that will be used throughout this
subsection.

Theorem 3. E0 is globally asymptotically stable once R0 ≤ 1.

Proof. Consider the following Lyapunov function U0(S , I, P, A):

U0(S , I, P, A) = S − S in −

∫ S

S in

f (S in)
f (v)

dv + I +
β1 f (S in)

mp + rAin

(
P +

Ain

k
G

(
A

Ain

) )
.

Note that U0(S , I, P, A) > 0 for all S , I, P, A > 0 and U0(S in, 0, 0, Ain) = 0. Furthermore, we have

U̇0 =
(
1 −

f (S in)
f (S )

)(
mS in − mS − β1P f (S ) − β2I f (S )

)
+ β1P f (S ) + β2I f (S ) − mI

+
β1 f (S in)

mp + rAin

(
δI − mpP − rAP +

1
k

(1 −
Ain

A
)(maAin + krAP − maA)

)
=

(
1 −

f (S in)
f (S )

)
(mS in − mS ) + β1P f (S in) + β2I f (S in) − mI

+
β1 f (S in)

mp + rAin

(
δI +

1
k

(1 −
Ain

A
)(maAin − maA) − mpP − rAP + r(1 −

Ain

A
)AP

)
≤ m

(
1 −

f (S in)
f (S )

)
(S in − S ) + β1P f (S in) + β2I f (S in) − mI

+
β1 f (S in)

mp + rAin

(
δI +

1
k

(1 −
Ain

A
)(maAin − mx) − P(mp + rAin)

)
≤ m

(
1 −

f (S in)
f (S )

)
(S in − S ) + β2I f (S in) − mI

+
β1 f (S in)

mp + rAin

(
δI +

1
k

(1 −
Ain

A
)(maAin − maA)

)
≤ −m

( f (S ) − f (S in))
f (S )

(S − S in) + m
(β2 f (S in)

m

+
δβ1 f (S in)

m(mp + rAin)
− 1

)
I −

rmaβ1 f (S in)
kr(mp + rAin)

(A − Ain)2

A

≤ −m
( f (S ) − f (S in))

f (S )
(S − S in) −

rmaβ1 f (S in)
kr(mp + rAin)

(A − Ain)2

A
+ m(R0 − 1)I.
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If R0 ≤ 1, then U̇0 ≤ 0 for all S , I, P, A > 0. Let W0 = {(S , I, P, A) : U̇0 = 0} = {E0}. By LaSalle’s
invariance principle [29], E0 is globally asymptotically stable once R0 ≤ 1. �

Theorem 4. For system (3.1), if R0 > 1, then E∗ is globally asymptotically stable.

Proof. Let a function U1(S , I, P, A) be defined as:

U1(S , I, P, A) = S − S ∗ −
∫ S

S ∗

f (S ∗)
f (v)

dv + I∗G
( I
I∗

)
+
β1P∗ f (S ∗)

δI∗
P∗G

( P
P∗

)
+

rP∗β1 f (S ∗)
krδI∗

A∗G
( A
A∗

)
.

Clearly, U1(S , I, P, A) > 0 for all non-negative variables S , I, P, A > 0; also, U1(S ∗, I∗, P∗, A∗) = 0.
Furthermore, we have

U̇1 =
(
1 −

f (S ∗)
f (S )

)(
mS in − mS − β1P f (S ) − β2I f (S )

)
+

(
1 −

I∗
I
)(
β1P f (S ) + β2I f (S ) − mI

)
+
β1P∗ f (S ∗)

δI∗

(
1 −

P∗
P

)(
δI − mpP − rAP

)
+

rβ1P∗ f (S ∗)
krδI∗

(
1 −

A∗
A

)(
maAin + krAP − mx

)
=
(
1 −

f (S ∗)
f (s)

)
(mS in − ms) − β1P f (S ) − β2I f (S ) + β1P f (S ∗) + β2I f (S ∗) + β1P f (S )

+ β2I f (S ) − mI − β1P f (S )
I∗
I
− β2I∗ f (S ) + mI∗ + β1P∗ f (S ∗)

I
I∗
− β1P∗ f (S ∗)

P∗I
PI∗

− β1P∗ f (S ∗)
mpP
δI∗

+ β1P∗ f (S ∗)
mpP∗
δI∗

− β1P∗ f (S ∗)
rAP
δI∗

+ β1P∗ f (S ∗)
rAP∗
δI∗

+ β1P∗ f (S ∗)
rAP
δI∗
− β1P∗ f (S ∗)

rA∗P
δI∗

+
rβ1P∗ f (S ∗)

krδI∗

(
1 −

A∗
A

)(
maAin − maA

)
=
(
1 −

f (S ∗)
f (S )

)
(mS in − mS ) + β1P f (S ∗) + β2I f (S ∗) − mI − β1P f (S )

I∗
I
− β2I∗ f (S ) + mI∗

+ β1P∗ f (S ∗)
I
I∗
− β1P∗ f (S ∗)

P∗I
PI∗
− β1P∗ f (S ∗)

mpP
δI∗

+ β1P∗ f (S ∗)
mpP∗
δI∗

+ β1P∗ f (S ∗)
rAP∗
δI∗

− β1P∗ f (S ∗)
rA∗P
δI∗

+
rβ1P∗ f (S ∗)

krδI∗

(
1 −

A∗
A

)(
maAin − maA

)
.

Since E∗: mS in = mS ∗ +β1P∗ f (S ∗) +β2I∗ f (S ∗), mI∗ = β1P∗ f (S ∗) +β2I∗ f (S ∗), mpP∗ + rA∗P∗ = δI∗ and
maAin + krA∗P∗ = maA∗, we get

U̇1 = − m
(S − S ∗)( f (S ) − f (S ∗))

f (S )
+

(
1 −

f (S ∗)
f (S )

)(
β1P∗ f (S ∗) + β2I∗ f (S ∗)

)
+ β1P f (S ∗)

+ β2I f (S ∗) − β1P∗ f (S ∗)
I
I∗
− β2I f (S ∗) − β1P f (S )

I∗
I
− β2I∗ f (S ) + β1P∗ f (S ∗)

+ β2I∗ f (S ∗) + β1P∗ f (S ∗)
I
I∗
− β1P∗ f (S ∗)

P∗I
PI∗
− β1P∗ f (S ∗)

p(δI∗ − rA∗P∗)
δP∗I∗

+ β1P∗ f (S ∗)
(δI∗ − rA∗P∗)

δI∗
+ β1P∗ f (S ∗)

rAP∗
δI∗

− β1P∗ f (S ∗)
rA∗P
δI∗

+
rβ1P∗ f (S ∗)

krδI∗

(
1 −

A∗
A

)(
maA∗ − krA∗P∗ − maA

)
= − m

(S − S ∗)( f (S ) − f (S ∗))
f (S )

+
(
1 −

f (S ∗)
f (S )

)(
β1P∗ f (S ∗) + β2I∗ f (S ∗)

)
+ β1 p f (S ∗)
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− β1P∗ f (S ∗)
I
I∗
− β1P f (S )

I∗
I
− β2I∗ f (S ) + β1P∗ f (S ∗) + β2I∗ f (S ∗) + β1P∗ f (S ∗)

I
I∗

− β1P∗ f (S ∗)
P∗I
PI∗
− β1P f (S ∗) + β1P∗ f (S ∗)

rPA∗
δI∗

+ β1P∗ f (S ∗) − β1P∗ f (S ∗)
rA∗P∗
δI∗

+ β1P∗ f (S ∗)
rAP∗
δI∗

− β1P∗ f (S ∗)
rA∗P
δI∗

− ma
rβ1P∗ f (S ∗)

krδI∗

(A − A∗)2

A
− β1P∗ f (S ∗)

rA∗P∗
δI∗

+ β1P∗ f (S ∗)
rA∗2P∗
δAI∗

= − m
(S − S ∗)( f (S ) − f (S ∗))

f (S )
+

(
1 −

f (S ∗)
f (S )

)(
β1P∗ f (S ∗) + β2I∗ f (S ∗)

)
− β1P f (S )

I∗
I

− β2I∗ f (S ) + β1P∗ f (S ∗) + β2I∗ f (S ∗) − β1P∗ f (S ∗)
P∗I
PI∗

+ β1P∗ f (S ∗)

− β1P∗ f (S ∗)
rA∗P∗
δI∗

+ β1P∗ f (S ∗)
rAP∗
δI∗

− ma
rβ1P∗ f (S ∗)

krδI∗

(A − A∗)2

A

− β1P∗ f (S ∗)
rA∗P∗
δI∗

+ β1P∗ f (S ∗)
rA∗2P∗
δAI∗

= − m
(S − S ∗)( f (S ) − f (S ∗))

f (S )
+ β1P∗ f (S ∗)

(
3 −

f (S ∗)
f (S )

−
PI∗ f (S )
P∗I f (S ∗)

−
P∗I
PI∗

)
+ β2I∗ f (S ∗)

(
2 −

f (S ∗)
f (S )

−
f (S )
f (S ∗)

)
− β1P∗ f (S ∗)

rA∗P∗
δI∗

(
2 −

A
A∗
−

A∗
A

)
− ma

rβ1P∗ f (S ∗)
krδI∗

(A − A∗)2

A

= − m
(S − S ∗)( f (S ) − f (S ∗))

f (S )
−
β1 f (S ∗)P∗

δI∗

rmaAin

krA∗

(A − A∗)2

A

+ β2I∗ f (S ∗)
(
2 −

f (S ∗)
f (S )

−
f (S )
f (S ∗)

)
+ β1P∗ f (S ∗)

(
3 −

f (S ∗)
f (S )

−
PI∗ f (S )
P∗I f (S ∗)

−
P∗I
PI∗

)
.

Using the rule that

1
n

n∑
i=1

ai ≥
n

√√
n∏

i=1

ai, (3.14)

we get
1
2

( f (S ∗)
f (S )

+
f (S )
f (S ∗)

)
≥ 1

and
1
3

( f (S ∗)
f (S )

+
PI∗ f (S )
P∗I f (S ∗)

+
P∗I
PI∗

)
≥ 1.

Therefore, U̇1 ≤ 0 for all S , I, P, A > 0 and U̇1 = 0 if, and only if S = S ∗, I = I∗, P = P∗ and A = A∗.
We deduce that E∗ is globally stable by LaSalle’s invariance principle [29]. �

4. Periodic system

Let us reconsider the periodic dynamics given by (2.1) where our aim is to prove that the system
admits a bounded positive T -periodic solution.
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For a continuous, positive T -periodic function g(t), we set gu = max
t∈[0,T )

g(t) and gl = min
t∈[0,T )

g(t).

4.1. Preliminary

Let (Rm,Rm
+) be the ordered m-dimensional Euclidean space associated with the norm ‖ · ‖. For

X1, X2 ∈ R
m, we establish that X1 ≥ X2 if X1 − X2 ∈ R

m
+ . We establish that X1 > X2 if X1 − X2 ∈ R

m
+\{0}.

We establish that X1 � X2 if X1−X2 ∈ Int(Rm
+). Consider a T -periodic m×m matrix function denoted by

C(t) which is continuous, irreducible and cooperative. Let us denote by φC(t) the fundamental matrix,
which is the solution of the following system

ẋ(t) = C(t)x(t). (4.1)

Let us denote the spectral radius of the matrix φC(T ) by r(φC(T )). Therefore, all entries of φC(t) are
positive for each t > 0. Let us apply the theorem of Perron-Frobenius to deduce that r(φC(T )) is the
principal eigenvalue of φC(T ) (simple and admits an eigenvector y∗ � 0). For the rest of the paper, the
following lemma will be useful.

Lemma 4. [30]. There exists a positive T-periodic function y(t) such that x(t) = y(t)ekt is a solution

of system (4.1) where k =
1
T

ln(r(φC(T ))).

Let us start by proving the existence (and uniqueness) of the disease free periodic trajectory of
model (2.1). Let us consider the following subsystem

Ṡ (t) = m(t)S in(t) − m(t)S (t),
Ȧ(t) = ma(t)Ain(t) − ma(t)A(t),

(4.2)

with the initial condition (S 0, A0) ∈ R2
+. Equation (4.2) admits a unique T -periodic solution

(S ∗(t), A∗(t)) with S ∗(t) > 0 and A∗(t) > 0 which is globally attractive in R2
+; thus, system (2.1) has a

unique disease-free periodic solution (S ∗(t), 0, 0, A∗(t)).
Let us introduce the following result.

Proposition 1.

Ωu =

{
(S , I, P, A) ∈ R4

+ / S + I ≤ S u
in; kP + A ≤ Au

in +
δukuS u

in

ml
a

}
is a positively invariant, compact and attractor set for model (2.1). Furthermore, we have

lim
t→∞

S (t) + I(t) − S ∗(t) = 0,

lim
t→∞

k(t)P(t) + A(t) − A∗(t) = 0.
(4.3)

Proof. From (2.1), we have

Ṡ (t) + İ(t) = m(t)S in(t) − m(t)(S (t) + I(t))
≤ m(t)S u

in − m(t)(S (t) + I(t)) ≤ 0, if S (t) + I(t) ≥ S u
in,
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and

k(t)Ṗ(t) + Ȧ(t) =k(t)(δ(t)I(t) − mp(t)P(t)) + ma(t)Ain(t) − ma(t)A(t)
=k(t)δ(t)I(t) − k(t)mp(t)P(t) + ma(t)Ain(t) − ma(t)A(t)
≤ k(t)δ(t)I(t) − k(t)ma(t)P(t) + ma(t)Ain(t) − ma(t)A(t)
≤ k(t)δ(t)I(t) + ma(t)(Ain(t) − (k(t)P(t) + A(t)))

≤ δukuS u
in + ml

a(Au
in − (k(t)P(t) + A(t))) if S (t) + I(t) ≥ Au

in +
δukuS u

in

ml
a

=(Au
in +

δukuS u
in

ml
a
− (k(t)P(t) + A(t)))

≤ 0, if kP(t) + A(t) ≥ Au
in +

δukuS u
in

ml
a

, (4.4)

which implies that Ωu is a forward invariant compact absorbing set for (2.1). Let N1(t) = S (t)+ I(t) and
N2(t) = k(t)P(t) + A(t) be the sub-population sizes at time t. Next, let y1(t) = N1(t)− S ∗(t), t ≥ 0. Then,
it follows that ẏ1(t) = −m(t)y1(t), which implies that lim

t→∞
y1(t) = lim

t→∞
(N1(t) − S ∗(t)) = 0. Similarly, let

y2(t) = N2(t) − A∗(t), t ≥ 0. Then, it follows that ẏ2(t) = −m(t)y2(t), which implies that lim
t→∞

y2(t) =

lim
t→∞

(N2(t) − A∗(t)) = 0. �

Next, in Subsection 4.2, we define R0, the basic reproduction number and we will prove that the
disease free periodic trajectory (0, 0, S ∗(t), A∗(t)) is globally asymptotically stable (and therefore, that
the disease dies out) once R0 < 1. Then, in Subsection 4.3, we will prove that I(t) and P(t) exhibit
uniform persistence (i.e., the disease persists) once R0 > 1. Therefore, we deduce that R0 is the
threshold parameter between the uniform persistence and the extinction of the disease.

4.2. Disease free periodic solution

We start by giving the definition of the basic reproduction number for model (2.1) by using the
theory given in [19] where

F (t, X) =


β1(t)P(t) f (S (t)) + β2(t)I(t) f (S (t))

δ(t)I(t)
0
0

 ,

V−(t, X) =


m(t)I(t)

mp(t)P(t) + r(t)A(t)P(t)
m(t)S (t) + β1(t)P(t) f (S (t)) + β2(t)I(t) f (S (t))

ma(t)A(t)

 ,
and

V+(t, X) =


0
0

m(t)S in(t)
ma(t)Ain(t) + k(t)r(t)A(t)P(t)
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with X =


I
P
S
A

.
Our aim is to check the conditions (A1)–(A7) in [19, Section 1]. Note that system (2.1) can have

the following form

Ẋ = F (t, X) −V(t, X) = F (t, X) −V−(t, X) +V+(t, X). (4.5)

The first five conditions (A1)–(A5) are fulfilled.

The system (4.5) admits a disease free periodic trajectory X∗(t) =


0
0

S ∗(t)
A∗(t)

. Let f (t, X(t)) =

F (t, X) − V−(t, X) + V+(t, X) and M(t) =

(
∂ fi(t, X∗(t))

∂X j

)
3≤i, j≤4

where fi(t, X(t)) and Xi are the i-

th components of f (t, X(t)) and X, respectively. By an easy calculation, we get that M(t) =(
−m(t) 0

0 −ma(t)

)
and then that r(φM(T )) < 1. Therefore X∗(t) is linearly asymptotically stable in

the subspace Γs =
{
(0, 0, S , A) ∈ R4

+

}
. Thus, the condition (A6) in [19, Section 1] is satisfied.

Now, let us define F(t) and V(t) to be two by two matrices given by F(t) =

(
∂Fi(t, X∗(t))

∂X j

)
1≤i, j≤2

and

V(t) =

(
∂Vi(t, X∗(t))

∂X j

)
1≤i, j≤2

where Fi(t, X) andVi(t, X) are the i-th components of F (t, X) andV(t, X),

respectively. By an easy calculation, we obtain the following from system (4.5):

F(t) =

(
β2(t) f (S ∗(t)) β1(t) f (S ∗(t))

δ(t) 0

)
,V(t) =

(
m(t) 0

0 mp(t) + r(t)A∗(t)

)
.

Consider Z(t1, t2) to be the two by two matrix solution of the system
d
dt

Z(t1, t2) = −V(t1)Z(t1, t2) for
any t1 ≥ t2, with Z(t1, t1) = I, i.e., the two by two identity matrix. Thus, condition (A7) is satisfied.

Let us define CT to be the ordered Banach space of T -periodic functions defined on R 7→ R2,
associated with the maximum norm ‖.‖∞ and the positive cone C+

T = {ψ ∈ CT : ψ(s) ≥ 0, for any s ∈
R}. Define the linear operator K : CT → CT by

(Kψ)(s) =

∫ ∞

0
Z(s, s − w)F(s − w)ψ(s − w)dw, ∀s ∈ R, ψ ∈ CT . (4.6)

Let us now define the basic reproduction number, R0, of model (2.1) by using R0 = r(K).
Therefore, we conclude the local asymptotic stability of the disease free periodic solution E0(t) =

(S ∗(t), 0, 0, A∗(t)) for (2.1) to be as follows.

Theorem 5. [19, Theorem 2.2]

• R0 < 1 ⇔ r(φF−V(T )) < 1.
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• R0 = 1 ⇔ r(φF−V(T )) = 1.
• R0 > 1 ⇔ r(φF−V(T )) > 1.

Therefore, E0(t) is unstable if R0 > 1 and it is asymptotically stable if R0 < 1.

Theorem 6. E0(t) is globally asymptotically stable if R0 < 1. It is unstable if R0 > 1.

Proof. Using Theorem 5, we have that E0(t) is locally stable once R0 < 1 and it is unstable once
R0 > 1. Therefore, we need to prove the global attractivity of E0(t) when R0 < 1.

Consider the case in which R0 < 1. Using the limits given by (4.3) in Proposition 1, for any δ1 > 0,
there exists T1 > 0 satisfying S (t) + I(t) ≤ S ∗(t) + δ1 and k(t)P(t) + A(t) ≤ A∗(t) + δ1 for t > T1. Then
S (t) ≤ S ∗(t) + δ1 and A(t) ≤ A∗(t) + δ1; also, we deduce that{

İ(t) ≤ β1(t)P(t) f (S ∗(t) + δ1) + β2(t)I(t) f (S ∗(t) + δ1) − m(t)I(t),
Ṗ(t) = δ(t)I(t) − mp(t)P(t)

(4.7)

for t > T1. Let M2(t) be the following 2 × 2 matrix function

M2(t) =

(
β2(t) f (S ∗(t) + δ1) β1(t) f (S ∗(t) + δ1)

δ(t) 0

)
. (4.8)

By Theorem 5, we have that r(ϕF−V(T )) < 1. Let us choose δ1 > 0 such that r(ϕF−V+δ1 M2(T )) < 1.
Consider the following system hereafter, ˙̄I(t) = β1(t)P̄(t) f (S ∗(t) + δ1) + β2(t)Ī(t) f (S ∗(t) + δ1) − m(t)Ī(t),

˙̄P(t) = δ(t)Ī(t) − mp(t)P̄(t).
(4.9)

Applying Lemma 4 and using the standard comparison principle, we deduce that there exists a

positive T -periodic function y1(t) satisfying x(t) ≤ y1(t)ek1t where x(t) =

(
I(t)
P(t)

)
and k1 =

1
T

ln
(
r(ϕF−V+δ1 M2(T )

)
< 0. Thus, lim

t→∞
I(t) = 0 and lim

t→∞
P(t) = 0. Furthermore, we have that

lim
t→∞

S (t) − S ∗(t) = lim
t→∞

N1(t) − I(t) − S ∗(t) = 0 and lim
t→∞

A(t) − A∗(t) = lim
t→∞

N2(t) − k(t)P(t) − A∗(t) = 0.
Then, we deduce that the disease free periodic solution E0(t) is globally attractive which completes the
proof. �

For the following subsection, we consider only the case in which R0 > 1.

4.3. Endemic periodic solution

From Proposition 1, system (2.1) admits a positively invariant compact set Ωu.
Let us define the function Q : R4

+ → R
4
+ to be the Poincaré map associated with system (2.1) such

that X0 7→ u(T, X0), where u(t, X0) is the unique solution of the system (2.1) with the initial condition
u(0, X0) = X0 ∈ R4

+.
Let us define

Γ =
{
(S , I, P, A) ∈ R4

+

}
, Γ0 = Int(R4

+) and ∂Γ0 = Γ \ Γ0.

Note that from Proposition 1, both Γ and Γ0 are positively invariant. P is point dissipative. Define

M∂ =
{
(S 0, I0, P0, A0) ∈ ∂Γ0 : Qn(S 0, I0, P0, A0) ∈ ∂Γ0, for any n ≥ 0

}
.
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In order to apply the theory of uniform persistence detailed in [31] (also in [30, Theorem 2.3]), we
prove that

M∂ = {(S , 0, 0, A), S ≥ 0, A ≥ 0} . (4.10)

Note that M∂ ⊇ {(S , 0, 0, A), S ≥ 0, A ≥ 0}. To show that M∂ \ {(S , 0, 0, A), S ≥ 0, A ≥ 0} = ∅. Let us
consider (S 0, I0, P0, A0) ∈ M∂ \ {(S , 0, 0, A), S ≥ 0, A ≥ 0}. If P0 = 0 and 0 < I0, then I(t) > 0 for any
t > 0. Then, it holds that Ṗ(t)|t=0 = δ(0)I0 > 0. If P0 > 0 and I0 = 0, then P(t) > 0 and S (t) > 0 for any
t > 0. Therefore, for any t > 0, we have

I(t) =
[
I0 +

∫ t

0
β(ω)(β1P(ω) f (S (ω)) + β2I(ω) f (S (ω)))e

∫ ω

0
m(u)du

dω
]
e
−

∫ t

0
m(u)du

> 0

for all t > 0. This means that (S (t), I(t), P(t), A(t)) < ∂Γ0 for 0 < t � 1. Therefore, Γ0 is positively
invariant from which we deduce (4.10). Using the previous discussion, we deduce that there exists one
fixed point (S ∗(0), 0, 0, A∗(0)) of P in M∂. We deduce, therefore, the uniform persistence of the disease
as follows.

Theorem 7. Consider the case in which R0 > 1. System (2.1) admits at least one positive periodic
trajectory and ∃ γ > 0 satisfying ∀ (S 0, I0, P0, A0) ∈ R+ × Int(R2

+) × R+ and

lim inf
t→∞

I(t) ≥ γ > 0.

Proof. Let us start by proving that P is uniformly persistent with respect to (Γ0, ∂Γ0), which will prove
that the trajectory of the system (2.1) is uniformly persistent with respect to (Γ0, ∂Γ0) by using [31,
Theorem 3.1.1]. Recall that using Theorem 5, we obtain that r(ϕF−V(T )) > 1. Therefore, there exists
η > 0 small enough and satisfying that r(ϕF−V−ηM2(T )) > 1. Let us consider the following perturbed
equation {

Ṡ α(t) = m(t)S in(t) − m(t)S α(t) − α(β1(t) + β2(t)) f (S α(t)),
Ȧα(t) = ma(t)Ain(t) + αk(t)r(t)Aα(t) − ma(t)Aα(t).

(4.11)

The function Q associated with the perturbed system (4.11) has a unique positive fixed point (S̄ 0
α, Ā

0
α)

that it is globally attractive in R2
+. We apply the implicit function theorem to deduce that (S̄ 0

α, Ā
0
α) is

continuous with respect to α. Therefore, we can choose α > 0 small enough and satisfying S̄ α(t) >
S̄ (t)− η, and Āα(t) > Ā(t)− η, ∀ t > 0. Let M1 = (S̄ 0, 0, 0, Ā0). Since the trajectory is continuous with
respect to the initial condition, there exists α∗ satisfying (S 0, I0, P0, A0) ∈ Γ0 with ‖(S 0, I0, P0, A0) −
u(t,M1)‖ ≤ α∗; it holds that

‖u(t, (S 0, I0, P0, A0)) − u(t,M1)‖ < α for 0 ≤ t ≤ T.

We prove by contradiction that

lim sup
n→∞

d(Qn(S 0, I0, P0, A0),M1) ≥ α∗ ∀ (S 0, I0, P0, A0) ∈ Γ0. (4.12)
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Suppose that lim sup
n→∞

d(Qn(S 0, I0, P0, A0),M1) < α∗ for some (S 0, I0, P0, A0) ∈ Γ0. We can assume that

d(Qn(S 0, I0, P0, A0),M1) < α∗ ∀ n > 0. Therefore

‖u(t,Qn(S 0, I0, P0, A0)) − u(t,M1)‖ < α ∀ n > 0 and 0 ≤ t ≤ T.

For all t ≥ 0, let t = nT + t1, with t1 ∈ [0,T ) and n = [
t
T

] (greatest integer ≤
t
T

). Then, we get

‖u(t, (S 0, I0, P0, A0)) − u(t,M1)‖ = ‖u(t1,Qn(S 0, I0, P0, A0)) − u(t1,M1)‖ < α for all t ≥ 0.

Set (S (t), I(t), P(t), A(t)) = u(t, (S 0, I0, P0, A0)). Therefore 0 ≤ I(t), P(t) ≤ α, t ≥ 0 and{
Ṡ (t) ≥ m(t)S in(t) − m(t)S (t) − α(β1(t) + β2(t)) f (S (t)),
Ȧ(t) ≥ ma(t)Ain(t) − ma(t)A(t).

(4.13)

The fixed point S̄ 0
α of the function Q associated with the perturbed system (4.11) is globally attractive

such that S̄ α(t) > S̄ (t) − η, and Āα(t) > Ā(t) − η; then, there exists T2 > 0 large enough and satisfying
the condition that S (t) > S̄ (t) − η and A(t) > Ā(t) − η for t > T2. Therefore, for t > T2,{

İ(t) ≥ β1(t)P(t) f (S̄ (t) − η) + β2(t)I(t) f (S̄ (t) − η) − m(t)I(t),
Ṗ(t) = δ(t)I(t) − mp(t)P(t).

(4.14)

Note that we have the condition that r(ϕF−V−ηM2(T )) > 1. Applying Lemma 4 and the comparison
principle, there exists a positive T -periodic trajectory y2(t) satisfying the condition that J(t) ≥ ek2ty2(t)

with k2 =
1
T

ln r
(
ϕF−V−ηM2(T )

)
> 0, which implies that lim

t→∞
I(t) = ∞ which is impossible since

the trajectories are bounded. Therefore, the inequality (4.12) is satisfied and Q is weakly uniformly
persistent with respect to (Γ0, ∂Γ0). By applying Proposition 1, Q has a global attractor. We deduce
that M1 = (S̄ 0, 0, 0, Ā0) is an isolated invariant set inside X and that W s(M1) ∩ Γ0 = ∅. All trajectories
inside M∂ converges to M1 which is acyclic in M∂. Applying [31, Theorem 1.3.1 and Remark 1.3.1],
we deduce that Q is uniformly persistent with respect to (Γ0, ∂Γ0). Furthermore, using [31, Theorem
1.3.6], Q admits a fixed point (S̃ 0, Ĩ0, P̃0, Ã0) ∈ Γ0. Note that

(S̃ 0, Ĩ0, P̃0, Ã0) ∈ R+ × Int(R2
+) × R+.

We prove also by contradiction that S̃ 0 > 0. Assume that S̃ 0 = 0. Using the first equation of the
system (2.1), S̃ (t) verifies that

˙̃S (t) ≥ m(t)S in(t) − m(t)S̃ (t) − (β1(t)P̃(t) + β2(t)Ĩ(t)) f (S̃ (t)), (4.15)

with S̃ 0 = S̃ (pT ) = 0, p = 1, 2, 3, · · · . Applying Proposition 1, ∀ δ3 > 0; there exists T3 > 0 large

enough and satisfying the condition that Ĩ(t) ≤ S u
in + δ3 and P̃(t) ≤

Au
in

kl +
δukuS u

in

klml
a

+ δ3 for t > T3. Then,

by Lemma 1, we obtain

˙̃S (t) ≥ m(t)S in(t) − m(t)S̃ (t) −
(
β1(t)

(Au
in

kl +
δukuS u

in

klml
a

+ δ3

)
+ β2(t)S u

in

)
f ′(0)S̃ (t), for t ≥ T3. (4.16)
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There exists p̄ large enough and satisfying the condition that pT > T3 for all p > p̄. Applying the
comparison principle, we deduce the following:

S̃ (pT ) =
[
S̃ 0 +

∫ pT

0
m(ω)S in(ω)e

∫ ω

0

((
β1(u)

(Au
in

kl +
δukuS u

in

klml
a

+ δ3

)
+ β2(u)S u

in

)
f ′(0) + m(u)

)
du

dω
]

× e
−

∫ pT

0

((
β1(u)

(Au
in

kl +
δukuS u

in

klml
a

+ δ3

)
+ β2(u)S u

in

)
f ′(0) + m(u)

)
du

> 0

for any p > p̄ which is impossible. Therefore, S̃ 0 > 0 and (S̃ 0, Ĩ0, P̃0, Ã0) is a positive T -periodic
trajectory of the system (2.1). �

5. Applications and numerical results

For all of our numerical results, we will apply a nonlinear Monod-type function (or, also, a Holling
type-II function) as a typical example that describes the incidence rate and satisfies Assumptions 1
and 2:

f (S ) =
ηS
κ + S

.

Here η and κ are non-negative constants known as Monod constants. The periodic functions are
given by



m(t) = m0(1 + m1 cos(2π(t + φ))),
mp(t) = m0

p(1 + m1
p cos(2π(t + φ))),

ma(t) = m0
a(1 + m1

a cos(2π(t + φ))),
δ(t) = δ0(1 + δ1 cos(2π(t + φ))),
S in(t) = S 0

in(1 + S 1
in cos(2π(t + φ))),

β1(t) = β0
1(1 + β1

1 cos(2π(t + φ))),
β2(t) = β0

2(1 + β1
2 cos(2π(t + φ))),

r(t) = r0(1 + r1 cos(2π(t + φ))),
k(t) = k0(1 + k1 cos(2π(t + φ))),

(5.1)

with |m1|, |m1
p|, |m

1
a|, |δ

1|, |S 1
in|, |β

1
1|, |β

1
2|, |r

1| and |k1| denoting the frequencies of seasonal cycles, also, φ
is the phase shift. The values of m0, m0

p, m0
a, δ0, S 0

in, β0
1, β0

2, r0 and k0 are given in Table 2. However, the
values of m1, m1

p, m1
a, δ1, S 1

in, β1
1, β1

2, r1 and k1 are given in Table 3.

Table 2. Used values for m0, m0
p, m0

a, δ0, S 0
in, β0

1, β0
2, r0 and k0.

Parameter m0 m0
p m0

a δ0 S 0
in β0

1 β0
2 r0 k0

Value 0.8 0.8 10 2 1 0.8 10 2 1
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Table 3. Used values for m1, m1
p, m1

a, δ1, S 1
in, β1

1, β1
2, r1 and k1.

Parameter m1 m1
p m1

a δ1 S 0
in β1

1 β1
2 r1 k1

Value 0.8 0.8 10 2 1 0.8 10 2 1

We will consider three cases. The first case applies the autonomous system (constant parameters) to
confirm the global stability of the equilibrium points E0 and E∗. The second case applies the partially
non-autonomous system (only β(t) is a periodic function). The third case considers all parameters as
periodic functions (i.e., a totally non-autonomous system).

5.1. Case in which all parameters are constants

In the first step, we performed numerical simulations for the system (3.1) when all parameters are
constant. Thus, the model is given by



Ṡ (t) = m0S 0
in(t) − m0S (t) −

ηβ0
1P(t)S (t)
κ + S (t)

−
ηβ0

2I(t)S (t)
κ + S (t)

,

İ(t) =
ηβ0

1P(t)S (t)
κ + S (t)

+
ηβ0

2I(t)S (t)
κ + S (t)

− m0I(t),

Ṗ(t) = δ0I(t) − m0
pP(t) − r0A(t)P(t),

Ȧ(t) = m0
aA0

in + k0r0A(t)P(t) − m0
aA(t),

(5.2)

with the positive initial condition (S 0, E0, I0,R0) ∈ R4
+ .

We give the results of some numerical simulations confirming the stability of the steady states of
system (5.2).

In Figure 2, the approximated solution of system (5.2) approaches asymptotically to E∗ onceR0 > 1.
In Figure 3, the approximated solution of the given model (5.2) approaches the equilibrium E0, which
confirms that E0 is globally asymptotically stable once R0 ≤ 1.

Figure 2. Behavior of the solution of system (2.1) for η = 0.9 and κ = 2; R0 ≈ 1.22 > 1.
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Figure 3. Behavior of the solution of system (2.1) for η = 0.25 and κ = 1; R0 ≈ 0.46 < 1.

5.2. Case in which all parameters are constant with a periodic seasonally forced function

In the second step, we performed numerical simulations for the system (2.1) where only the T -
periodic seasonally forced functions β1 and β2 are dependent on time. The other parameters were set
to be constant. Thus the model is given by

Ṡ (t) = m0S 0
in(t) − m0S (t) −

ηβ1(t)P(t)S (t)
κ + S (t)

−
ηβ2(t)I(t)S (t)
κ + S (t)

,

İ(t) =
ηβ1(t)P(t)S (t)
κ + S (t)

+
ηβ2(t)I(t)S (t)
κ + S (t)

− m0I(t),

Ṗ(t) = δ0I(t) − m0
pP(t) − r0A(t)P(t),

Ȧ(t) = m0
aA0

in + k0r0A(t)P(t) − m0
aA(t),

(5.3)

with the positive initial condition (S 0, I0, P0, A0) ∈ R4
+ .

We give the results of some numerical simulations confirming the stability of the steady states of
system (5.3). The basic reproduction number R0 was approximated by using the time-averaged system.

In Figure 4, the approximated solution of system (5.3) asymptotically approaches the periodic
solution with the persistence of the disease. In Figure 5, we show a magnified view of the limit
cycle when R0 > 1. In Figure 6, the approximated solution of system (5.3) approaches the disease-free
trajectory once R0 < 1.

Figure 4. Behavior of the solution of system (2.1) for η = 0.75 and κ = 2; R0 ≈ 0.7187 < 1.
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Figure 5. Enlarged view of the behavior of the solution of system (2.1) for η = 0.9 and κ = 2;
R0 ≈ 1.22 > 1.

Figure 6. Behavior of the solution of system (2.1) for η = 0.25 and κ = 1; R0 ≈ 0.46 < 1.

5.3. Case in which all parameters are periodic functions

In the third step, we performed numerical simulations for the system (2.1) where all parameters
were set as T -periodic functions. Thus the model is given by



Ṡ (t) = m(t)S in(t) − m(t)S (t) −
ηβ1(t)P(t)S (t)
κ + S (t)

−
ηβ2(t)I(t)S (t)
κ + S (t)

,

İ(t) =
ηβ1(t)P(t)S (t)
κ + S (t)

+
ηβ2(t)I(t)S (t)
κ + S (t)

− m(t)I(t),

Ṗ(t) = δ(t)I(t) − mp(t)P(t) − r(t)A(t)P(t),
Ȧ(t) = ma(t)Ain(t) + k(t)r(t)A(t)P(t) − ma(t)A(t),

(5.4)

with the positive initial condition (S 0, I0, P0, A0) ∈ R4
+ .

We give the results of some numerical simulations confirming the stability of the steady states of
system (5.4). The basic reproduction number R0 was approximated by using the time-averaged system.

In Figure 7, the approximated solution of system (5.4) approaches asymptotically to a periodic
solution with the persistence of the disease once R0 > 1. In Figure 8, we provide a magnified view of
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the limit cycle when R0 > 1. In Figure 9, the approximated solution of system (5.4) approaches the
disease-free periodic trajectory E0(t) = (S ∗(t), 0, 0, A∗(t)) once R0 ≤ 1.

Figure 7. Behavior of the solution of system (2.1) for η = 0.75 and κ = 2; R0 ≈ 0.7187 < 1.

Figure 8. Magnified view of the behaviour of the solution of system (2.1) for η = 0.9 and
κ = 2; R0 ≈ 1.22 > 1.

Figure 9. Behavior of the solution of system (2.1) for η = 0.25 and κ = 1; R0 ≈ 0.46 < 1.
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6. Conclusions

When studying the CHIKV dynamics, it is important to consider that the contamination of
uninfected cells can be realized via contact with CHIKV (CHIKV-to-cell transmission) and by contact
with infected cells (cell-to-cell transmission). Moreover, disease spread can have seasonal peak periods
and it is important to consider this when modelling the dynamics. In this paper, we have proposed
an extension of the CHIKV epidemic model already considered in [5, 21, 22] by taking into account
the seasonal environment. In the first step, we studied the case of an autonomous system where all
parameters are supposed to be constants. We calculated the basic reproduction number and the steady
states of the system. We gave the existence and stability conditions for these steady states. In the second
step, we considered the non-autonomous system, gave some theoretical results and defined the basic
reproduction number, R0 through the use of an integral operator. We show that if R0 ≤ 1, all trajectories
converge to the disease-free periodic solution; however, the disease persists once R0 is greater than 1.
Finally, we gave some numerical examples that support the theoretical findings, including those for the
autonomous system, the partially non-autonomous system and the fully non-autonomous system. It
has been deduced that if the system is autonomous, the trajectories converge to one of the equilibriums
of the system (2.1) according to Theorems 3 and 4. However, if at least one of the model parameters is
periodic, the trajectories converge to a limit cycle according to Theorems 6 and 7.
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