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1. Introduction

Since the inception of the fractional derivatives by the scientist Leibniz in the year 1695, this type
of derivative has known development in all branches of mathematics and even included applications in
engineering and science (see [3, 10, 16, 18–21]).

Recently, a new definition has drawn much interest from many researchers, namely conformable
fractional derivative introduced in [14] by Khalil et al. Since that time, several equations and
applications have been studied and several articles have been published regarding this type of
derivative (see [1, 4–7, 9, 12, 17, 23–25]). Many researchers study existence and positivity problems
using the upper and lower solutions technique due to its effectiveness and good
results (see [2, 8, 11, 13, 15, 22]). The upper and lower solutions method is associated with the use of
fixed point theory to prove the existence and uniqueness of the solution.

Xu and Sun [22] proved the existence of positive solutions for the IBVP of the fractional differential
equations  Dsy (r) + p (r, y (r)) = Ds−1q (r, y (r)) , r ∈ (0, 1) ,

y (0) = 0, y (1) =
∫ 1

0
q (r, y (r)) dr,

(1.1)
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where Ds is the standard Riemann-Liouville derivative and s ∈ (1, 2].
Zhong and Wang [25] used the fixed point theorem in a cone to show the existence of positive

solutions of the BVP  Tsy (r) + p (r, y (r)) = 0, r ∈ [0, 1] ,
y (0) = 0, y (1) = λ

∫ 1

0
y (r) dr,

(1.2)

where s ∈ (1, 2], Ts denotes the conformable derivative of order s and λ is positive number.
The purpose of this paper is to examine an integral boundary value problem of conformable

differential equations defined as follows Tsy (r) + p (r, y (r)) = Ts−1q (r, y (r)) , r ∈ (0, 1) ,
y (0) = 0, y (1) =

∫ 1

0
q (r, y (r)) dr,

(1.3)

where s ∈ (1, 2], the functions p, q : [0, 1] × [0,∞) → [0,∞) are continuous such that q (r, y) is
non-decreasing on y.

In this context, the main contributions of this paper is to apply the conformable derivative introduced
in [14] to an integral boundary value problem which is the generalization of the problem (1.2). So, our
study is organized as follow. After recalling some definitions and results of the conformable derivative
in Section 2, and we give, in Section 3, the proof of our results concerning the existence and uniqueness
of positive solutions. In Section 4, we write the conclusion in which we explain the contribution of this
research.

2. Preliminaries

The purpose of this section is to provide the most important materials and preliminaries results for
understanding conformable derivatives, (See [1, 14, 25]).

Definition 2.1. [1,14] Let s ∈ (1, 2]. The conformable fractional derivative of a function p : [0,∞)→
R of order s is defined by

Ts p (r) = lim
ε→0

p
(
r + εr1−s

)
− p (r)

ε
.

If Ts p (r) exists on (0,∞), then Ts p (0) = limr→0+ Ts p (r).

Definition 2.2. [1, 14] Let s ∈ (m,m + 1], m ∈ N0 and function p : [0,∞)→ R.
(a) The conformable fractional derivative of a function p of order s is defined by

Ts p (r) = Tβp(m) (r) with β = s − m.

(b) The fractional integral of a function p of order s is defined by

Is p (r) =
1

m!

∫ r

0
(r − ζ)m ζ s−m−1 p (ζ) dζ.

Lemma 2.1. [1, 25] Let s be in (m,m + 1].
(a) If p is a continuous function on [0,∞), then, for all r > 0, TsIs p (r) = p (r) .
(b) Tsrk = 0 for r in [0, 1] and k = 0, 1, 2, ...,m.
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(c) If Ts p (r) is continuous on [0,∞), then

IsTs p (r) = p (r) + c0 + c1r + c2r2 + ... + cmrm,

for some real numbers ck, k = 0, 1, 2, ...,m.

Lemma 2.2. Let y ∈ C ([0, 1] ,R). Then y is a solution of (1.3) if and only if

y (r) =
∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) p (ζ, y (ζ)) dζ,

where

Q (r, ζ) =
{

(1 − r) ζ s−1, 0 ≤ ζ ≤ r ≤ 1,
r (1 − ζ) ζ s−2, 0 < r ≤ ζ ≤ 1.

(2.1)

Proof. Note that

Ts

∫ r

0
q (ζ, y (ζ)) dζ = Ts−1q (r, y (r)) .

So

Ts

(
y (r) −

∫ r

0
q (ζ, y (ζ)) dζ

)
+ p (r, y (r)) = 0, r ∈ (0, 1) .

Then, by Lemma 2.1 we have

y (r) −
∫ r

0
q (ζ, y (ζ)) dζ + c0 + c1r = −Is p (r, y (r)) ,

the boundary conditions y (0) = 0, implies c0 = 0 and

y (1) −
∫ 1

0
q (ζ, y (ζ)) dζ + c1 = −

∫ 1

0
(1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ,

c1 = −

∫ 1

0
(1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ.

Hence

y (r) =
∫ r

0
q (r, y (r)) dr +

∫ 1

0
r (1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ

−

∫ r

0
(r − ζ) ζ s−2 p (ζ, y (ζ)) dζ

=

∫ r

0
q (r, y (r)) dr +

∫ r

0
r (1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ

+

∫ 1

r
r (1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ −

∫ r

0
(r − ζ) ζ s−2 p (ζ, y (ζ)) dζ

=

∫ r

0
q (r, y (r)) dr +

∫ r

0
ζ s−1 p (ζ, y (ζ)) dζ −

∫ r

0
rζ s−1 p (ζ, y (ζ)) dζ

+

∫ 1

r
r (1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ
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=

∫ r

0
q (r, y (r)) dr +

∫ r

0
(1 − r) ζ s−1 p (ζ, y (ζ)) dζ

+

∫ 1

r
r (1 − ζ) ζ s−2 p (ζ, y (ζ)) dζ.

So,

y (r) =
∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) p (ζ, y (ζ)) dζ.

Lemma 2.3 ( [25]). For any (r, ζ) in (0, 1] × (0, 1],

0 ≤ ω (r)Q(ζ, ζ) ≤ Q (r, ζ) ≤ Q (ζ, ζ) ,

where ω (r) = r (1 − r).

3. Main results

Let the norm
∥y∥ = max

r∈[0,1]
|y (r)| ,

of the Banach space X = C ([0, 1]). Denote Ω := {y ∈ X : y (r) ≥ 0, r ∈ [0, 1]}.
Let a, b ∈ R+ with a < b. For any y ∈ [a, b], we define the upper control function with

U (r, y) = sup {p (r, λ) : a ≤ λ ≤ y} ,

and the lower control function with

L (r, y) = inf {p (r, λ) : y ≤ λ ≤ b} .

Clearly, U (r, y) and L (r, y) are monotonous non-decreasing on y and

L (r, y) ≤ p (r, y) ≤ U (r, y) .

We need the following hypothesis:

(A) Let y (r) , y (r) ∈ Ω with a ≤ y (r) ≤ y (r) ≤ b and

y (r) ≤
∫ r

0
q
(
ζ, y (ζ)

)
dζ +

∫ 1

0
Q (r, ζ) L

(
ζ, y (ζ)

)
dζ,

y (r) ≥
∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) U (ζ, y (ζ)) dζ,

for all r ∈ [0, 1].

The function y (r) called the lower solution and the function y (r) is the upper solution of (1.3).
We need the following Lemma in the proof of the Theorem below
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Lemma 3.1. For each r1, r2 ∈ [0, 1], r1 < r2, the function Q defined by (2.1) satisfies∫ 1

0
|Q (r1, ζ) − Q (r2, ζ)| dζ ≤ max

s∈(1,2]

{
1
s
,

1
s (s − 1)

,
2s − 1

s (s − 1)

}
|r1 − r2| .

Proof. Let ζ ∈ [0, 1], for each r1, r2 ∈ [0, 1], such that r1 < r2 we have three cases:
Case 1. For 0 ≤ ζ ≤ r1 < r2 ≤ 1, we have∫ 1

0
|Q (r1, ζ) − Q (r2, ζ)| dζ =

∫ 1

0

∣∣∣(1 − r1) ζ s−1 − (1 − r2) ζ s−1
∣∣∣ dζ

= |r1 − r2|

∫ 1

0
ζ s−1dζ =

1
s
|r1 − r2| .

Case 2. For 0 ≤ r1 < r2 ≤ ζ ≤ 1, we have∫ 1

0
|Q (r1, ζ) − Q (r2, ζ)| dζ =

∫ 1

0

∣∣∣r1 (1 − ζ) ζ s−2 − r2 (1 − ζ) ζ s−2
∣∣∣ dζ

= |r1 − r2|

∫ 1

0
(1 − ζ) ζ s−2dζ

=
1

s (s − 1)
|r1 − r2| .

Case 3. For 0 ≤ r1 < ζ ≤ r2 ≤ 1∫ 1

0
|Q (r1, ζ) − Q (r2, ζ)| dζ =

∫ 1

0

∣∣∣r1 (1 − ζ) ζ s−2 − (1 − r2) ζ s−1
∣∣∣ dζ

=

∫ 1

0

∣∣∣r1ζ
s−2 − r1ζ

s−1 − ζ s−1 + r2ζ
s−1

∣∣∣ dζ
≤

∫ 1

0

(
ζ s−1

∣∣∣∣∣r1

ζ
− 1

∣∣∣∣∣ + ζ s−1 |r2 − r1|

)
dζ

≤

∫ 1

0

(
ζ s−1

∣∣∣∣∣r1

ζ
−

r2

ζ

∣∣∣∣∣ + ζ s−1 |r2 − r1|

)
dζ

= |r2 − r1|

∫ 1

0

(
ζ s−2 + ζ s−1

)
dζ =

2s − 1
s (s − 1)

|r2 − r1| .

Theorem 3.1. The problem (1.3) has at least one positive solution y ∈ Ω if (A) holds. Furthermore,

y (r) ≤ y (r) ≤ y (r) , for all r ∈ [0, 1] .

Proof. Let
Σ :=

{
y ∈ Ω : y (r) ≤ y (r) ≤ y (r) , r ∈ [0, 1]

}
.

It is easy to see that ∥y∥ ≤ b, so Σ ⊂ X is closed, convex and bounded. If y ∈ Σ, ∃Rp,Rq > 0 two
constants such that

max
r∈[0,1]

p (r, y (r)) < Rp,
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and
max
r∈[0,1]

q (r, y (r)) < Rq.

From Lemma 2.2 we define the operator 𭟋 as

𭟋y (r) =
∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) p (ζ, y (ζ)) dζ.

The continuity of p and q give the continuity of the operator 𭟋 on Σ. Then, for y ∈ Σ we have

𭟋y (r) =
∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) p (ζ, y (ζ)) dζ

≤ Rq + Rp

∫ 1

0
Q (ζ, ζ) dζ

= Rq +
Rp

s (s + 1)
.

Hence 𭟋 (Σ) is uniformly bounded.
Now, for each y ∈ Σ, r1, r2 ∈ [0, 1], r1 < r2, we get

|(𭟋y) (r1) − (𭟋y) (r2)| ≤
∣∣∣∣∣∫ r1

0
q (ζ, y (ζ)) dζ −

∫ r2

0
q (ζ, y (ζ)) dζ

∣∣∣∣∣
+

∫ 1

0
|Q (r1, ζ) − Q (r2, ζ)| p (ζ, y (ζ)) dζ

= Rq |r1 − r2| +

∫ 1

0
|Q (r1, ζ) − Q (r2, ζ)| p (ζ, y (ζ)) dζ

≤

(
Rq + Rp max

s∈(1,2]

{
1
s
,

1
s (s − 1)

,
2s − 1

s (s − 1)

})
|r1 − r2| .

Therefore, 𭟋 (Σ) is equicontinuous. By Ascoli-Arzele Theorem, 𭟋 : Σ→ X is compact.
Next we will show that 𭟋 (Σ) ⊂ Σ. Let y ∈ Σ, then from the hypothesis (A) we get

(𭟋y) (r) =
∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) p (ζ, y (ζ)) dζ

≤

∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) U (ζ, y (ζ)) dζ

≤

∫ r

0
q (ζ, y (ζ)) dζ +

∫ 1

0
Q (r, ζ) U (ζ, y (ζ)) dζ

≤ y (r) .

Similarly, (𭟋y) (r) ≥ y (r).
As a conclusion, by the Schauder fixed point theorem, 𭟋 has at least one fixed point, y ∈ Σ. So, the

Eq (1.3) has at least one positive solution for all y ∈ X and y (r) ≤ y (r) ≤ y (r), for all r ∈ [0, 1].
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Corollary 3.1. Assume that there exist continuous functions h1, h2, h3 and h4 such that

0 ≤ h1 (r) ≤ p (r, z) ≤ h2 (r) < ∞, (r, z) ∈ [0, 1] × [0,+∞) , (3.1)

0 ≤ h3 (r) ≤ q (r, z) ≤ h4 (r) < ∞, (r, z) ∈ [0, 1] × [0,+∞) , (3.2)

and at least one of h1 (r) and h3 (r) is not identically equal to 0. Then (1.3) has at least one positive
solution y ∈ X and∫ r

0
h3 (ζ) dζ +

∫ 1

0
Q (r, ζ) h1 (ζ) dζ ≤ y (r) ≤

∫ r

0
h4 (ζ) dζ +

∫ 1

0
Q (r, ζ) h2 (ζ) dζ. (3.3)

Proof. Consider the problem Tsx (r) + h2 (r) = Ts−1h4 (r) , r ∈ (0, 1) ,
x (0) = 0, x (1) =

∫ 1

0
h4 (r) dr,

(3.4)

which is equivalent to

x (r) =
∫ r

0
h4 (ζ) dζ +

∫ 1

0
Q (r, ζ) h2 (ζ) dζ. (3.5)

By the definitions of control function, we have

h1 (r) ≤ L (r, x) ≤ U (r, x) ≤ h2 (r) , (r, x) ∈ [0, 1] × [a, b] ,

where a, b are minimal and maximal of x (r) on [0, 1]. Therefore we have

x (r) ≥
∫ r

0
q (ζ, x (ζ)) dζ +

∫ 1

0
Q (r, ζ) U (ζ, x (ζ)) dζ.

Thus (3.5) is an upper solution of (1.3). On the other hand, we can prove∫ r

0
h1 (ζ) dζ +

∫ 1

0
Q (r, ζ) h3 (ζ) dζ,

is a lower solution of (1.3). According to Theorem 3.1, (1.3) has at least one positive solution y ∈ X
and we obtain (3.3).

Corollary 3.2. Suppose that
(i) (3.2) and 0 ≤ h1 (r) ≤ p (r, z) , r ∈ [0, 1] hold,
(ii) p (r, z) uniformly converges to h (r) on [0, 1] as z→ ∞,
(iii) at least one of h1 (r) and h3 (r) is not identically equal to 0.
Then (1.3) has at least one positive solution y ∈ X.

Proof. From (ii), there exist η, K > 0 such that

|p (r, z) − h (r)| < η, (r, z) ∈ [0, 1] × [K,+∞) ,

hence
p (r, z) < h (r) + η, (r, z) ∈ [0, 1] × [K,+∞) .
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Let v = max(r,z)∈[0,1]×[0,K] p (r, z), hence

h1 (r) ≤ p (r, z) ≤ h (r) + η + v, (r, z) ∈ [0, 1] × [0,∞) .

From Corollary 3.1, the IBVP (1.3) has at least one solution, y ∈ X, satisfies∫ r

0
h3 (ζ) dζ +

∫ 1

0
Q (r, ζ) h1 (ζ) dζ ≤ y (r)

≤

∫ r

0
h4 (ζ) dζ +

∫ 1

0
Q (r, ζ) h (ζ) dζ +

η + v
s (s + 1)

.

Theorem 3.2. Let (A) holds and assume that for any r ∈ [0, 1], z, z∗ ∈ Σ,

|p (r, z) − p (r, z∗)| ≤ Lp ∥z − z∗∥ ,

|q (r, z) − q (r, z∗)| ≤ Lq ∥z − z∗∥ ,

where Lp, Lq > 0 are constants satisfie

Lq +
Lp

s (s + 1)
< 1. (3.6)

Then the IBVP (1.3) has a unique positive solution on Σ.

Proof. We show in Theorem 3.1 that 𭟋 : Σ→ Σ. So, for any r ∈ [0, 1], z, z∗ ∈ Σ, we have

|(𭟋z) (r) − (𭟋z∗) (r)| ≤
∫ r

0
|q (ζ, z (ζ)) − q (ζ, z∗ (ζ))| dζ

+

∫ 1

0
Q (r, ζ) |p (ζ, z (ζ)) − p (ζ, z∗ (ζ))| dζ

≤ Lq ∥z − z∗∥ +
Lp

s (s + 1)
∥z − z∗∥

=

(
Lq +

Lp

s (s + 1)

)
∥z − z∗∥ .

Since (3.6) is hold, then 𭟋 is a contraction mapping that has unique fixed point y ∈ Σ. Therefore, the
IBVP (1.3) has a unique positive solution on Σ.

In order to illustrate our results, we provide an example.

Example 3.1. Consider the IBVP T 7
4
y (r) + r3 +

ry(r)
4+y(r) = T 3

4

(
π
2 + r + 1

2 tan−1 y (r)
)
, r ∈ (0, 1) ,

y (0) = 0, y (1) =
∫ 1

0

(
π
2 + ζ +

1
2 tan−1 y (ζ)

)
dζ,

(3.7)

where q (r, y) = π2 + r + tan−1 y (r), p (r, y) = r3 +
ry(r)

4+y(r) . We can find q is non-decreasing on y, and

π

2
+ r ≤ q (r, y) ≤

3π
4
+ r,
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r3 ≤ p (r, y) ≤ r3 + 1 ≤ 2,

for (r, y) ∈ [0, 1] × [0,∞).
So, the IBVP (3.7) has at least one solution according to the above Corollaries. In addition, we

have

|p (r, z) − p (r, z∗)| ≤
1
4
∥z − z∗∥ ,

|q (r, z) − q (r, z∗)| ≤
1
2
∥z − z∗∥ ,

this implies Lq +
Lp

s(s+1) =
1
2 +

1
4

7
4 ( 7

4+1) < 1, so the IBVP(3.7) has a unique positive solution due to
Theorem 3.2.

4. Conclusions

In this paper, we study an integral boundary problem with a conformable fractional derivative, such
that our problem is more general than the problem studied in [25], so if q (r, y (r)) ≡ 0 or constant
then we obtain results for the problem (1.2). Especially, the uniqueness has not been studied in the
work [25].

The method of upper and lower solutions is more applicable and easily used for more general
problems. Also, the fixed point theorems play an important role to show the existence and the
uniquenes.
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