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Abstract: We have considered a special class of ordinary differential equations in which the
differential operators are those of the Caputo fractional global derivative. These equations are
generalizations of the well-known differential equations with the Caputo fractional derivative. Due
to the various possible applications of these equations to model real-world problems we have first
introduced some new inequalities that will be used in all fields of science, technology and engineering
where these equations could be applied. We used Nagumo’s principles to establish the existence and
uniqueness of the solution for this class of equations with additional conditions. We have applied the
midpoint principle to obtain a numerical scheme that will be used to solve these equations numerically.
Some illustrative examples are presented with excellent results.
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1. Introduction

The generalization of differential and integral operators has gained popularity in recent years since
it has been discovered that these operators are useful for capturing phenomena with complex
dynamics [1–5]. Particularly in the context of fractional calculus, the concept of differentiation and
integration of a function with another function has attracted a lot of attention. The most recent
extensions are based on the Riemann-Stieltjes integral concept, which can be seen as a generalization
of the fractional Riemann, Caputo-Fabrizio and Atangana-Baleanu integrals [6–10]. Therefore, these
operators can be viewed as fractional derivatives and integrals of a function with respect to another
with respect to a function say g(t). When g(t) = t we recover the classical fractional differential and
integral operators. It is therefore required that, the function g(t) should be nonzero, continuously
differentiable and increasing, it is also possible to have g(t) decreasing but never constant. A unique

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231259


24700

selection of the g(t) function leads to a special class of fractional differential and integral equations.
For example, choosing g(t) = tλ will lead to fractal-fractional differential and integral operators. We
will then point out that new classes of differential and integral operators will result in new classes of
differential and integral equations, which will require fresh research to grasp. Numerical methods are
required to solve these equations due to the potential applications of the fractional global derivative
with the power-law kernel, certain significant inequalities, existence and uniqueness [11–15]. Since
these differential and integral operators will be used for modeling in many fields of science,
technology and engineering, the first goal of this work is to establish some significant inequalities
using existing theory. If precise solutions are not possible, the second goal is to identify specific
circumstances in which these equations admit a singular solution. The final goal is to develop a
numerical method to solve these equations based on current theory; in this study, the well-known
midpoint approximation will be applied [16]. The above-mentioned processes will subsequently be
followed by the structure of this work.

This work is organized as follows. In Section 2, we give details of the fractional global differential
equations with the power law and some useful theorems regarding the proposed study. In Section 3,
we give the existence and uniqueness of the nonlinear equations with global derivatives by using the
power law. In Section 4, we use the generalized Caratheodory principle to give results for a general
global fractional model to obtain the unique solution; further, some new results in the form of theorems
are shown. In Sections 5 and 6, we use the numerical approach to solve the model and then provide
some illustrative examples with details respectively. Finally, in Section 7, we summarize the results.

2. A fractional global differential equation with the power law kernel

The concept of the global fractional differential equation was first introduced in [17]. In this section,
we consider the following general nonlinear equation:{

RL
t0 Dαgy(t) = f (t, y(t)), if t > 0, y(t0) = t0, if t = t0. (2.1)

Here, the operator RL
t0 Dαgy(t) is defined as follows:

RL
t0 Dαgy(t) =

1
Γ(1 − α)

Dg

∫ t

t0
y(τ)(t − τ)−αdτ, (2.2)

where from the Riemann-Stieltjes integral,

t0 Jg f (t) =
∫ t

t0
f (τ)dg(t); (2.3)

if the function g(t) is differentiable with g′(t) , 0 for all t ∈ [t0,T ], we have

t0 Jg f (t) =
∫ t

t0
f (τ)g′(τ)dτ. (2.4)

With the fundamental theorem of calculus, we yield the corresponding differential operator:

Dg f (t) = lim
h→0

f (t + h) − f (t)
g(t + h) − g(t)

.
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The above formula has been independently obtained and studied by several authors from different
scholarly backgrounds. Some work related to this can be found in [9, 10].

We start our analysis by providing some useful inequalities under some conditions of the function
f .

We assume that t ∈ [t0,T ]. We assume that the function g(t) is differentiable that g′(t) > 0 and that
it is continuous and bounded. That is to say ∀t ∈ [t0,T ], and there exists M′g > 0 such that

∥g′(t)∥∞ = sup
t∈[t0,T ]

|g′(t)| < M′g.

Theorem 1. Assume that ∀t ∈ [t0,T ]; the function f (t, y(t)) satisfies

| f (t, y(t))| < C(1 + |y(t)|),

where C is a constant; then,

|y(t)| <
∥g′∥∞C(t − t0)α

Γ(α + 1)
exp
[∥g′∥∞C(t − t0)α

Γ(α + 1)

]
.

Proof. Since g′(t) exists and is positive, bounded and continuous, then we convert the differential
equation into an integro differential equation as follows:

y(t) =
1
Γ(α)

∫ t

t0
g′(τ) f (τ, y(τ))(t − τ)α−1dτ,

|y(t)| =
1
Γ(α)

∣∣∣∣ ∫ t

t0
g′(τ) f (τ, y(τ))(t − τ)α−1dτ

∣∣∣∣
≤

1
Γ(α)

∫ t

t0
|g′(τ)| f (τ, y(τ))(t − τ)α−1dτ|

≤
1
Γ(α)

∫ t

t0
sup

l∈[t0,τ]
|g′(l)|| f (τ, y(τ))|(t − τ)α−1dτ

≤
∥g∥∞
Γ(α)

∫ t

t0
| f (τ, y(τ))|(t − τ)α−1dτ.

Using the hypothesis, we get

|y(t)| ≤
∥g∥∞
Γ(α)

∫ t

t0
|C +C|y||(t − τ)α−1dτ

≤
∥g′∥∞
Γ(α)

∫ t

t0
C(t − τ)α−1dτ +

C∥g′∥∞
Γ(α)

∫ t

t0
|y|(t − τ)α−1dτ

≤
∥g′∥∞
Γ(α)

C(t − t0)α +
∥g′∥∞C
Γ(α)

∫ t

t0
|y|(t − τ)α−1dτ.

We can put for the sake of clarity |y(t)| = w(t); then, we have

w(t) ≤
∥g′∥∞
Γ(α + 1)

C(t − t0)α +
∥g′∥∞C
Γ(α)

∫ t

t0
w(τ)(t − τ)α−1dτ.
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By virtue of the Gronwall inequality, we have

w(t) <
∥g′∥∞
Γ(α + 1)

C(t − t0)α exp
[∥g′∥∞C(t − t0)α

Γ(α + 1)

]
.

Therefore,

|y(t)| <
∥g′∥∞
Γ(α + 1)

C(t − t0)α exp
[∥g′∥∞C(t − t0)α

Γ(α + 1)

]
,

which completes the proof. □

Theorem 2. Assume that for all t ∈ [t0,T ], there exists a k > 0 such that

| f (τ, y(τ))|2 < k(1 + |y|2),

and if α > 1/2, then

|y(t)|2 <
M
Γ2(α)

(t − t0)2α−1

(2α − 1)
k exp

[ Mk
Γ2(α)(2α − 1)

(t − t0)2α−1
]
.

Proof. If g′(t) is continuous and bounded, then

y(t) =
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ,

|y(t)|2 =
1
Γ2(α)

∣∣∣∣ ∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ

∣∣∣∣2.
By the Cauchy-Schwarz inequality

|y(t)|2 ≤
1
Γ2(α)

∫ t

t0
|g′(τ)|2dτ

∫ t

t0
|t − τ|2α−2| f (τ, y(τ))|2dτ

=
1
Γ2(α)

∫ t

t0
(g′(τ))2dτ

∫ t

t0
(t − τ)2α−2| f (τ, y(τ))|2dτ.

By integration by parts, we have

|y(t)|2 ≤
1
Γ2(α)

{
g′(t)g(t) − g′(t0)g(t0) +

g2(t0)
2
−

g2(t)
2

}
×

∫ t

t0
(t − τ)2α−2| f (τ, y(τ))|2dτ.

By hypothesis, we get

|y(t)|2 ≤
1
Γ2(α)

{
∥g′∥∞∥g∥∞ +

∥g∥2∞
2
+
|g(t0)|2

2
+ |g′(t0)||g(t0)|

}
×
{ ∫ t

t0
(t − τ)2α−2kdτ +

∫ t

t0
k|y|2(t − τ)2α−2dτ

}
<

M
Γ2(α)

{ (t − t0)2α−1

2α − 1
k +
∫ t

t0
k|y(τ)|2(t − τ)2α−2dτ

}
.

By virtue of the Gronwall inequality, we have

|y(t)|2 <
M
Γ2(α)

(t − t0)2α−1

2α − 1
k exp

[ Mk
Γ2(α)(2α − 1)

(t − t0)2α−1
]
,

with the condition that 2α − 1 > 0 implies that α > 1/2, which completes the proof. □
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Theorem 3. Assume that for all t ∈ [t0,T ], there exists C > 0 such that ∀t ∈ [t0,T ]

| f (t, y(t))| < C(1 + |y(t)|).

Then

|y(t)| < C t0 Jαt g′(t) +
∫ t

t0
g′(τ)t0 Jατ g′(τ) exp

[ ∫ t

τ

g′(q)(t − q)α−1dqdτ
]
.

Proof. We have that for all t ∈ [t0,T ],

y(t) =
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ,

|y(t)| =
∣∣∣∣ 1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ

∣∣∣∣,
|y(t)| ≤

1
Γ(α)

∫ t

t0
|g′(τ)|(t − τ)α−1

∣∣∣∣ f (τ, y(τ))
∣∣∣∣dτ,

|y(t)| ≤
1
Γ(α)

∫ t

t0
|g′(τ)|(t − τ)α−1c(1 + |y(τ)|)dτ

<
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1Cdτ +

C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1|y(τ)|dτ.

We let

v(t) =
C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1dτ, w(t) = |y(t)|.

We have

w(t) = v(t) +
C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1w(τ)dτ.

For t > t0, v(t) is continuous and g′(τ)(t − τ)α−1; therefore,

w(t) < v(t) +
∫ t

t0
g′(τ)v(τ) exp

[ ∫ t

τ

g′(q)(t − q)α−1
]
dqdτ,

|y(t)| ≤ Ct0 Jαt g′(t) +
∫ t

t0
g′(τ)t0 Jατ g′(q) exp

[ ∫ τ

t
g′(q)(t − q)α−1dq

]
dτ.

Note that

C
Γ(α)

∫ t

t0
g′(τ)(τ − q)α−1dτ = t0 Jαt g′(t) C,

which completes the proof. □

Theorem 4. Assume that for all t ∈ [t0,T ], there exists C > 0, such that for all t ∈ [t0,T ]

| f (t, y(t))| < C(1 + |y(t)|).
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If in addition g′(t) ∈ Lp[t0,T ], p > 1, then we have

|y(t)| <
C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1
exp
[ C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1

]
,

α > q−1
q and

1
q
+

1
p
= 1.

Proof. For all t ∈ [t0,T ], we have

|y(t)| <
C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1dτ +

C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1|y(τ)|dτ,

|y(t)| <
C
Γ(α)

( ∫ t

t0
(g′(τ))p

)1/p( ∫ t

t0
(t − τ)αq−qdτ

)1/q
+

C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1|y(τ)|dτ

<
C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1
+

C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1|y(τ)|dτ.

For α > q−1
q using the Gronwall inequality, we have

|y(t)| <
C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1
exp
[ C
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1dτ

]
<

C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1
exp
[ C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1
+ 1
]
.

Therefore,

|y(t)| <
C
Γ(α)
∥g′∥p

(t − t0)αq−q+1

αq − q + 1
exp
[c∥g′∥p
Γ(α)

(t − t0)αq−q+1

αq − q + 1

]
,

which completes the proof. □

Theorem 5. Assume that for all t ∈ [t0,T ], we can find a positive non-null function M(t) such that

| f (t, y(t))| < m(t),

then

|y(t)| <
∥g′∥∞
Γ(α)

RL
t0 Jαt m(t).

Proof. Let us start with the following:

|y(t)| =
1
Γ(α)

∣∣∣∣ ∫ t

t0
g′(τ) f (τ, y(τ))(t − τ)α−1dτ

∣∣∣∣,
|y(t)| ≤

1
Γ(α)

∫ t

t0
|g′(τ)|| f (τ, y(τ))|(t − τ)α−1dτ,

|y(t)| ≤
∥g′∥∞
Γ(α)

∫ t

t0
m(t)(t − τ)α−1dτ ≤ ∥g′∥∞RL

t0 Jαt m(t),
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which completes the proof; however, if the function M(t) ∈ Lp[t0,T ], then we have

|y(t)| <
∥g′∥∞
Γ(α)

∥m∥pp
(t − t0)αp−p+1

αp − p + 1
,

if p > 1/2 and α > p−1
p . If 1 < p < 2, we have

|y(t)| <
∥g′∥∞
Γ(α)

∥m∥p
( (t − t0)αq−q+1

αq − q + 1

)1/q
,

with
1
q
+

1
p
= 1

and α > q−1
q . □

Theorem 6. Assume that for all t ∈ [t0,T ], g(t) is twice differentiable continuous ([t0,T ],Σ, µ). Assume
that

f (t, y(t)), f (t, y(t)) : [t0,T ]→ R

is continuous and belonged to Lp[t0,T ]; then,

|y(t)| < ∥g∥1/2∥g′′∥1/2
(t − t0)αp−p+1

αp − p + 1

(
∥ f (., y(.))∥pLp

)
+
(
∥ f (., y(.))∥pLp

)
,

if α > p−1
p and 2 < p < ∞.

Proof. We begin the proof by starting with the following:

|y(t)| =
1
Γ(α)

∣∣∣∣ ∫ t

t0
g′(τ) f (τ, y(τ))(t − τ)α−1dτ

∣∣∣∣,
|y(t)| ≤

1
Γ(α)

∣∣∣∣ ∫ t

t0
sup

l∈[t0,τ]
(g′(l)) f (τ, y(τ))(t − τ)α−1dτ

∣∣∣∣
≤
∥g′∥∞
Γ(α)

∣∣∣∣ ∫ t

t0
f (τ, y(τ))(t − τ)α−1dτ

∣∣∣∣.
By the Landau-Kolmogorov inequality, we have

|y(t)| ≤
2∥g∥1/2∥g′′∥1/2

Γ(α)

( ∫ t

t0
| f (τ, y(τ))|pdτ

) ∫ t

t0

(
(t − τ)pα−pdτ

)
≤

2∥g∥1/2∥g′′∥1/2

Γ(α)
(t − t0)pα−p+1

pα − p + 1

∫ t

t0

∣∣∣∣ f (τ, y(τ)) + f (τ, y(τ))
2

+
f (τ, y(τ)) − f (τ, y(τ))

2

∣∣∣∣pdτ

≤
2∥g∥1/2∥g′′∥1/2

Γ(α)
(t − t0)pα−p+1

pα − p + 1

(∥∥∥∥ f (., y(.)) + f (., y(.))
2

∥∥∥∥p

Lp
+
∥∥∥∥ f (., y(.)) − f (., y(.))

2

∥∥∥∥p

Lp

)
.

Using the Clarkson’s inequality, we have

|y(t)| ≤
2∥g∥1/2∥g′′∥1/2

Γ(α)
(t − t0)pα−p+1

pα − p + 1
1
2

(∥∥∥∥ f (., y(.))∥pLp + ∥ f (., y(.))∥pLp

)
,
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if 2 < p < ∞ and α > p−1
p , which completes the proof. However, if 1 < p < 2, we shall have

|y(t)| ≤
∥g∥1/2∥g′′∥1/2

Γ(α)

( (t − t0)qα−q+1

qα − q + 1

)1/q(1
2

∥∥∥∥ f (., y(.))∥pLp + ∥ f (., y(.))∥pLp

)q/p
,

α > q−1
q and

1
q
+

1
p
= 1.

□

The above inequalities are of great importance because they appear in several proofs, such as the
existence and uniqueness of nonlinear equations. In the next sections, we shall present the existence
and uniqueness of the nonlinear equations.

3. Existence and uniqueness

In this section, we shall use different hypotheses to establish the existence and uniqueness of
nonlinear equations with global derivatives based on the power law. First, we give results for the
existence; then, in the next subsection, we show results for the uniqueness.

3.1. Uniqueness

Euler’s method: Let f be a real continuous function on a domain S in the (t, y) phase. We note
that by the definitions, ξ-approximate solutions of our equations on I = [t0,T ] constitute a function
y(t) ∈ C(I) satisfying the following:

• (t, y(t)) ∈ D, t ∈ I.
• y ∈ C′[I], except for a finite set, and I ⊂ I, where y′(t) may be discontinuous.
• |RL

t0 Dαgy − f (t, y(t))| ≤ ξ, t ∈ I I.

It is also possible that y(t) has a piecewise continuous derivative on I; then, we shall write y ∈ C′pw(I),

B = {(t, y) : |t − t0| ≤ a, |y − y0| < b};

we have that a, b > 0; we assume that f is continuous, and we impose

N = max
(t,y)∈B

| f (t, y)|.

We also define

β = min
{
a,
( bΓ(α)
∥g′∥∞N

) 1
α
}
,

where
∥g′∥∞ = sup

t∈[t0,T ]
|g′(t)|.

Theorem 7. Let f ∈ C(B). For all ξ > 0 there exists an ξ-approximate solution y of our equation on
|t − t0| < β.

AIMS Mathematics Volume 8, Issue 10, 24699–24725.
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Proof. Let ξ > 0; we shall construct y on

K = [t0, t0 + β].

But f ∈ C(B) and B is compact; f is indeed uniformly continuous on B. On the other hand g′(t) is
bounded and continuous, as well as positive. Therefore, g′(t) is uniformly continuous; then,
g′(t) f (t, y(t)) is uniformly continuous on B. Therefore for all ξ > 0, there exists δξ > 0, such that

|g′(t) f (t, y) − g′(t) f (t, y(t))| ≤
ξΓ(α + 1)
∥g′∥∞T

, ∀(t, y), (t, y(t)) ∈ B,

where
|t − t̃| ≤ δξ, |y − ỹ| ≤ ξ.

We shall subdivide t0, t0 + β into m subintervals with the end point tn = t0 + nl, n = 0, 1, · · · ,m, l = β

m ,

where

l ≤ min
{
δξ,
(δξΓ(α)

M

) 1
α
}
.

From t0 until t = t1, we shall have

y(t) = g′(t0) f (t0, y(t0))
{ (t − t0)α

α
−

(t − t1)α

α

}
f (t, y(t1)),

we have

y(t) = g′(t0) f (t0, y(t0))
{ (t − t0)α

α
−

(t − t1)α

α

}
+ g′(t1) f (t1, y(t1))

{ (t − t1)α

α
−

(t − t2)α

α

}
f (t2, y

′(t2)),

we have

y(t) = g′(t0) f (t0, y(t0))
{ (t − t0)α

α
−

(t − t1)α

α

}
+ g′(t1) f (t1, y(t1))

{ (t − t1)α

α
−

(t − t2)α

α

}
+g′(t2) f (t2, y(t2))

{ (t − t1)α

α
−

(t − t2)α

α

}
.

Repeating thus until tn+1 = T , we have

y(t) =
n∑

j=0

g′(t j) f (t j, y(t j))
{ (t − t j)α − (t − t j+1)α

Γ(α + 1)

}
=

n∑
j=0

∫ t j+1

t j

g′(t j) f (t j, y(t j))(t − τ)α−1dτ.

For all t, t and K, we have that

|y(t) − y(t)| =
∣∣∣∣ n∑

j=0

∫ t j+1

t j

g′(t0) f (t j, y(t j))
{ (t − τ)α−1

Γ(α)
dτ −

n∑
j=0

∫ t j+1

t j

g′(t j) f (t j, y(t j))
(t − τ)α−1

Γ(α)
dτ
}

+

m∑
j=n+1

∫ t j+1

t j

g′(t j) f (t j, y(t j))
(t − τ)α−1

Γ(α)
dτ
∣∣∣∣,
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if we assume without loss of generality that t > t

|y(t) − y(t)| ≤
n∑

j=0

|g′(t j)|| f (t j, y(t j))|
∫ t j+1

t j

{ (t − τ)α−1

Γ(α)
(t − τ)α−1

Γ(α)

}
dτ

+

m∑
j=n+1

|g′(t j)|
| f (t j, y(t j))|
Γ(α)

∫ t j+1

t j

(t − τ)α−1dτ

≤

n∑
j=0

|g′(t j)|
Γ(α)

| f (t j, y(t j))|
{ (t − t j)α

α
−

(t − t j+1)α

α
−

(t − t j)α

α

+
(t − t j+1)α

α
+

m∑
j=n+1

|g′(t j)|| f (t j, y(t j))|
}{ (t − t j)α

α
−

(t − t j+1)α

α

}
≤
|g′|∞N
Γ(α)

( n∑
j=0

{ (t − t j)α

α
−

(t − t j+1)α

α
−

(t − t j)α

α
+

(t − t j+1)α

α

})
+
|g′|∞N
Γ(α)

m∑
j=n+1

{ (t − t j)α

α
−

(t − t j+1)α

α

}
.

We should evaluate each term separately:
n∑

j=0

{ (t − t j)α

α
−

(t − t j+1)α

α
−

(t − t j)α

α
+

(t − t j+1)α

α

}
=

(t − t0)α

α
−

(t − t1)α

α
−

(t − t0)α

α
+

(t − t1)α

α

+
(t − t1)α

α
−

(t − t2)α

α
−

(t − t1)α

α
+

(t − t2)α

α

−
(t − tn)α

α
−

(t − tn+1)α

α
−

(t − tn)α

α
+

(t − tn+1)α

α

=
(t − t0)α

α
−

(t − t0)α

α
−

(t − tn+1)α

α
+

(t − tn+1)α

α
.

On the other hand, we have
m∑

j=n+1

{ (t − t j)α

α
−

(t − t j+1)α

α

}
=

(t − tn+1)α

α
−

(t − tn+2)α

α
+

(t − tn+2)α

α
−

(t − tn+3)α

α

+ · · · +
(t − tm+1)α

α
−

(t − tm)α

α
=

(t − tn+1)α

α
−

(t − tm)α

α
.

But t = tn, therefore,
m∑

j=n+1

{ (t − t j)α

α
−

(t − t j+1)α

α

}
=

(t − tn+1)α

α
=

(t − t)α

α
.

Putting everything together, we get

|y(t) − y(t)| ≤
∥g′∥∞N
Γ(α + 1)

{
(t − t0)α − (t − t0)α − (t − tn+1)α + (t − tn+1)α + (t − t)α

}
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≤
∥g′∥∞N
Γ(α + 1)

{
(t − t0)α − (t − t0)α − (t − t)α + (t − t)α + (t − t)α

}
≤
∥g′∥∞N
Γ(α + 1)

{(t − t0)α − (t − t0)α}.

The function (p − t0)α is differentiable in [t − t0, t − t0] by the mean value theorem there exists p ∈
[t − t1, t − t0]

α(p − t0)α−1(t − t) = (t − t0)α − (t − t0)α.

Therefore, replacing yields

|y(t) − y(t)| ≤
∥g′∥∞N
Γ(α + 1)

α(p − t0)α−1(t − t) ≤ Ω(t − t), t, t ∈ K.

This obtained fact and the previous result imply that

|y(t) − y(t)| ≤ ξ, t ∈ [t0, tn−1].

Now, ∣∣∣∣y(t) −
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ

∣∣∣∣
=
∣∣∣∣ n∑

j=0

∫ t j+1

t j

g′(t j)
(t − τ)α−1

Γ(α)
f (t j, y(t j))dτ −

1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, (τ))dτ

∣∣∣∣
=
∣∣∣∣ n∑

j=0

∫ t j+1

t j

g′(t j)
(t − τ)α−1

Γ(α)
f (t j, y(t j))dτ −

n∑
j=0

∫ t j+1

t j

g′(τ)
(t − τ)α−1

Γ(α)
f (τ, y(τ))dτ

∣∣∣∣
≤

1
Γ(α)

n∑
j=0

∫ t j+1

t j

∣∣∣∣g′(t)(t − τ)α−1( f (τ, y(τ)) − f (t j, y(t j)))
∣∣∣∣dτ

≤
∥g′∥∞
Γ(α)

n∑
j=0

∫ t j+1

t j

(t − τ)α−1
∣∣∣∣( f (τ, y(τ)) − f (t j, y(t j)))

∣∣∣∣dτ
≤
∥g′∥∞
Γ(α)

ξ

n∑
j=0

∫ t j+1

t j

(t − τ)α−1dτ.
Γ(α + 1)
T∥g′∥∞

∣∣∣∣
≤

∥g′∥∞
Γ(α + 1)

ξ

n∑
j=0

[(t − t j)α − (t − t j+1)α]
Γ(α + 1)
T∥g′∥∞

∣∣∣∣.
Note that

n∑
j=0

[(t − t j)α − (t − t j+1)α] = (t − t0)α − (t − t1)α + (t − t1)α − (t − t2)α − · · · (t − tn)α − (t − tn+1)α

= (t − t0)α.
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Since (t − tn+1) = 0, because t = tn+1,∣∣∣∣y(t) −
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)τ−1 f (τ, y(τ))

∣∣∣∣ < ∥g′∥∞
Γ(α + 1)

ξ(t − t0)α

<
∥g′∥∞
Γ(α + 1)

ξT
Γ(α + 1)
T∥g′∥∞

= ξ.

Therefore, y is an ξ-approximate solution, indeed when ξ → 0. We have that∣∣∣∣y(t) −
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ

∣∣∣∣ = 0,

that is to say

y(t) =
1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ

is the solution. □

We shall note that the required conditions can be imposed on the function f (t, y(t)) to derive the
existence of a solution. In the next subsection, some conditions will be imposed to demonstrate the
uniqueness of the existing solution.

3.2. Uniqueness of existing solution

In this section, we shall use existing theories to establish conditions under which the considered
linear equation admits a unique solution.

Nagumo’s conditions: By definition, a function satisfies the Nagumo conditions in the domain D
if

| f (t, y) − f (t, y)| ≤ k
|y − y|
t − t0

, t , t0, k ≤ 1,

for all (t, y), (t, y) ∈ D. The following important lemma should be stated.

Lemma 1. Let δ(t0) = 0 be a non-negative continuous function in |t− t0| ≤ T and δ(t0) = 0, and let δ(t)
be differentiable at t = t0, with δ

′
(t0) = 0. Then the inequality

δ(t) ≤
∣∣∣∣ ∫ t

t0

δ(τ)
τ − t0

dτ
∣∣∣∣

leads to δ(t) = 0, if |t − t0| < a.

Theorem 8. (Extension of Nagumo’s uniqueness theorem) Assume that f (t, y(y)) is continuous and
meets the requirements stated by Nagumo. Assume in addition to Nagumo’s condition that g′(t) is
continuous and bounded in [t0,T ], with

Mg′ = max
t∈[t0,T ]

|g′(t)|
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and that Mg′

λ
< 1, where

λ = min
t∈[t0,T ]

{
min
τt∈[t0,t]

(t − τ)α−1
}
.

Then the equations
RL
t0 Dαg(t)y(t) = f (t, y(t)), i f t > t0,

y(t0) = y0, t = t0,

have a unique solution in [t0,T ].

Proof. Let (t, y), (t, y) ∈ D, then,

|y(t) − y(t)| =
1
Γ(α)

∣∣∣∣ ∫ t

t0
g′(τ)(t − τ)α−1| f (τ, y(τ)) − f (τ, y(τ))|dτ

∣∣∣∣.
Using the Nagumo criteria yields

|y(t) − y(t)| ≤
1
Γ(α)

∫ t

t0
|g′|(t − τ)α−1||τ − t0|

−1|y(τ) − y(τ)|dτ.

We put
δ(t) = |y(t) − y(t)|,

then

δ(t) ≤
∣∣∣∣ 1
Γ(α)

∫ t

t0
|g′|(t − τ)α−1(τ − t0)−1δ(τ)dτ

∣∣∣∣
≤

∣∣∣∣ 1
Γ(α)

∫ t

t0
max
l∈[t0,τ]

|g′(l)|
1

(t − τ)1−α

1
(τ − t0)

δ(τ)dτ
∣∣∣∣

≤

∣∣∣∣ Mg′

Γ(α)

∫ t

t0
min

l∈[t0,τ]
{(t − l)1−α}

δ(τ)
τ − t0

dτ
∣∣∣∣

≤
Mg′

Γ(α)λ

∣∣∣∣ ∫ t

t0

δ(τ)
τ − t0

dτ
∣∣∣∣.

Using Mg′

Γ(α)λ ≤ 1, we get

δ(τ) ≤
∫ t

t0

δ(τ)
τ − t0

dτ,

where δ(τ) is a non-negative continuous function in |t − t0| < T satisfying Nagumo’s condition;
therefore, δ(τ) = 0 for all t ∈ [t0,T ], that is to say y(t) = y(t) for all t ∈ [t0,T ], which completes the
proof. □

It is worth noting that this condition suggested by Nagumo is only a sufficient condition for the
uniqueness of the solutions to initial value problems.
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Theorem 9. (Lipschitz uniqueness) Let f (t, y(t)) satisfy the Lipschitz condition; assume that g′(t) is
bounded. Then the initial value problem has a unique solution.

Proof. Let y(t), y(t) ∈ D and

|y(t) − y(t)| ≤
1
Γ(α)

∣∣∣∣ ∫ t

t0
g′(τ)(t − τ)α−1( f (τ, y(τ)) − f (τ, y(τ)))

∣∣∣∣dτ
≤

1
Γ(α)

∫ t

t0
|g′(τ)||(t − τ)α−1|

∣∣∣∣( f (τ, y(τ)) − f (τ, y(τ)))
∣∣∣∣dτ

≤ Mg′

∫ t

t0
(t − τ)α−1L|y(τ) − y(τ)|dτ.

We let ϕ(t) = |y(t) − y(t)|, we have

ϕ(t) ≤ Mg′

∫ t

t0
(t − τ)α−1Lϕ(τ)dτ.

By Gronwall’s inequality, we get

ϕ(t) ≤ q exp
(−LMg′

Γ(α)

∫ t

t0
(t − τ)α−1dτ

)
≤ q exp

(
− LMg′

(t − τ)α

Γ(α + 1)

)
,

whereas q = 0, then for all t ∈ [t0,T ], ϕ(t) = 0 implies that y(t) = y(t), which completes the proof. □

We shall use other conditions to establish the comprehensive existence and uniqueness.

4. The generalized Caratheodory principle

We shall use some existing theories based on the Caratheodory approach to show that

RL
t0 Dαg (t)y(t) = f (t, y(t)), t > 0,

y(0) = y0,

have a unique solution. In this work, we shall let [18]

yn → y

in C([t0,T ],R); the following topology’s uniform convergence on C([t0,T ],R) is closed. We let

dn = sup
t0≤t≤T

|yn(t) − y(t)|.

We define

yn = y − dnsign(y),

which is of course positive for all t ∈ [t0,T ].
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Theorem 10. Consider the closed interval [0, 1]. The function

[0, 1] × R→ f (t, y) ∈ R

is such that t → f (t, y(t)) holds for each y ∈ R and y → f (t, y) is continuous for all t ∈ [0, 1]. If there
exists M ∈ ([0, 1] × R) such that

| f (t, y(t))| ≤ M(x)(1 + |y|), (t, y) ∈ [0, 1] × R,

then there exists an absolutely continuous function y(t) such that

y(t) =
∫ t

t0
f (s, y(s))ds, ∀t ∈ [0, 1].

The proof can be found here [18]. From the above theorem, we have following corollary:

Corollary 1. Assume that, for all (t, y) ∈ [0, 1] × R, f (t, y(t)) satisfies the following:

| f (t, y(t))| < M(t)(1 + |y(t)|)

for all t ∈ [0, 1] × R. Then, for a fixed 0 < α ≤ 1, there exists an absolutely continuous function y(t)
such that

y(t) =
1
Γ(α)

∫ t

0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ.

Proof. Since f (t, y(t)) verified the Caratheodory principle in [0, 1] × R then for a fixed α ∈ [0, 1]

y(t) ≤ |y(t)| ≤
1
Γ(α)

∫ t

0
g′(τ)M(τ)(t − τ)α−1dτ +

1
Γ(α)

∫ t

0
g′(τ)M(τ)|y(τ)|(t − τ)α−1dτ

≤

∫ t

0
Ω(τ)(t − τ)α−1dτ +

∫ t

0
Ω(τ)|y(τ)|(t − τ)α−1dτ

≤ V(t) +
∫ t

0
Ω(τ)(t − τ)α−1|y(τ)|dτ.

If we put ϕ(t) = |y(τ)|, then

y(t) ≤ ϕ(t) ≤ V(t) +
∫ t

0
Ω(τ)(t − τ)α−1ϕ(τ)dτ.

We see that ϕ(t) satisfies the condition of Gronwall, which therefore leads us to

ϕ(t) ≤ V(t) exp
[ ∫ t

0
Ω(τ)(t − τ)α−1dτ

]
.

On the other hand, however,

| f (t, y(t))| ≤ M(t)(1 + |y(t)|)
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implies that if |y(t)| is continuous and ϕ(t) is also absolutely continuous, as with 1 + ϕ(t), then put

M(t) = M(t)(1 + |y(t)|).

M(t) is continuous, absolutely; therefore, if D is an open set of R, since f (t, y(t)) satisfies the
Caratheodory principle D, then for all (t0, y0) ∈ D, we assume α and β positive members such that the
rectangle

B(α, β) = {(t, y) : |t − t0| ≤ α, |y − y0| ≤ β} ⊂ D.

We now let

Ia = {t : |t − t0| ≤ α},

we choose
m = M(t) ∈ B(α, β)

and set

M1(t) =
∫ t

t0

(t − τ)α−1

Γ(α)
g′(τ)m(τ)dτ.

We chose α1 and β1 such that we have

0 < α1 ≤ α1 and 0 < β1 ≤ β1,

indeed
|M1(t)| ≤ β, t ∈ Iα1 .

We let Λ be the set of functions y ∈ C[Iα1 ,R] satisfying

y(t0) = y0, |y(t)| ≤ β

for all t ∈ Iα1 . Clearly Λ is a bounded, closed and convex subset of C[Iα1 ,R]. Thus for all y ∈ Λ, we
can define the following mapping Γy:

Γy(t) =
1
Γ(α)

∫ t

t0
g′(τ) f (τ, y(τ))(t − τ)α−1dτ, t ∈ Iα1 .

Note that the fixed points of the above mapping, if they exist, are considered as a solution of our
equation in Λ. The Schwarz theorem for fractional case can be used to show the existence of the fixed
points of Γ, n,Λ. We shall now show that Γ is well defined providing that f (t, y(t)) is integrable for any
y(t) ∈ Λ. Γy(t) is continuous for all t ∈ Iα since

|y(t1) − y(t1)| =
1
Γ(α)

∣∣∣∣ ∫ t1

t0
(t1 − τ)α−1 f (τ, y(τ))q(τ)dτ

−

∫ t1

t0
(t1 − τ)α−1 f (τ, y(τ))q(τ)dτ

∣∣∣∣.
AIMS Mathematics Volume 8, Issue 10, 24699–24725.
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Assuming that t1 > t1, we have

|y(t1) − y(t1)| =
1
Γ(α)

∣∣∣∣ ∫ t2

t0
(t1 − τ)α−1 f (τ, y(τ))g′(τ)dτ +

∫ t1

t1
(t1 − τ)α−1 f (τ, y(τ))g′(τ)dτ

−

∫ t1

t0
(t1 − τ)α−1 f (τ, y(τ))g′(τ)dτ

∣∣∣∣
≤

1
Γ(α)

∫ t1

t0
g′(τ)| f (τ, y(τ))|{(t1 − τ)α−1 − (t1 − τ)α−1}g′(τ)dτ

+
1
Γ(α)

∫ t1

t1
(t1 − τ)α−1g′(τ) f (τ, y(τ))dτ

≤
M
Γ(α)

[ ∫ t1

t0
((t1 − τ)α−1 − (t1 − τ)α−1)dτ +

∫ t

t1
(t1 − τ)α−1dτ

]
≤

M
Γ(α + 1)

{
[(t1 − t0)α − (t1 − t1)α − (t1 − t0)α + (t1 − t1)α + (t1 − t1)α]

}
=

M
Γ(α + 1)

{(t1 − t0)α − (t1 − t0)α}.

By using the mean value theorem, we have

|y(t1) − y(t1)| ≤
M

Γ(α + 1)
(l − t0)α(t1 − t1).

Therefore, for all ξ > 0, there exists δ > 0 such that

|y(t1) − y(t1)| < ξ

implies that |t1 − t1| < δ; in this case, we have

δ <
Γ(α + 1)ξ
M(l − t0)α

,

which completes the proof; therefore, Γ is continuous

|Γy(t)| ≤
∣∣∣∣ ∫ t

t0
|g′(τ) f (τ, y(τ))|(t − τ)α−1dτ

∣∣∣∣
≤

∣∣∣∣ ∫ t

t0
|g′(τ)|M(τ)(t − τ)α−1dτ

∣∣∣∣
≤ |M1(t)| ≤ β.

In fact, if yn ∈ Ω and yn → y in Λ, then using the continuity of f (t, y) in y for all fixed t, leads to

f (t, yn(t))→ f (t, y(t))

as n→ ∞ for all t ∈ Iα1; then, also

g′(τ)(t − τ)α−1 f (τ, yn(τ))→ g′(τ)(t − τ)α−1 + (t, y(t))
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for all t ∈ Iα1 . Additionally, since
| f (t, yn(t))| ≤ M(t),

the Lebesgue dominated convergence theorem leads to

lim
n→∞

1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, yn(τ))dτ→

1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1 f (τ, y(τ))dτ.

We have shown Γ to be uniformly continuous, and that ΛΩ is an equilibrium set of C[Iα1 ,R]. Of
course Λ is also uniformly bounded which leads to the fact that ΛΩ is relatively compact; therefore,
ΛΩ is completely continuous. The Schauder fixed-point theory helps complete the proof. □

We have shown that if the function meets the requirements of the theorem then for all t ∈ [t0,T ],

lim
n→∞

f (t, yn(t))→ f (t, y(t))

pointwise, we have to show that

f (t,yn(tn))→ f (t, y(t))

in measure in [t0,T ]. The continuity of f ′(., y(.)) ensures that

f (tn, yn(tn))→ f (t, y(t)).

However, an additional requirement is that the sequence (yn(t))n satisfies the Lipschitz condition, of
course with

K = max
n=0
|kn|,

where kn is the Lipschitz constant of (ynt(t)). Therefore, with this condition, the continuity of g′(t) and
(t−s)α−1

Γ(α) for every fixed α ∈ [0,T ] and t0 ≤ s ≤ tn, t0 ≤ s < t:

g′(tn)
(tn − s)α−1

Γ(α)
f (t,yn(tn))→ g′(t)

(t − s)α−1

Γ(α)
f (t, y(t)).

However, f should meet an extra condition for all

(yn(t))n ∈ V([t0,T ],R) ⊂ C([t0,R],R),

where V is a convex set but also compact. In the classical case the result was achieved with some extra
definitions which we adapt here in the case of our problem.

Definition 1. We assume that a > 0, Ia = [0, a] and P′, · · · , Pm, q′, · · · , qm ∈ Lα,1g [Ia,R], where

Lα,1g [Ia,R] = {h :
1
Γ(α)

∫ t

t0
g′(τ)

(t − τ)α−1

Γ(α)
h(τ)dτ}

exists.

Gα,1g (q, p) = {h : h ∈ Lα,1g [Ia,R], pk(t) ≤ hk(t) ≤ q(k)(t), ∀t ∈ Ia, 1 ≤ k ≤ m}.
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For simplicity Gα,1g notation is adopted instead of Gα,1g (q, p). One can easily see that for all h, h ∈
Gα,1g , we have that

(1 − t)h + th ∈ Gα,1g ,

when t ∈ [0, 1].
Therefore, for any fixed α and g Gα,1g is a convex set.

Definition 2. Let
Gα,1g = Gα,1g [p, q]

and
f : Ia × R→ R

be such that

f
(
t,

1
Γ(α)

∫ t

t0
g′(τ)(t − τ)α−1h(τ)dτ

)
∈ Gα,1g

for all h ∈ Gαg for every fixed 0 ≤ α ≤ 1; and, g′(t) is continuous. Then f is said to be Gαg integrable on
Ia.

Definition 3. Let f ∈ Gαg on Ia and let h ∈ Gαg . Let the sequence

yn(t) =
1
Γ(α)

∫ t

0
g′(τ)(t − τ)α−1hn(τ)dτ,

hn ∈ Gαg such that yn(t) → y(t) uniformly on Ia. Let tn = d − dn, where dn is defined as before. For any
sequence

g′(tn)
(tn − s)α−1

Γ(α)
f (tn, yn(tn))→ g′(t)

(t − s)α − 1
Γ(α)

f (t, y(t)),

then f is Gα,1g regular on I. Let
Gα,1g = Gα,1g [p, q]

and M ∈ Lα,1g [R] be such that |p(t)| ≤ M(t) and |q(t)| ≤ M(t) for all t ∈ Ia; then, Gα,1g is said to be
dominated by M.

The Caratheodory principle can now be extended.

Theorem 11. Let a > 0 and Ia = [0, a]. Let f be Gα,1g -regular on I. Then we can find at least one
absolutely continuous function y satisfying the first theorem under this section.

Proof. We let

Ω = {z : ξ(t) =
1
Γ(α)

∫ t

0
(t − τ)α−1g′(τ)z(τ)dz, z ∈ Gα,1g },

we let

Γz(t) =
1
Γ(α)

∫ t

0
(t − τ)α−1g′(τ) f (t, z(τ))dτ, z ∈ Ω.
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It is also clear from [18] that Γy ∈ Ω, because f ∈ Gα,1g and Ω is compact. Let zn → z for all zn ∈ Ω; we
have to show that Γzn → Γz. Let tn = t − dn,

dn = sup
t∈Ia

|zn(t) − z(t)|,

|Γzn − Γz| = |
1
Γ(α)

∫ t

0
g′(τn)(t − τn)α−1 f j(τn, zn(τn))dτ

−
1
Γ(α)

∫ t

0
g′(τ)(t − τ)α−1 f j(τ, y(τ))dτ|, 1 ≤ j ≤ n,

lim
n→∞
|Γzn − Γz| = lim

n→∞

∣∣∣∣ 1
Γ(α)

∫ t

0
g′(τn)(t − τn)α−1 f j(τn, zn(τn))dτ

−
1
Γ(α)

∫ t

0
g′(τ)(t − τ)α−1 f j(τ, y(τ))dτ

∣∣∣∣.
The continuity of g′(t) and (t − τ)α−1 for all t0 ≤ τ ≤ t allows us to have

lim
n→∞
|Γzn − Γz| = lim

n→∞

∣∣∣∣ 1
Γ(α)

∫ t

0
g′(τ)(t − τ)α−1 f j(τn, zn(τn))dτ − f s(τ, y(τ))dτ

∣∣∣∣.
From [18] and by Fatou’s lemma,∫ t

0
lim
n→∞

(M(tn) − f j(τn, yn(tn)))dτ ≤ lim
n→∞

∫ t

0
(M(τn) − f j(τn, yn(τn)))dτ, 1 ≤ j ≤ n, t > 0,

by letting
z1

n(t) = f j(tn, zn(tn)),

it follows by [18] that

lim
n→∞

∫ t

0
z1

n(τ)dτ =
∫ t

0
z1(τ)dτ.

Therefore, we also have

lim
n→∞

∫ t

0
g′(τ)(t − τ)α−1z1

n(τ)dτ =
∫ t

0
g′(τ)(t − τ)α−1z1(τ)dτ.

Then Ω is equicontinuous because M is dominating Gα,1g . This implies that Γzn → Γz uniformly. T is
continuous. Thus, with Schauder fixed-point theorem the proof is completed. □

5. Numerical scheme

In this section we shall derive a numerical solution to the nonlinear equation. The used method is
the extension of Heun’s approach. To start, we shall give some important hypotheses:{

RL
t0 Dαt y(t) = f (t, y(t)), i f t > t0,

y(t0) = y0, i f t = t0.
(5.1)
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(i) g′(t) is continuous and positive.

(ii) f (t, (t)) is twice continuously differentiable.

(iii) g′(t) is bounded.

(iv) f (t, y(t)) is bounded for all t ∈ [t0,T ].

(v) f (t, (t)) is Lipschitz with respect to y.

Equation (5.1) is converted to the integral equation as follows:{ RL
t0 Dαg(t)y(t) = g′(t) f (t, y(t)), i f t > t0,

y(t0 = y0, i f t = t0.
(5.2)

 y(t) = 1
Γ(α)

∫ t

t0
g′(τ) f (τ, y(τ))(t − τ)α−1dτ,

y(t0 = y0.
(5.3)

We put
tn+1 = (n + 1)h,

where h = tn+1 − tn in (5.3), and we get

y(tn+1) =
1
Γ(α)

∫ tn+1

t0
g′(τ) f (τ, y(τ))(tn+1 − τ)α−1dτ

=
1
Γ(α)

n∑
j=0

∫ t j+1

t j

g′(τ) f (τ, y(τ))(tn+1 − τ)α−1dτ. (5.4)

Between t j, t j+1 in (5.4), we approximate

g′(τ) f (τ, y(τ)) ≈ g′(t j+1) f
(
t j +

h
2
,

y j + y j+1

2

)
(5.5)

substituting (5.5) into (5.4), we get

yn+1 =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

g′(t j+1) f
(
t j +

h
2
,

y j + y j+1

2

)
(tn+1 − τ)α−1dτ. (5.6)

Further simplification of (5.6) leads to the below equation:

yn+1 =
hα

Γ(α + 1)

n∑
j=0

g′(t j+1) f
(
t j +

h
2
,

y j + y j+1

2

)
× [(n − j + 1)α − (n − j)α]. (5.7)

The method used to get (5.7) is implicit since we have yn+1 on the both sides when j = n. Therefore,

yn+1 =
hα

Γ(α + 1)

n∑
j=0

g′(t j+1) f
(
t j +

h
2
,

y j + y j+1

2

)
× [(n − j + 1)α − (n − j)α]

+
hα

Γ(α + 1)
f
( tn+1 + tn

2
,

yn+1 + yn

2

)
g′(tn+1), (5.8)
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where

yn+1 =
hα

Γ(α + 1)

n∑
j=0

g′(t j+1) f (t j, y j){(n − j + 1)α − (n − j)α}. (5.9)

Note that

g′(tn+1) =
g(tn+1) − g(tn)

h
, (5.10)

replacing (5.10) in the main Eqs (5.8) and (5.9), we get

yn+1 =
hα−1

Γ(α + 1)

n−1∑
j=0

[
g
( t j+1 + t j

2

)
− g(t j)

]
f
(
t j +

h
2
,

y j + y j+1

2

)
× [(n − j + 1)α − (n − j)α]

+
hα−1

Γ(α + 1)
[g(tn+1) − g(tn)] × [(n − j + 1)α − (n − j)α] f

(
tn +

h
2
,

yn+1 + yn

2

)
, (5.11)

where

yn+1 =
hα−1

Γ(α + 1)

n∑
j=0

[
g(t j+1) − g(t j)

]
f (t j, y j)[(n − j + 1)α − (n − j)α],

y1 =
hα−1

Γ(α + 1)
f (t0, y0)[g(t1) − g(t0)], y0 = y(t0). (5.12)

6. Illustrative examples

In this section, we shall solve equations and compare their exact solutions with the numerical
solutions.

Example 1.

RL
0 Dαg(t)y(t) = t2, y(0) = 0, t ∈ (0, 1), (6.1)

where g(t) = 2t. The exact solution is

y(t) = 2tα+2 Γ(3)
Γ(α + 3)

.

Results for Example 1: Here, we consider the numerical solution of Example 1 by using the
scheme given in (5.11). The numerical solution of Example 1 is shown graphically in Figure 1 by
comparing it with the exact solution. It can be seen from Figure 1 that the numerical scheme provides
accurate results for the exact solution. Further, we consider various values of the fractional order α and
provide the error and estimated order of convergence (EOC) for different subintervals. As a result of
increasing the number of subintervals N and fractional order α the error is minimizing; see Table 1.
This shows that the present method is useful and reliable and can be considered for other scientific and
engineering problems.
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Figure 1. Plot of exact and numerical solutions for Example 1.

Table 1. Results for Example 1 obtained using t ∈ (0, 1); N = number of subintervals.

N Error EOC N Error EOC

Results for α = 0.6 Results for α = 0.8
80 0.00068825 - 80 0.00017232 -
160 0.0002273 1.598 160 5.001e-05 1.785
320 7.522e-05 1.595 320 1.455e-05 1.782
640 2.49e-05 1.595 640 4.23e-06 1.781
1280 8.24e-06 1.595 1280 1.23e-06 1.783
Results for α = 0.9 Results for α = 0.99
80 7.658e-05 - 80 3.033e-05 -
160 2.078e-05 1.882 160 7.59e-06 1.999
320 5.66e-06 1.877 320 1.91e-06 1.99
640 1.54e-06 1.875 640 4.8e-07 1.986
1280 4.2e-07 1.876 1280 1.2e-07 1.984

Example 2.
RL
0 Dαg(t)y(t) = t2, y(0) = 0, t ∈ (0, 1), (6.2)

where g(t) = tβ. The exact solution is

y(t) = βΓ(β + 2)tα+β+1 1
Γ(α + β + 2)

.

Results for Example 2: We solve Example 2 by using the numerical approach shown in (5.11),
and we have obtained the results both graphically as well as in tabular form. The numerical solution of
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Example 2 is given in Figure 2 by comparing it with the exact solution. We observe that the numerical
solution obtained through the present scheme is matched well to an exact solution as given in Figure 2.
We also consider various values of the fractional order α and provide the error and EOC for different
subintervals; see Table 2. It can be observed from Table 2 that by increasing the number of subintervals
N and the fractional order α, the error is minimized; see Table 2.

Figure 2. Plot of exact and numerical solutions for Example 2.

Table 2. Results for Example 2 obtained using t ∈ (0, 1); N = number of subintervals.

N Error EOC N Error EOC

Results for α = 0.6 Results for α = 0.8
80 0.01643295 - 80 0.0035491 -
160 0.00565334 1.539 160 0.00108545 1.709
320 0.00192324 1.556 320 0.00032859 1.724
640 0.00064911 1.567 640 9.864e-05 1.736
1280 0.00021782 1.575 1280 2.941e-05 1.746
Results for α = 0.9 Results for α = 0.99
80 0.00132247 - 80 0.0003269 -
160 0.00037914 1.802 160 8.352e-05 1.969
320 0.00010799 1.812 320 2.144e-05 1.962
640 3.057e-05 1.821 640 5.51e-06 1.959
1280 8.6e-06 1.829 1280 1.42e-06 1.958

Example 3.

RL
0 Dαg(t) =

(4 − α)Γ(4)
Γ(5 − α)

t3−α, y(0) = 0, t ∈ (0, 8), (6.3)
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with g(t) = t. The exact solution is y(t) = t3.

Results for Example 3: We solve Example 3 by using the numerical approach in (5.11) and we have
obtained the results both graphically as well as in tabular form. The numerical solution of Example 3
is given in Figure 3 by comparing it with the exact solution. We observe that the scheme matches well
for this problem and the exact solution in Figure 3. Further, we provide the results for Example 3 in
Table 3 for various values of the fractional order α, and we provide the error and EOC for different
subintervals N; see Table 3. Table 3 shows that the error is minimized by increasing the number of
subintervals N and the fractional order α.

Figure 3. Plot of exact and numerical solutions for Example 3.

Table 3. Results for Example 3 obtained using t ∈ (0, 1); N = number of subintervals.

N Error EOC N Error EOC

Results for α = 0.6 Results for α = 0.8
80 0.00082668 - 80 0.00023354 -
160 0.00027342 1.596 160 6.783e-05 1.784
320 9.058e-05 1.594 320 1.974e-05 1.781
640 3.001e-05 1.594 640 5.75e-06 1.781
1280 9.94e-06 1.595 1280 1.67e-06 1.782
Results for α = 0.9 Results for α = 0.99
80 0.00010951 - 80 4.53e-05 -
160 2.972e-05 1.882 160 1.133e-05 1.999
320 8.09e-06 1.876 320 2.85e-06 1.99
640 2.21e-06 1.875 640 7.2e-07 1.986
1280 6e-07 1.876 1280 1.8e-07 1.984
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7. Conclusions

Beyond fractional ordinary nonlinear differential equations with the power law kernel, exponential
decay kernel and the generalized Mittag-Leffler kernel, there exists a class of differential equations in
which the mentioned fractional differential operators are their generalization. They are fractional
differential operators of a given function with respect to another function. This gives them the
flexibility to capture complex processes that cannot be captured by using classical fractional
differential operators. In this work, we have established very useful inequalities similar to the
Gronwall inequality that will be employed for theoretical and applied purposes. Using Nagumo’s
conditions for existence, we have derived conditions under which the equations admit unique
solutions. We have also suggested a methodology that could be used to solve these equations
numerically. We considered the detail steeping to solve the fractional system numerically and
provided examples and their exact solution, as well as presented their comparison, graphically and in
tabulated form. The results indicate that the provided scheme is accurate and one can use this for the
solution of other nonlinear systems arising in scientific and engineering areas. We shall extend this
work to other fractional operators based on exponential decay and the Mittag-Leffler kernel to obtain
the theoretical and numerical results.
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