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Abstract: The generalized Turán number ex(n,Ks,H) is defined to be the maximum number of copies
of a complete graph Ks in any H-free graph on n vertices. Let S ` denote the star on ` + 1 vertices, and
let kS ` denote the disjoint union of k copies of S `. Gan et al. and Chase determined ex(n,Ks, S `) for
all integers s ≥ 3, ` ≥ 1 and n ≥ 1. In this paper, we determine ex(n,Ks, 2S `) for all integers s ≥ 4,
` ≥ 1 and n ≥ 1.
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1. Introduction

All graphs in this paper are finite, simple and undirected. Terms and notations not defined here are
from [1]. Let S ` denote the star on ` + 1 vertices. Let G be a graph with vertex set V(G) and edge set
E(G). If v ∈ V(G), the degree of v is the number of edges incident to v, is denoted by dG(v). Let NG(v)
be the set of neighbors of v in G, and NG[v] = NG(v) ∪ {v}. Clearly, dG(v) = |NG(v)|. Let ∆(G) denote
the maximum degree of G. The vertex with degree ` in S ` is called the center of S `. For two disjoint
graphs G and H, G ∪ H denotes the disjoint union of G and H, pG denotes the disjoint union of p
copies of G and G ∨ H denotes the graph obtained from G ∪ H by adding all edges between V(G) and
V(H). For S ⊆ V(G), we use G − S to denote the subgraph obtained from G by deleting the vertices in
S together with their incident edges, and the subgraph of G induced by S is denoted by G[S ].

Let Ns(G) denote the number of copies of Ks in G. For s ≥ 2 and a given graph H, the generalized
Turán number ex(n,Ks,H) is defined to be the maximum number of copies of Ks in any H-free graph
on n vertices. An H-free graph on n vertices which contains the maximum number of copies of Ks,
is called an extremal graph for H. Moreover, we denote EX(n,Ks,H) to be the family of all extremal
graphs on n vertices for H. If s = 2, we simply write ex(n,H) for ex(n,Ks,H), which is the classical
Turán number. Turán determined ex(n,Kr+1) and showed that Tr(n) is the unique extremal graph for
Kr+1, where Tr(n) is the r-partite Turán graph on n vertices. It was shown by Simonovits [12] that if n
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is sufficiently large, then Kp−1∨Tr(n− p+1) is the unique extremal graph for pKr+1. For any connected
graph G on n vertices, Gorgol [7] gave a lower bound for ex(m, pG).

Theorem 1.1. [7] Let G be an arbitrary connected graph on n vertices, p be an arbitrary positive
integer and m be an integer such that m ≥ pn. Then ex(m, pG) ≥ max{ex(m− pn+1,G)+

(
pn−1

2

)
, ex(m−

p + 1,G) + (p − 1)(m − p + 1)}.

It is clear that ex(n, S `) = b
(`−1)n

2 c. Lidický et al. [10] determined ex(n, F) for n sufficiently large,
where F is an arbitrary star forest. For F = kS `, Lan et al. [8] determined ex(n, kS `) for n ≥ k(`2 +

` + 1) − `2 (` − 3), Erdős and Gallai [4] determined ex(n, kS 1) for all integers k ≥ 1 and n ≥ 1, Yuan
and Zhang [14] determined ex(n, kS 2) and characterized all extremal graphs for all integers k ≥ 1 and
n ≥ 1 and Li et al. [9] determined ex(n, kS `) for all integers k ≥ 2, ` ≥ 3 and n ≥ 1. Gerbner et al. [6]
investigate the function ex(n,Ks, kF), where F is a complete graph, cycle or a complete bipartite graph,
although they focus on order of magnitude results. For a path Pk, Luo [11] obtained the upper bound of
ex(n,Ks, Pk), which is an extension of Erdős-Gallai Theorem [4], and Chakraborti and Chen [2] further
determined ex(n,Ks, Pk) for every n. Wang [13] determined ex(n,Ks, kP2), Zhu et al. [17] determined
ex(n,Ks,H) for H to be an even linear forest and Zhu and Chen [16] further determined ex(n,Ks, F),
where F is any linear forest and n is sufficiently large. Moreover, Zhang et al. [15] determined the
generalized Turán number of spanning linear forests. For a star S `, Gan et al. [5] conjectured that
any graph on n vertices with maximum degree ` has at most q

(
`
3

)
+

(
r
3

)
triangles, where n = q` + r

with 0 ≤ r ≤ ` − 1, in other words, ex(n,K3, S `) = q
(
`
3

)
+

(
r
3

)
. Moreover, Gan et al. [5] also showed

their conjecture implies that ex(n,Ks, S `) = q
(
`
s

)
+

(
r
s

)
for any fixed s ≥ 4. Chase [3] fully resolved the

above Gan et al. conjecture as follows.

Theorem 1.2. [3] ex(n,K3, S `) = q
(
`
3

)
+

(
r
3

)
, where n = q` + r with 0 ≤ r ≤ ` − 1. If r ≥ 3, then

qK` ∪ Kr is the unique extremal graph. If r < 3, then qK` ∪ H is an extremal graph, where H is an
arbitrary graph on r vertices.

As mentioned above, Theorem 1.2, together with the work of Gan et al. [5], yields the general result,
for cliques of any fixed size s ≥ 3.

Theorem 1.3. [3, 5] Let s ≥ 3. Then ex(n,Ks, S `) = q
(
`
s

)
+

(
r
s

)
, where n = q` + r with 0 ≤ r ≤ ` − 1. If

r ≥ s, then qK` ∪ Kr is the unique extremal graph. If r < s, then qK` ∪ H is an extremal graph, where
H is an arbitrary graph on r vertices.

In this paper, we determine ex(n,Ks, 2S `) for all integers s ≥ 4, ` ≥ 1 and n ≥ 1.

Theorem 1.4. Let s ≥ 4.
(i) If n ≤ 2` + 1, then ex(n,Ks, 2S `) =

(
n
s

)
;

(ii) If s ≥ 2` + 2, then ex(n,Ks, 2S `) = 0;
(iii) If n ≥ 2` + 2 and s ≤ 2` + 1, let n − 1 = q` + r with 0 ≤ r ≤ ` − 1, then

ex(n,Ks, 2S `) = max
{(

2` + 1
s

)
+ (q − 2)

(
`

s

)
+

(
r
s

)
, q

(
` + 1

s

)
+

(
r + 1

s

)}
.

Note that we can obtain this lower bound of (iii) of Theorem 1.4 by simply counting the number of
copies of Ks in the graphs K2`+1 ∪ ((q − 2)K` ∪ Kr) and K1 ∨ (qK` ∪ Kr) which do not contain a copy
of 2S `.
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2. Proof of Theorem 1.4

We first give three useful lemmas.

Lemma 2.1. Let s ≥ 4 and n−1 = q`+r, where 0 ≤ r ≤ `−1. ThenNs(K1∨F) ≤ Ns(K1∨ (qK`∪Kr)),
where F is an S `-free graph on n − 1 vertices.

Proof of Lemma 2.1. By Theorem 1.3, we can see that Nk(F) ≤ Nk(qK` ∪ Kr) for all k ≥ 3. Thus by
s − 1 ≥ 3, we have Ns(F) ≤ Ns(qK` ∪ Kr) and Ns−1(F) ≤ Ns−1(qK` ∪ Kr). This implies that

Ns(K1 ∨ F) = Ns(F) +Ns−1(F)
≤ Ns(qK` ∪ Kr) +Ns−1(qK` ∪ Kr)
= Ns(K1 ∨ (qK` ∪ Kr)).

This completes the proof of Lemma 2.1. �

Lemma 2.2.
(

n−1
s

)
+

(
n−1
s−1

)
=

(
n
s

)
.

Proof of Lemma 2.2. It is trivial for n ≤ s. If n > s, then(
n−1

s

)
+

(
n−1
s−1

)
=

(n−1)(n−2)···(n−s)
s! +

(n−1)(n−2)···(n−s+1)
(s−1)!

=
(n−1)(n−2)···(n−s+1)

(s−1)! ( n−s
s + 1)

=
(n−1)(n−2)···(n−s+1)

(s−1)! · n
s

=
n(n−1)···(n−s+1)

s!

=
(

n
s

)
.

This proves Lemma 2.2. �

Lemma 2.3.
`+1∑
i=1

(
`+i−1

s−1

)
=

(
2`+1

s

)
−

(
`
s

)
.

Proof of Lemma 2.3. By Lemma 2.2, we have
(
`+i

s

)
=

(
`+i−1

s

)
+
(
`+i−1

s−1

)
for all i ∈ {1, . . . , `+1}. Therefore,

`+1∑
i=1

(
`+i−1

s−1

)
=

`+1∑
i=1

(
`+i

s

)
−
`+1∑
i=1

(
`+i−1

s

)
=

∑̀
i=1

(
`+i

s

)
+

(
2`+1

s

)
−
`+1∑
i=2

(
`+i−1

s

)
−

(
`
s

)
=

(
2`+1

s

)
−

(
`
s

)
.

This proves Lemma 2.3. �

Proof of Theorem 1.4. If n ≤ 2`+ 1, then we note that the extremal graph Kn gives the lower and upper
bounds for ex(n,Ks, 2S `), that is, ex(n,Ks, 2S `) =

(
n
s

)
. If s ≥ 2`+2, then ex(n,Ks, 2S `) = 0. Otherwise,

if ex(n,Ks, 2S `) ≥ 1, then there must be a copy of Ks in H, where H ∈ EX(n,Ks, 2S `), implying that
we can find a copy of 2S ` in H by s ≥ 2` + 2, a contradiction. Now we only consider the case that
n ≥ 2` + 2 and s ≤ 2`+1. Recall that n−1 = q`+ r, where 0 ≤ r ≤ `−1. Then n−2`−1 = (q−2)`+ r.
Denote

f = max
{(

2` + 1
s

)
+ (q − 2)

(
`

s

)
+

(
r
s

)
, q

(
` + 1

s

)
+

(
r + 1

s

)}
.

Clearly, ex(n,Ks, 2S `) ≥ f . Let G ∈ EX(n,Ks, 2S `). Then Ns(G) = ex(n,Ks, 2S `). We now prove that
Ns(G) ≤ f . To the contrary, we suppose that Ns(G) ≥ f + 1. �
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Claim 1. ∆(G) ≥ ` + 1.

Proof of Claim 1. Assume ∆(G) ≤ `. Clearly, G is an S `+1-free graph. Let n = q1(`+1)+r1, where 0 ≤
r1 ≤ `. We can obtain that n = q` + r + 1 = q1` + q1 + r1. Clearly, q1 ≤ q.

Case 1. q1 = q.

Then r1 ≤ r + 1. We can obtain that

Ns(G) ≤ ex(n,Ks, S `+1)
= q1

(
`+1

s

)
+

(
r1
s

)
≤ q

(
`+1

s

)
+

(
r+1

s

)
≤ f ,

a contradiction.

Case 2. q1 < q.

Then we have
Ns(G) ≤ ex(n,Ks, S `+1)

= q1

(
`+1

s

)
+

(
r1
s

)
≤ q1

(
`+1

s

)
+

(
`+1

s

)
= (q1 + 1)

(
`+1

s

)
≤ q

(
`+1

s

)
+

(
r+1

s

)
≤ f ,

a contradiction. This proves Claim 1. �

Claim 2. ∆(G) ≤ 2`.

Proof of Claim 2. Suppose that ∆(G) ≥ 2` + 1 and dG(u) = ∆(G) for u ∈ V(G). Then dG(v) ≤ ` for any
v ∈ V(G) and v , u. Otherwise, if dG(v) > `, then we can find two disjoint copies of S ` in G whose
centers are u and v respectively, that is, G contains a copy of 2S `, a contradiction. If dG(v) = ` for
v ∈ V(G) and v , u, then uv ∈ E(G). Otherwise, if uv < E(G), then we can find two disjoint copies of
S ` in G whose centers are u and v respectively, a contradiction. Thus ∆(G − u) < `, and G − u is an
S `-free graph. Recall that n − 1 = q` + r, where 0 ≤ r ≤ ` − 1. Then

Ns(G − u) ≤ Ns(qK` ∪ Kr) = q
(
`

s

)
+

(
r
s

)
.

By Lemma 2.1, we have

Ns(G) ≤ Ns(K1 ∨ (G − u)) ≤ Ns(K1 ∨ (qK` ∪ Kr)) = q
(
` + 1

s

)
+

(
r + 1

s

)
≤ f ,

a contradiction, which proves Claim 2. �

Let v0 ∈ V(G) and dG(v0) = ∆(G). Since `+1 ≤ ∆(G) ≤ 2`, we can find a copy of S ` (denoted by F)
in G whose center is v0. Let V(F) = {v0, v1, · · · , v`}, E(F) = {v0v1, v0v2, · · · , v0v`} and H = G − V(F).
Let x denote the number of Ks with at least one vertex in V(F).
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Claim 3. |NG(vi) \ {v0, v1, . . . , v`}| ≤ ` for all i ∈ {1, · · · , `}.

Proof of Claim 3. Assume |NG(vi) \ {v0, v1, . . . , v`}| ≥ ` + 1 for some i ∈ {1, · · · , `}. Let v ∈ NG(v0) \
{v0, v1, . . . , v`}. Then we can find a copy of S ` in G[(V(F) \ {vi}) ∪ {v}] whose center is v0. Due to
|NG(vi)\{v0, v1, . . . , v`, v}| ≥ `+1−1 = `, we can find another copy of S ` in G[NG(vi)\{v0, v1, . . . , v`, v}]
whose center is vi. Therefore, G contains a copy of 2S `, a contradiction. This proves Claim 3. �

Claim 4. x ≤
(

2`+1
s

)
−

(
`
s

)
.

Proof of Claim 4. The maximum number of copies of Ks that contains v0 is
(
|NG(v0)|

s−1

)
, and the maximum

number of copies of Ks that contains vi but does not contain any of v0, · · · , vi−1 is
(
|NG(vi)\{v0,··· ,vi−1}|

s−1

)
for i = 1, . . . , ` in turn. By Claim 3, |NG(vi) \ {v0, · · · , vi−1}| = |NG(vi) \ {v0, v1, . . . , v`}| + |NF(vi) \
{v0, · · · , vi−1}| ≤ 2` − i for i = 1, . . . , `. Moreover, |NG(v0)| ≤ 2`. Thus

x ≤
(

2`
s − 1

)
+

(
2` − 1
s − 1

)
+ · · · +

(
`

s − 1

)
.

Combining Lemma 2.3, we have

x ≤
(
2` + 1

s

)
−

(
`

s

)
.

This proves Claim 4. �

Since G is an 2S `-free graph, we have that H is an S `-free graph. Hence

Ns(H) ≤ ex(n − ` − 1,Ks, S `) = (q − 1)
(
`

s

)
+

(
r
s

)
.

By Claim 4 and Ns(G) = Ns(H) + x, then

Ns(G) ≤ (q − 1)
(
`
s

)
+

(
r
s

)
+

(
2`+1

s

)
−

(
`
s

)
=

(
2`+1

s

)
+ (q − 2)

(
`
s

)
+

(
r
s

)
≤ f ,

a contradiction. Thus Ns(G) = f . The proof of Theorem 1.4 is completed.
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