

AIMS Mathematics, 8(10): 23707–23712. DOI:10.3934/math.20231205 Received: 15 May 2023 Revised: 16 July 2023 Accepted: 27 July 2023 Published: 02 August 2023

http://www.aimspress.com/journal/Math

### **Research article**

# The generalized Turán number of $2S_{\ell}$

### Yanjiao Liu and Jianhua Yin\*

School of Mathematics and Statistics, Hainan University, Haikou 570228, China

\* Correspondence: E-mail: yinjh@hainanu.edu.cn.

**Abstract:** The generalized Turán number  $ex(n, K_s, H)$  is defined to be the maximum number of copies of a complete graph  $K_s$  in any *H*-free graph on *n* vertices. Let  $S_{\ell}$  denote the star on  $\ell + 1$  vertices, and let  $kS_{\ell}$  denote the disjoint union of *k* copies of  $S_{\ell}$ . Gan et al. and Chase determined  $ex(n, K_s, S_{\ell})$  for all integers  $s \ge 3$ ,  $\ell \ge 1$  and  $n \ge 1$ . In this paper, we determine  $ex(n, K_s, 2S_{\ell})$  for all integers  $s \ge 4$ ,  $\ell \ge 1$  and  $n \ge 1$ .

**Keywords:** generalized Turán number; disjoint copies;  $2S_{\ell}$ **Mathematics Subject Classification:** 05C35

### 1. Introduction

All graphs in this paper are finite, simple and undirected. Terms and notations not defined here are from [1]. Let  $S_{\ell}$  denote the *star* on  $\ell + 1$  vertices. Let G be a graph with vertex set V(G) and edge set E(G). If  $v \in V(G)$ , the degree of v is the number of edges incident to v, is denoted by  $d_G(v)$ . Let  $N_G(v)$ be the set of neighbors of v in G, and  $N_G[v] = N_G(v) \cup \{v\}$ . Clearly,  $d_G(v) = |N_G(v)|$ . Let  $\Delta(G)$  denote the maximum degree of G. The vertex with degree  $\ell$  in  $S_{\ell}$  is called the *center* of  $S_{\ell}$ . For two disjoint graphs G and  $H, G \cup H$  denotes the disjoint union of G and H, pG denotes the disjoint union of pcopies of G and  $G \lor H$  denotes the graph obtained from  $G \cup H$  by adding all edges between V(G) and V(H). For  $S \subseteq V(G)$ , we use G - S to denote the subgraph obtained from G by deleting the vertices in S together with their incident edges, and the subgraph of G induced by S is denoted by G[S].

Let  $N_s(G)$  denote the number of copies of  $K_s$  in G. For  $s \ge 2$  and a given graph H, the generalized Turán number  $ex(n, K_s, H)$  is defined to be the maximum number of copies of  $K_s$  in any H-free graph on n vertices. An H-free graph on n vertices which contains the maximum number of copies of  $K_s$ , is called *an extremal graph* for H. Moreover, we denote  $EX(n, K_s, H)$  to be the family of all extremal graphs on n vertices for H. If s = 2, we simply write ex(n, H) for  $ex(n, K_s, H)$ , which is the classical Turán number. Turán determined  $ex(n, K_{r+1})$  and showed that  $T_r(n)$  is the unique extremal graph for  $K_{r+1}$ , where  $T_r(n)$  is the r-partite Turán graph on n vertices. It was shown by Simonovits [12] that if n is sufficiently large, then  $K_{p-1} \lor T_r(n-p+1)$  is the unique extremal graph for  $pK_{r+1}$ . For any connected graph *G* on *n* vertices, Gorgol [7] gave a lower bound for ex(m, pG).

**Theorem 1.1.** [7] Let G be an arbitrary connected graph on n vertices, p be an arbitrary positive integer and m be an integer such that  $m \ge pn$ . Then  $ex(m, pG) \ge max\{ex(m-pn+1, G) + \binom{pn-1}{2}, ex(m-p+1, G) + (p-1)(m-p+1)\}$ .

It is clear that  $e_x(n, S_\ell) = \lfloor \frac{(\ell-1)n}{2} \rfloor$ . Lidický et al. [10] determined  $e_x(n, F)$  for *n* sufficiently large, where F is an arbitrary star forest. For  $F = kS_{\ell}$ , Lan et al. [8] determined  $ex(n, kS_{\ell})$  for  $n \ge k(\ell^2 + \ell)$  $\ell + 1$ ) –  $\frac{\ell}{2}(\ell - 3)$ , Erdős and Gallai [4] determined  $e_x(n, kS_1)$  for all integers  $k \ge 1$  and  $n \ge 1$ , Yuan and Zhang [14] determined  $ex(n, kS_2)$  and characterized all extremal graphs for all integers  $k \ge 1$  and  $n \ge 1$  and Li et al. [9] determined  $e_x(n, kS_\ell)$  for all integers  $k \ge 2, \ell \ge 3$  and  $n \ge 1$ . Gerbner et al. [6] investigate the function  $ex(n, K_s, kF)$ , where F is a complete graph, cycle or a complete bipartite graph, although they focus on order of magnitude results. For a path  $P_k$ , Luo [11] obtained the upper bound of  $ex(n, K_s, P_k)$ , which is an extension of Erdős-Gallai Theorem [4], and Chakraborti and Chen [2] further determined  $ex(n, K_s, P_k)$  for every n. Wang [13] determined  $ex(n, K_s, kP_2)$ , Zhu et al. [17] determined  $ex(n, K_s, H)$  for H to be an even linear forest and Zhu and Chen [16] further determined  $ex(n, K_s, F)$ , where F is any linear forest and n is sufficiently large. Moreover, Zhang et al. [15] determined the generalized Turán number of spanning linear forests. For a star  $S_{\ell}$ , Gan et al. [5] conjectured that any graph on n vertices with maximum degree  $\ell$  has at most  $q\binom{\ell}{3} + \binom{r}{3}$  triangles, where  $n = q\ell + r$ with  $0 \le r \le \ell - 1$ , in other words,  $e_x(n, K_3, S_\ell) = q\binom{\ell}{3} + \binom{r}{3}$ . Moreover, Gan et al. [5] also showed their conjecture implies that  $e_x(n, K_s, S_\ell) = q\binom{\ell}{s} + \binom{r}{s}$  for any fixed  $s \ge 4$ . Chase [3] fully resolved the above Gan et al. conjecture as follows.

**Theorem 1.2.** [3]  $ex(n, K_3, S_\ell) = q\binom{\ell}{3} + \binom{r}{3}$ , where  $n = q\ell + r$  with  $0 \le r \le \ell - 1$ . If  $r \ge 3$ , then  $qK_\ell \cup K_r$  is the unique extremal graph. If r < 3, then  $qK_\ell \cup H$  is an extremal graph, where H is an arbitrary graph on r vertices.

As mentioned above, Theorem 1.2, together with the work of Gan et al. [5], yields the general result, for cliques of any fixed size  $s \ge 3$ .

**Theorem 1.3.** [3, 5] Let  $s \ge 3$ . Then  $ex(n, K_s, S_\ell) = q\binom{\ell}{s} + \binom{r}{s}$ , where  $n = q\ell + r$  with  $0 \le r \le \ell - 1$ . If  $r \ge s$ , then  $qK_\ell \cup K_r$  is the unique extremal graph. If r < s, then  $qK_\ell \cup H$  is an extremal graph, where H is an arbitrary graph on r vertices.

In this paper, we determine  $ex(n, K_s, 2S_\ell)$  for all integers  $s \ge 4, \ell \ge 1$  and  $n \ge 1$ .

**Theorem 1.4.** Let 
$$s \ge 4$$
.  
(i) If  $n \le 2\ell + 1$ , then  $ex(n, K_s, 2S_\ell) = \binom{n}{s}$ ;  
(ii) If  $s \ge 2\ell + 2$ , then  $ex(n, K_s, 2S_\ell) = 0$ ;  
(iii) If  $n \ge 2\ell + 2$  and  $s \le 2\ell + 1$ , let  $n - 1 = q\ell + r$  with  $0 \le r \le \ell - 1$ , then  
 $ex(n, K_s, 2S_\ell) = \max\left\{\binom{2\ell + 1}{s} + (q - 2)\binom{\ell}{s} + \binom{r}{s}, q\binom{\ell + 1}{s} + \binom{r + 1}{s}\right\}$ .

Note that we can obtain this lower bound of (iii) of Theorem 1.4 by simply counting the number of copies of  $K_s$  in the graphs  $K_{2\ell+1} \cup ((q-2)K_\ell \cup K_r)$  and  $K_1 \vee (qK_\ell \cup K_r)$  which do not contain a copy of  $2S_\ell$ .

AIMS Mathematics

## 2. Proof of Theorem 1.4

We first give three useful lemmas.

**Lemma 2.1.** Let  $s \ge 4$  and  $n-1 = q\ell + r$ , where  $0 \le r \le \ell - 1$ . Then  $\mathcal{N}_s(K_1 \lor F) \le \mathcal{N}_s(K_1 \lor (qK_\ell \cup K_r))$ , where F is an  $S_\ell$ -free graph on n-1 vertices.

*Proof of Lemma 2.1.* By Theorem 1.3, we can see that  $\mathcal{N}_k(F) \leq \mathcal{N}_k(qK_\ell \cup K_r)$  for all  $k \geq 3$ . Thus by  $s - 1 \geq 3$ , we have  $\mathcal{N}_s(F) \leq \mathcal{N}_s(qK_\ell \cup K_r)$  and  $\mathcal{N}_{s-1}(F) \leq \mathcal{N}_{s-1}(qK_\ell \cup K_r)$ . This implies that

$$\begin{aligned} \mathcal{N}_s(K_1 \lor F) &= \mathcal{N}_s(F) + \mathcal{N}_{s-1}(F) \\ &\leq \mathcal{N}_s(qK_\ell \cup K_r) + \mathcal{N}_{s-1}(qK_\ell \cup K_r) \\ &= \mathcal{N}_s(K_1 \lor (qK_\ell \cup K_r)). \end{aligned}$$

This completes the proof of Lemma 2.1.

**Lemma 2.2.**  $\binom{n-1}{s} + \binom{n-1}{s-1} = \binom{n}{s}$ .

*Proof of Lemma 2.2.* It is trivial for  $n \le s$ . If n > s, then

$$\binom{n-1}{s} + \binom{n-1}{s-1} = \frac{(n-1)(n-2)\cdots(n-s)}{s!} + \frac{(n-1)(n-2)\cdots(n-s+1)}{(s-1)!} = \frac{(n-1)(n-2)\cdots(n-s+1)}{(s-1)!} (\frac{n-s}{s} + 1) = \frac{(n-1)(n-2)\cdots(n-s+1)}{(s-1)!} \cdot \frac{n}{s} = \frac{n(n-1)\cdots(n-s+1)}{s!} = \binom{n}{s}.$$

This proves Lemma 2.2.

Lemma 2.3. 
$$\sum_{i=1}^{\ell+1} \binom{\ell+i-1}{s-1} = \binom{2\ell+1}{s} - \binom{\ell}{s}.$$

*Proof of Lemma 2.3.* By Lemma 2.2, we have  $\binom{\ell+i}{s} = \binom{\ell+i-1}{s} + \binom{\ell+i-1}{s-1}$  for all  $i \in \{1, \dots, \ell+1\}$ . Therefore,

$$\sum_{i=1}^{s+1} \binom{\ell+i-1}{s-1} = \sum_{i=1}^{\ell+1} \binom{\ell+i}{s} - \sum_{i=1}^{\ell+1} \binom{\ell+i-1}{s} = \sum_{i=1}^{\ell} \binom{\ell+i}{s} + \binom{2\ell+1}{s} - \sum_{i=2}^{\ell+1} \binom{\ell+i-1}{s} - \binom{\ell}{s} = \binom{2\ell+1}{s} - \binom{\ell}{s}.$$

This proves Lemma 2.3.

*Proof of Theorem 1.4.* If  $n \le 2\ell + 1$ , then we note that the extremal graph  $K_n$  gives the lower and upper bounds for  $ex(n, K_s, 2S_\ell)$ , that is,  $ex(n, K_s, 2S_\ell) = \binom{n}{s}$ . If  $s \ge 2\ell + 2$ , then  $ex(n, K_s, 2S_\ell) = 0$ . Otherwise, if  $ex(n, K_s, 2S_\ell) \ge 1$ , then there must be a copy of  $K_s$  in H, where  $H \in EX(n, K_s, 2S_\ell)$ , implying that we can find a copy of  $2S_\ell$  in H by  $s \ge 2\ell + 2$ , a contradiction. Now we only consider the case that  $n \ge 2\ell + 2$  and  $s \le 2\ell + 1$ . Recall that  $n - 1 = q\ell + r$ , where  $0 \le r \le \ell - 1$ . Then  $n - 2\ell - 1 = (q - 2)\ell + r$ . Denote

$$f = \max\left\{ \binom{2\ell+1}{s} + (q-2)\binom{\ell}{s} + \binom{r}{s}, q\binom{\ell+1}{s} + \binom{r+1}{s} \right\}.$$

Clearly,  $e_X(n, K_s, 2S_\ell) \ge f$ . Let  $G \in E_X(n, K_s, 2S_\ell)$ . Then  $\mathcal{N}_s(G) = e_X(n, K_s, 2S_\ell)$ . We now prove that  $\mathcal{N}_s(G) \le f$ . To the contrary, we suppose that  $\mathcal{N}_s(G) \ge f + 1$ .

AIMS Mathematics

Volume 8, Issue 10, 23707-23712.

#### Claim 1. $\Delta(G) \ge \ell + 1$ .

*Proof of Claim 1.* Assume  $\Delta(G) \leq \ell$ . Clearly, *G* is an  $S_{\ell+1}$ -free graph. Let  $n = q_1(\ell+1) + r_1$ , where  $0 \leq r_1 \leq \ell$ . We can obtain that  $n = q\ell + r + 1 = q_1\ell + q_1 + r_1$ . Clearly,  $q_1 \leq q$ .

# **Case 1.** $q_1 = q$ .

Then  $r_1 \leq r + 1$ . We can obtain that

$$\mathcal{N}_{s}(G) \leq ex(n, K_{s}, S_{\ell+1}) \\ = q_{1}\binom{\ell+1}{s} + \binom{r_{1}}{s} \\ \leq q\binom{\ell+1}{s} + \binom{r+1}{s} \\ \leq f,$$

a contradiction.

**Case 2.**  $q_1 < q_2$ .

Then we have

$$\mathcal{N}_{s}(G) \leq ex(n, K_{s}, S_{\ell+1})$$

$$= q_{1}\binom{\ell+1}{s} + \binom{r_{1}}{s}$$

$$\leq q_{1}\binom{\ell+1}{s} + \binom{\ell+1}{s}$$

$$= (q_{1}+1)\binom{\ell+1}{s}$$

$$\leq q\binom{\ell+1}{s} + \binom{r+1}{s}$$

$$\leq f,$$

a contradiction. This proves Claim 1.

### Claim 2. $\Delta(G) \leq 2\ell$ .

*Proof of Claim 2.* Suppose that  $\Delta(G) \ge 2\ell + 1$  and  $d_G(u) = \Delta(G)$  for  $u \in V(G)$ . Then  $d_G(v) \le \ell$  for any  $v \in V(G)$  and  $v \ne u$ . Otherwise, if  $d_G(v) > \ell$ , then we can find two disjoint copies of  $S_\ell$  in G whose centers are u and v respectively, that is, G contains a copy of  $2S_\ell$ , a contradiction. If  $d_G(v) = \ell$  for  $v \in V(G)$  and  $v \ne u$ , then  $uv \in E(G)$ . Otherwise, if  $uv \notin E(G)$ , then we can find two disjoint copies of  $S_\ell$  in G whose centers are u and v respectively, a contradiction. Thus  $\Delta(G - u) < \ell$ , and G - u is an  $S_\ell$ -free graph. Recall that  $n - 1 = q\ell + r$ , where  $0 \le r \le \ell - 1$ . Then

$$\mathcal{N}_{s}(G-u) \leq \mathcal{N}_{s}(qK_{\ell} \cup K_{r}) = q\binom{\ell}{s} + \binom{r}{s}$$

By Lemma 2.1, we have

$$\mathcal{N}_{s}(G) \leq \mathcal{N}_{s}(K_{1} \vee (G-u)) \leq \mathcal{N}_{s}(K_{1} \vee (qK_{\ell} \cup K_{r})) = q\binom{\ell+1}{s} + \binom{r+1}{s} \leq f,$$

a contradiction, which proves Claim 2.

Let  $v_0 \in V(G)$  and  $d_G(v_0) = \Delta(G)$ . Since  $\ell + 1 \leq \Delta(G) \leq 2\ell$ , we can find a copy of  $S_\ell$  (denoted by F) in G whose center is  $v_0$ . Let  $V(F) = \{v_0, v_1, \dots, v_\ell\}$ ,  $E(F) = \{v_0v_1, v_0v_2, \dots, v_0v_\ell\}$  and H = G - V(F). Let x denote the number of  $K_s$  with at least one vertex in V(F).

AIMS Mathematics

**Claim 3.**  $|N_G(v_i) \setminus \{v_0, v_1, ..., v_\ell\}| \le \ell$  for all  $i \in \{1, ..., \ell\}$ .

*Proof of Claim 3.* Assume  $|N_G(v_i) \setminus \{v_0, v_1, \ldots, v_\ell\}| \ge \ell + 1$  for some  $i \in \{1, \cdots, \ell\}$ . Let  $v \in N_G(v_0) \setminus \{v_0, v_1, \ldots, v_\ell\}$ . Then we can find a copy of  $S_\ell$  in  $G[(V(F) \setminus \{v_i\}) \cup \{v\}]$  whose center is  $v_0$ . Due to  $|N_G(v_i) \setminus \{v_0, v_1, \ldots, v_\ell, v\}| \ge \ell + 1 - 1 = \ell$ , we can find another copy of  $S_\ell$  in  $G[N_G(v_i) \setminus \{v_0, v_1, \ldots, v_\ell, v\}]$  whose center is  $v_i$ . Therefore, G contains a copy of  $2S_\ell$ , a contradiction. This proves Claim 3.

**Claim 4.**  $x \leq \binom{2\ell+1}{s} - \binom{\ell}{s}$ .

*Proof of Claim 4.* The maximum number of copies of  $K_s$  that contains  $v_0$  is  $\binom{|N_G(v_0)|}{s-1}$ , and the maximum number of copies of  $K_s$  that contains  $v_i$  but does not contain any of  $v_0, \dots, v_{i-1}$  is  $\binom{|N_G(v_i) \setminus \{v_0, \dots, v_{i-1}\}|}{s-1}$  for  $i = 1, \dots, \ell$  in turn. By Claim 3,  $|N_G(v_i) \setminus \{v_0, \dots, v_{i-1}\}| = |N_G(v_i) \setminus \{v_0, v_1, \dots, v_\ell\}| + |N_F(v_i) \setminus \{v_0, \dots, v_{i-1}\}| \le 2\ell - i$  for  $i = 1, \dots, \ell$ . Moreover,  $|N_G(v_0)| \le 2\ell$ . Thus

$$x \leq \binom{2\ell}{s-1} + \binom{2\ell-1}{s-1} + \dots + \binom{\ell}{s-1}.$$

Combining Lemma 2.3, we have

$$x \le \binom{2\ell+1}{s} - \binom{\ell}{s}.$$

This proves Claim 4.

Since G is an  $2S_{\ell}$ -free graph, we have that H is an  $S_{\ell}$ -free graph. Hence

$$\mathcal{N}_{s}(H) \leq ex(n-\ell-1,K_{s},S_{\ell}) = (q-1)\binom{\ell}{s} + \binom{r}{s}$$

By Claim 4 and  $\mathcal{N}_s(G) = \mathcal{N}_s(H) + x$ , then

$$\mathcal{N}_{s}(G) \leq (q-1)\binom{\ell}{s} + \binom{r}{s} + \binom{2\ell+1}{s} - \binom{\ell}{s}$$
$$= \binom{2\ell+1}{s} + (q-2)\binom{\ell}{s} + \binom{r}{s}$$
$$\leq f,$$

a contradiction. Thus  $N_s(G) = f$ . The proof of Theorem 1.4 is completed.

#### Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

#### Acknowledgments

Supported by Hainan Provincial Natural Science Foundation of China (No. 122RC545). The authors would like to thank the referees for their helpful suggestions and comments.

AIMS Mathematics

# **Conflict of interest**

The authors declare no conflict of interest.

# References

- 1. J. Bondy, U. Murty, Graph theory with applications, North-Holland: Elsevier Science, 1976.
- 2. D. Chakraborti, D. Chen, Exact results on generalized Erdős-Gallai problems, arXiv:2006.04681.
- 3. Z. Chase, The maximum number of triangles in a graph of given maximum degree, *Advances in Combinatorics*, in press. http://dx.doi.org/10.19086/aic.16788
- 4. P. Erdős, T. Gallai, On maximal paths and circuits of graphs, *Acta Mathematica Academiae Scientiarum Hungaricae*, **10** (1959), 337–356. http://dx.doi.org/10.1007/BF02024498
- 5. W. Gan, P. Loh, B. Sudakov, Maximizing the number of independent sets of a fixed size, *Combin. Probab. Comput.*, **24** (2015), 521–527. http://dx.doi.org/10.1017/S0963548314000546
- 6. D. Gerbner, A. Methuku, M. Vizer, Generalized Turán problems for disjoint copies of graphs, *Discrete Math.*, **342** (2019), 3130–3141. http://dx.doi.org/10.1016/j.disc.2019.06.022
- 7. I. Gorgol, Turán numbers for disjoint copies of graphs, *Graph. Combinator.*, **27** (2011), 661–667. http://dx.doi.org/10.1007/s00373-010-0999-5
- 8. Y. Lan, T. Li, Y. Shi, J. Tu, The Turán number of star forests, *Appl. Math. Comput.*, **348** (2019), 270–274. http://dx.doi.org/10.1016/j.amc.2018.12.004
- 9. S. Li, J. Yin, J. Li, The Turán number of  $kS_{\ell}$ , Discrete Math., **345** (2022), 112653. http://dx.doi.org/10.1016/j.disc.2021.112653
- 10. B. Lidický, H. Liu, C. Palmer, On the Turán number of forests, *Electron. J. Comb.*, **20** (2013), 1–13. http://dx.doi.org/10.37236/3142
- 11. R. Luo, The maximum number of cliques in graphs without long cycles, *J. Comb. Theory B*, **128** (2018), 219–226. http://dx.doi.org/10.1016/j.jctb.2017.08.005
- 12. M. Simonovits, A method for solving extremal problems in extremal graph theory, In: *Theory of graphs*, New York: Academic Press, 1968, 279–319.
- 13. J. Wang, The shifting method and generalized Turán number of matchings, *Eur. J. Combin.*, **85** (2020), 103057. http://dx.doi.org/10.1016/j.ejc.2019.103057
- 14. L. Yuan, X. Zhang, The Turán number of disjoint copies of paths, *Discrete Math.*, **340** (2017), 132–139. http://dx.doi.org/10.1016/j.disc.2016.08.004
- 15. L. Zhang, L. Wang, J. Zhou, The generalized Turán number of spanning linear forests, *Graph. Combinator.*, **38** (2022), 40. http://dx.doi.org/10.1007/s00373-021-02403-9
- 16. X. Zhu, Y. Chen, Generalized Turán number for linear forests, *Discrete Math.*, **345** (2022), 112997. http://dx.doi.org/10.1016/j.disc.2022.112997
- 17. X. Zhu, F. Zhang, Y. Chen, Generalized Turán number of even linear forests, *Graph. Combinator.*, 37 (2021), 1437–1449. http://dx.doi.org/10.1007/s00373-021-02329-2



© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics