Research article

The generalized Turán number of $2 S_{\ell}$

Yanjiao Liu and Jianhua Yin*

School of Mathematics and Statistics, Hainan University, Haikou 570228, China

* Correspondence: E-mail: yinjh@hainanu.edu.cn.

Abstract

The generalized Turán number ex $\left(n, K_{s}, H\right)$ is defined to be the maximum number of copies of a complete graph K_{s} in any H-free graph on n vertices. Let S_{ℓ} denote the star on $\ell+1$ vertices, and let $k S_{\ell}$ denote the disjoint union of k copies of S_{ℓ}. Gan et al. and Chase determined $e x\left(n, K_{s}, S_{\ell}\right)$ for all integers $s \geq 3, \ell \geq 1$ and $n \geq 1$. In this paper, we determine $e x\left(n, K_{s}, 2 S_{\ell}\right)$ for all integers $s \geq 4$, $\ell \geq 1$ and $n \geq 1$.

Keywords: generalized Turán number; disjoint copies; $2 S_{\ell}$
Mathematics Subject Classification: 05C35

1. Introduction

All graphs in this paper are finite, simple and undirected. Terms and notations not defined here are from [1]. Let S_{ℓ} denote the star on $\ell+1$ vertices. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. If $v \in V(G)$, the degree of v is the number of edges incident to v, is denoted by $d_{G}(v)$. Let $N_{G}(v)$ be the set of neighbors of v in G, and $N_{G}[v]=N_{G}(v) \cup\{v\}$. Clearly, $d_{G}(v)=\left|N_{G}(v)\right|$. Let $\Delta(G)$ denote the maximum degree of G. The vertex with degree ℓ in S_{ℓ} is called the center of S_{ℓ}. For two disjoint graphs G and $H, G \cup H$ denotes the disjoint union of G and $H, p G$ denotes the disjoint union of p copies of G and $G \vee H$ denotes the graph obtained from $G \cup H$ by adding all edges between $V(G)$ and $V(H)$. For $S \subseteq V(G)$, we use $G-S$ to denote the subgraph obtained from G by deleting the vertices in S together with their incident edges, and the subgraph of G induced by S is denoted by $G[S]$.

Let $\mathcal{N}_{s}(G)$ denote the number of copies of K_{s} in G. For $s \geq 2$ and a given graph H, the generalized Turán number $e x\left(n, K_{s}, H\right)$ is defined to be the maximum number of copies of K_{s} in any H-free graph on n vertices. An H-free graph on n vertices which contains the maximum number of copies of K_{s}, is called an extremal graph for H. Moreover, we denote $E X\left(n, K_{s}, H\right)$ to be the family of all extremal graphs on n vertices for H. If $s=2$, we simply write $e x(n, H)$ for $e x\left(n, K_{s}, H\right)$, which is the classical Turán number. Turán determined $e x\left(n, K_{r+1}\right)$ and showed that $T_{r}(n)$ is the unique extremal graph for K_{r+1}, where $T_{r}(n)$ is the r-partite Turán graph on n vertices. It was shown by Simonovits [12] that if n
is sufficiently large, then $K_{p-1} \vee T_{r}(n-p+1)$ is the unique extremal graph for $p K_{r+1}$. For any connected graph G on n vertices, Gorgol [7] gave a lower bound for $e x(m, p G)$.

Theorem 1.1. [7] Let G be an arbitrary connected graph on n vertices, p be an arbitrary positive integer and m be an integer such that $m \geq p n$. Then ex $(m, p G) \geq \max \left\{e x(m-p n+1, G)+\binom{p n-1}{2}\right.$,ex $(m-$ $p+1, G)+(p-1)(m-p+1)\}$.

It is clear that $e x\left(n, S_{\ell}\right)=\left\lfloor\frac{(\ell-1) n}{2}\right\rfloor$. Lidický et al. [10] determined $e x(n, F)$ for n sufficiently large, where F is an arbitrary star forest. For $F=k S_{\ell}$, Lan et al. [8] determined ex $\left(n, k S_{\ell}\right)$ for $n \geq k\left(\ell^{2}+\right.$ $\ell+1)-\frac{\ell}{2}(\ell-3)$, Erdős and Gallai [4] determined $e x\left(n, k S_{1}\right)$ for all integers $k \geq 1$ and $n \geq 1$, Yuan and Zhang [14] determined ex($n, k S_{2}$) and characterized all extremal graphs for all integers $k \geq 1$ and $n \geq 1$ and Li et al. [9] determined $e x\left(n, k S_{\ell}\right)$ for all integers $k \geq 2, \ell \geq 3$ and $n \geq 1$. Gerbner et al. [6] investigate the function $e x\left(n, K_{s}, k F\right)$, where F is a complete graph, cycle or a complete bipartite graph, although they focus on order of magnitude results. For a path P_{k}, Luo [11] obtained the upper bound of $e x\left(n, K_{s}, P_{k}\right)$, which is an extension of Erdős-Gallai Theorem [4], and Chakraborti and Chen [2] further determined $\operatorname{ex}\left(n, K_{s}, P_{k}\right)$ for every n. Wang [13] determined $e x\left(n, K_{s}, k P_{2}\right)$, Zhu et al. [17] determined $e x\left(n, K_{s}, H\right)$ for H to be an even linear forest and Zhu and Chen [16] further determined ex $\left(n, K_{s}, F\right)$, where F is any linear forest and n is sufficiently large. Moreover, Zhang et al. [15] determined the generalized Turán number of spanning linear forests. For a star S_{ℓ}, Gan et al. [5] conjectured that any graph on n vertices with maximum degree ℓ has at most $q\binom{\ell}{3}+\binom{r}{3}$ triangles, where $n=q \ell+r$ with $0 \leq r \leq \ell-1$, in other words, ex $\left(n, K_{3}, S_{\ell}\right)=q\binom{\ell}{3}+\binom{r}{3}$. Moreover, Gan et al. [5] also showed their conjecture implies that $e x\left(n, K_{s}, S_{\ell}\right)=q\binom{\ell}{s}+\binom{r}{s}$ for any fixed $s \geq 4$. Chase [3] fully resolved the above Gan et al. conjecture as follows.
Theorem 1.2. [3] ex $\left(n, K_{3}, S_{\ell}\right)=q\binom{\ell}{3}+\binom{r}{3}$, where $n=q \ell+r$ with $0 \leq r \leq \ell-1$. If $r \geq 3$, then $q K_{\ell} \cup K_{r}$ is the unique extremal graph. If $r<3$, then $q K_{\ell} \cup H$ is an extremal graph, where H is an arbitrary graph on r vertices.

As mentioned above, Theorem 1.2, together with the work of Gan et al. [5], yields the general result, for cliques of any fixed size $s \geq 3$.
Theorem 1.3. [3,5] Let $s \geq 3$. Then ex $\left(n, K_{s}, S_{\ell}\right)=q\binom{\ell}{s}+\binom{r}{s}$, where $n=q \ell+r$ with $0 \leq r \leq \ell-1$. If $r \geq s$, then $q K_{\ell} \cup K_{r}$ is the unique extremal graph. If $r<s$, then $q K_{\ell} \cup H$ is an extremal graph, where H is an arbitrary graph on r vertices.

In this paper, we determine $e x\left(n, K_{s}, 2 S_{\ell}\right)$ for all integers $s \geq 4, \ell \geq 1$ and $n \geq 1$.
Theorem 1.4. Let $s \geq 4$.
(i) If $n \leq 2 \ell+1$, then ex $\left(n, K_{s}, 2 S_{\ell}\right)=\binom{n}{s}$;
(ii) If $s \geq 2 \ell+2$, then $e x\left(n, K_{s}, 2 S_{\ell}\right)=0$;
(iii) If $n \geq 2 \ell+2$ and $s \leq 2 \ell+1$, let $n-1=q \ell+r$ with $0 \leq r \leq \ell-1$, then

$$
\operatorname{ex}\left(n, K_{s}, 2 S_{\ell}\right)=\max \left\{\binom{2 \ell+1}{s}+(q-2)\binom{\ell}{s}+\binom{r}{s}, q\binom{\ell+1}{s}+\binom{r+1}{s}\right\} .
$$

Note that we can obtain this lower bound of (iii) of Theorem 1.4 by simply counting the number of copies of K_{s} in the graphs $K_{2 \ell+1} \cup\left((q-2) K_{\ell} \cup K_{r}\right)$ and $K_{1} \vee\left(q K_{\ell} \cup K_{r}\right)$ which do not contain a copy of $2 S_{\ell}$.

2. Proof of Theorem 1.4

We first give three useful lemmas.
Lemma 2.1. Let $s \geq 4$ and $n-1=q \ell+r$, where $0 \leq r \leq \ell-1$. Then $\mathcal{N}_{s}\left(K_{1} \vee F\right) \leq \mathcal{N}_{s}\left(K_{1} \vee\left(q K_{\ell} \cup K_{r}\right)\right)$, where F is an S_{i}-free graph on $n-1$ vertices.
Proof of Lemma 2.1. By Theorem 1.3, we can see that $\mathcal{N}_{k}(F) \leq \mathcal{N}_{k}\left(q K_{\ell} \cup K_{r}\right)$ for all $k \geq 3$. Thus by $s-1 \geq 3$, we have $\mathcal{N}_{s}(F) \leq \mathcal{N}_{s}\left(q K_{\ell} \cup K_{r}\right)$ and $\mathcal{N}_{s-1}(F) \leq \mathcal{N}_{s-1}\left(q K_{\ell} \cup K_{r}\right)$. This implies that

$$
\begin{aligned}
\mathcal{N}_{s}\left(K_{1} \vee F\right) & =\mathcal{N}_{s}(F)+\mathcal{N}_{s-1}(F) \\
& \leq \mathcal{N}_{s}\left(q K_{\ell} \cup K_{r}\right)+\mathcal{N}_{s-1}\left(q K_{\ell} \cup K_{r}\right) \\
& =\mathcal{N}_{s}\left(K_{1} \vee\left(q K_{\ell} \cup K_{r}\right)\right) .
\end{aligned}
$$

This completes the proof of Lemma 2.1.
Lemma 2.2. $\binom{n-1}{s}+\binom{n-1}{s-1}=\binom{n}{s}$.
Proof of Lemma 2.2. It is trivial for $n \leq s$. If $n>s$, then

$$
\begin{aligned}
\binom{n-1}{s}+\binom{n-1}{s-1} & =\frac{(n-1)(n-2) \cdots(n-s)}{s!}+\frac{(n-1)(n-2) \cdots(n-s+1)}{(s-1)!} \\
& =\frac{(n-1)(n-2) \cdots(n-s+1)}{(s-\cdots-s}\left(\frac{n-1)}{s}+1\right) \\
& =\frac{(n-1)(n-2) \cdots(n-s+1)}{(s-1)!} \cdot \frac{n}{s} \\
& =\frac{n(n-1) \cdot(n-s+1)}{s!} \\
& =\binom{n}{s} .
\end{aligned}
$$

This proves Lemma 2.2.
Lemma 2.3. $\sum_{i=1}^{\ell+1}\binom{\ell+i-1}{s-1}=\binom{2 \ell+1}{s}-\binom{\ell}{s}$.
Proof of Lemma 2.3. By Lemma 2.2, we have $\binom{\ell+i}{s}=\binom{\ell+i-1}{s}+\binom{\ell+i-1}{s-1}$ for all $i \in\{1, \ldots, \ell+1\}$. Therefore,

$$
\begin{aligned}
\sum_{i=1}^{\ell+1}\binom{\ell+i-1}{s-1} & =\sum_{i=1}^{\ell+1}\binom{\ell+i}{s}-\sum_{i=1}^{\ell+1}\binom{\ell+i-1}{s} \\
& =\sum_{i=1}^{\ell}\binom{\ell+i}{s}+\binom{2 \ell+1}{s}-\sum_{i=2}^{\ell+1}\binom{\ell+i-1}{s}-\binom{\ell}{s} \\
& =\binom{2 \ell+1}{s}-\binom{\ell}{s} .
\end{aligned}
$$

This proves Lemma 2.3.
Proof of Theorem 1.4. If $n \leq 2 \ell+1$, then we note that the extremal graph K_{n} gives the lower and upper bounds for $e x\left(n, K_{s}, 2 S_{\ell}\right)$, that is, $e x\left(n, K_{s}, 2 S_{\ell}\right)=\binom{n}{s}$. If $s \geq 2 \ell+2$, then $e x\left(n, K_{s}, 2 S_{\ell}\right)=0$. Otherwise, if $e x\left(n, K_{s}, 2 S_{\ell}\right) \geq 1$, then there must be a copy of K_{s} in H, where $H \in E X\left(n, K_{s}, 2 S_{\ell}\right)$, implying that we can find a copy of $2 S_{\ell}$ in H by $s \geq 2 \ell+2$, a contradiction. Now we only consider the case that $n \geq 2 \ell+2$ and $s \leq 2 \ell+1$. Recall that $n-1=q \ell+r$, where $0 \leq r \leq \ell-1$. Then $n-2 \ell-1=(q-2) \ell+r$. Denote

$$
f=\max \left\{\binom{2 \ell+1}{s}+(q-2)\binom{\ell}{s}+\binom{r}{s}, q\binom{\ell+1}{s}+\binom{r+1}{s}\right\} .
$$

Clearly, ex $\left(n, K_{s}, 2 S_{\ell}\right) \geq f$. Let $G \in E X\left(n, K_{s}, 2 S_{\ell}\right)$. Then $\mathcal{N}_{s}(G)=e x\left(n, K_{s}, 2 S_{\ell}\right)$. We now prove that $\mathcal{N}_{s}(G) \leq f$. To the contrary, we suppose that $\mathcal{N}_{s}(G) \geq f+1$.

Claim 1. $\Delta(G) \geq \ell+1$.
Proof of Claim 1. Assume $\Delta(G) \leq \ell$. Clearly, G is an $S_{\ell+1}$-free graph. Let $n=q_{1}(\ell+1)+r_{1}$, where $0 \leq$ $r_{1} \leq \ell$. We can obtain that $n=q \ell+r+1=q_{1} \ell+q_{1}+r_{1}$. Clearly, $q_{1} \leq q$.

Case 1. $q_{1}=q$.
Then $r_{1} \leq r+1$. We can obtain that

$$
\begin{aligned}
\mathcal{N}_{s}(G) & \leq \operatorname{ex}\left(n, K_{s}, S_{\ell+1}\right) \\
& =q_{1}\binom{(+1}{s}+\left(\begin{array}{c}
\binom{r_{1}}{s} \\
\\
\end{array}\right) q\binom{(+1}{s}+\binom{r+1}{s} \\
& \leq f,
\end{aligned}
$$

a contradiction.
Case 2. $q_{1}<q$.
Then we have

$$
\begin{aligned}
\mathcal{N}_{s}(G) & \leq \operatorname{ex}\left(n, K_{s}, S_{\ell+1}\right) \\
& =q_{1}\binom{\ell+1}{s}+\binom{\left(c_{1}\right.}{s} \\
& \leq q_{1}\binom{\ell+1}{s}+\binom{\ell+1}{s} \\
& =\left(q_{1}+1\right)\binom{(+1}{s} \\
& \leq q\binom{(+1}{s}+\binom{r+1}{s} \\
& \leq f,
\end{aligned}
$$

a contradiction. This proves Claim 1.
Claim 2. $\Delta(G) \leq 2 \ell$.
Proof of Claim 2. Suppose that $\Delta(G) \geq 2 \ell+1$ and $d_{G}(u)=\Delta(G)$ for $u \in V(G)$. Then $d_{G}(v) \leq \ell$ for any $v \in V(G)$ and $v \neq u$. Otherwise, if $d_{G}(v)>\ell$, then we can find two disjoint copies of S_{ℓ} in G whose centers are u and v respectively, that is, G contains a copy of $2 S_{\ell}$, a contradiction. If $d_{G}(v)=\ell$ for $v \in V(G)$ and $v \neq u$, then $u v \in E(G)$. Otherwise, if $u v \notin E(G)$, then we can find two disjoint copies of S_{ℓ} in G whose centers are u and v respectively, a contradiction. Thus $\Delta(G-u)<\ell$, and $G-u$ is an S_{ℓ}-free graph. Recall that $n-1=q \ell+r$, where $0 \leq r \leq \ell-1$. Then

$$
\mathcal{N}_{s}(G-u) \leq \mathcal{N}_{s}\left(q K_{\ell} \cup K_{r}\right)=q\binom{\ell}{s}+\binom{r}{s} .
$$

By Lemma 2.1, we have

$$
\mathcal{N}_{s}(G) \leq \mathcal{N}_{s}\left(K_{1} \vee(G-u)\right) \leq \mathcal{N}_{s}\left(K_{1} \vee\left(q K_{\ell} \cup K_{r}\right)\right)=q\binom{\ell+1}{s}+\binom{r+1}{s} \leq f
$$

a contradiction, which proves Claim 2.
Let $v_{0} \in V(G)$ and $d_{G}\left(v_{0}\right)=\Delta(G)$. Since $\ell+1 \leq \Delta(G) \leq 2 \ell$, we can find a copy of S_{ℓ} (denoted by F) in G whose center is v_{0}. Let $V(F)=\left\{v_{0}, v_{1}, \cdots, v_{\ell}\right\}, E(F)=\left\{v_{0} v_{1}, v_{0} v_{2}, \cdots, v_{0} v_{\ell}\right\}$ and $H=G-V(F)$. Let x denote the number of K_{s} with at least one vertex in $V(F)$.

Claim 3. $\left|N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, v_{1}, \ldots, v_{\ell}\right\}\right| \leq \ell$ for all $i \in\{1, \cdots, \ell\}$.
Proof of Claim 3. Assume $\left|N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, v_{1}, \ldots, v_{\ell}\right\}\right| \geq \ell+1$ for some $i \in\{1, \cdots, \ell\}$. Let $v \in N_{G}\left(v_{0}\right) \backslash$ $\left\{v_{0}, v_{1}, \ldots, v_{\ell}\right\}$. Then we can find a copy of S_{ℓ} in $G\left[\left(V(F) \backslash\left\{v_{i}\right\}\right) \cup\{v\}\right]$ whose center is v_{0}. Due to $\left|N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, v_{1}, \ldots, v_{\ell}, v\right\}\right| \geq \ell+1-1=\ell$, we can find another copy of S_{ℓ} in $G\left[N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, v_{1}, \ldots, v_{\ell}, v\right\}\right]$ whose center is v_{i}. Therefore, G contains a copy of $2 S_{\ell}$, a contradiction. This proves Claim 3 .

Claim 4. $x \leq\binom{ 2 \ell+1}{s}-\binom{\ell}{s}$.
Proof of Claim 4. The maximum number of copies of K_{s} that contains v_{0} is $\binom{\left[N_{G}\left(v_{0}\right) \mid\right.}{s-1}$, and the maximum number of copies of K_{s} that contains v_{i} but does not contain any of v_{0}, \cdots, v_{i-1} is $\binom{\mid N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, \cdots, v_{i-1} \mid\right\}}{s-1}$ for $i=1, \ldots, \ell$ in turn. By Claim $3,\left|N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, \cdots, v_{i-1}\right\}\right|=\left|N_{G}\left(v_{i}\right) \backslash\left\{v_{0}, v_{1}, \ldots, v_{\ell}\right\}\right|+\mid N_{F}\left(v_{i}\right) \backslash$ $\left\{v_{0}, \cdots, v_{i-1}\right\} \mid \leq 2 \ell-i$ for $i=1, \ldots, \ell$. Moreover, $\left|N_{G}\left(v_{0}\right)\right| \leq 2 \ell$. Thus

$$
x \leq\binom{ 2 \ell}{s-1}+\binom{2 \ell-1}{s-1}+\cdots+\binom{\ell}{s-1} .
$$

Combining Lemma 2.3, we have

$$
x \leq\binom{ 2 \ell+1}{s}-\binom{\ell}{s} .
$$

This proves Claim 4.
Since G is an $2 S_{\ell}$-free graph, we have that H is an S_{ℓ}-free graph. Hence

$$
\mathcal{N}_{s}(H) \leq \operatorname{ex}\left(n-\ell-1, K_{s}, S_{\ell}\right)=(q-1)\binom{\ell}{s}+\binom{r}{s} .
$$

By Claim 4 and $\mathcal{N}_{s}(G)=\mathcal{N}_{s}(H)+x$, then

$$
\begin{aligned}
\mathcal{N}_{s}(G) & \leq(q-1)\binom{\ell}{s}+\binom{r}{s}+\binom{2 \ell+1}{s}-\binom{\ell}{s} \\
& =\binom{2 \ell+1}{s}+(q-2)\binom{\ell}{s}+\binom{r}{s} \\
& \leq f,
\end{aligned}
$$

a contradiction. Thus $\mathcal{N}_{s}(G)=f$. The proof of Theorem 1.4 is completed.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Supported by Hainan Provincial Natural Science Foundation of China (No. 122RC545).
The authors would like to thank the referees for their helpful suggestions and comments.

Conflict of interest

The authors declare no conflict of interest.

References

1. J. Bondy, U. Murty, Graph theory with applications, North-Holland: Elsevier Science, 1976.
2. D. Chakraborti, D. Chen, Exact results on generalized Erdős-Gallai problems, arXiv:2006.04681.
3. Z. Chase, The maximum number of triangles in a graph of given maximum degree, Advances in Combinatorics, in press. http://dx.doi.org/10.19086/aic. 16788
4. P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Mathematica Academiae Scientiarum Hungaricae, 10 (1959), 337-356. http://dx.doi.org/10.1007/BF02024498
5. W. Gan, P. Loh, B. Sudakov, Maximizing the number of independent sets of a fixed size, Combin. Probab. Comput., 24 (2015), 521-527. http://dx.doi.org/10.1017/S0963548314000546
6. D. Gerbner, A. Methuku, M. Vizer, Generalized Turán problems for disjoint copies of graphs, Discrete Math., 342 (2019), 3130-3141. http://dx.doi.org/10.1016/j.disc.2019.06.022
7. I. Gorgol, Turán numbers for disjoint copies of graphs, Graph. Combinator, 27 (2011), 661-667. http://dx.doi.org/10.1007/s00373-010-0999-5
8. Y. Lan, T. Li, Y. Shi, J. Tu, The Turán number of star forests, Appl. Math. Comput., $\mathbf{3 4 8}$ (2019), 270-274. http://dx.doi.org/10.1016/j.amc.2018.12.004
9. S. Li, J. Yin, J. Li, The Turán number of $k S_{\ell}$, Discrete Math., 345 (2022), 112653. http://dx.doi.org/10.1016/j.disc.2021.112653
10. B. Lidický, H. Liu, C. Palmer, On the Turán number of forests, Electron. J. Comb., 20 (2013), 1-13. http://dx.doi.org/10.37236/3142
11. R. Luo, The maximum number of cliques in graphs without long cycles, J. Comb. Theory B, $\mathbf{1 2 8}$ (2018), 219-226. http://dx.doi.org/10.1016/j.jctb.2017.08.005
12. M. Simonovits, A method for solving extremal problems in extremal graph theory, In: Theory of graphs, New York: Academic Press, 1968, 279-319.
13. J. Wang, The shifting method and generalized Turán number of matchings, Eur. J. Combin., 85 (2020), 103057. http://dx.doi.org/10.1016/j.ejc.2019.103057
14. L. Yuan, X. Zhang, The Turán number of disjoint copies of paths, Discrete Math., $\mathbf{3 4 0}$ (2017), 132-139. http://dx.doi.org/10.1016/j.disc.2016.08.004
15. L. Zhang, L. Wang, J. Zhou, The generalized Turán number of spanning linear forests, Graph. Combinator, 38 (2022), 40. http://dx.doi.org/10.1007/s00373-021-02403-9
16. X. Zhu, Y. Chen, Generalized Turán number for linear forests, Discrete Math., 345 (2022), 112997. http://dx.doi.org/10.1016/j.disc.2022.112997
17. X. Zhu, F. Zhang, Y. Chen, Generalized Turán number of even linear forests, Graph. Combinator., 37 (2021), 1437-1449. http://dx.doi.org/10.1007/s00373-021-02329-2
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
