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Abstract: We present a stochastic time-delay susceptible-exposed-asymptomatic-symptom-
vaccinated-recovered (SEAQVR) model with media publicity effect in this study. The model takes
into account the impacts of noise, time delay and public sensitivity on infectious illness propagation.
The stochastic dynamics of the system are analyzed at the Hopf bifurcation, using time delay and
noise intensity as bifurcation parameters, and the theoretical conclusions are validated using numerical
simulation. Increasing the time delay and sensitivity coefficient can effectively delay the occurrence
of the peak number of infected individuals and mitigate the extent of infection. Additionally, time
delay and noise intensity are shown to have specific thresholds, beyond which periodic infections
occur. Notably, heightened public sensitivity reduces the threshold for time delay, and media publicity
directly affects public sensitivity. The numerical simulation reveals that increasing media publicity
intensity does not always yield better results, and that the sensitivity of the public at present is an
important reference index for setting an appropriate publicity intensity.
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1. Introduction

In recent years, the dynamics of infectious diseases have changed fundamentally as a result of
population increase, faster urbanization, climate change and economic globalization. Particularly,
people have become more prone to infectious illness epidemics, and particular microbes have gained
medication resistance. We have also discovered substantial changes in vector ecology, such as
increased Aedes activity, which leads to increased disease dissemination. Furthermore, because of
modern society’s high degree of connectedness and urbanization, diseases are more prone to spread
among people [1]. Dengue fever broke out globally in 2016, resulting in 100 million illnesses
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and 38,000 deaths [2]. When an infectious disease spreads, it not only harms people’s bodily and
mental health, but it also necessitates the use of human, material and financial resources to manage it.
In some developing countries, serious infectious diseases will generate civil discontent and impede
social development. As a result, analyzing the transmission trend of infectious diseases and
controlling measures is critical.

In 1972, Kermack and McKendrick constructed the SIR cabin model [3] by using the dynamic
system modeling method, which divided the population into three types and studied the disease’s
spread law and epidemic mechanism in detail, laying the theoretical foundation for the dynamic
model of infectious diseases. In recent years, Korolev developed an SEIRD model which outlines
how to use supplementary information from random tests to calibrate the model’s initial parameters
and restrict the range of probable forecasts for future deaths [4]. The SEAIR model was developed by
Basnarkov, who discovered that the centrality of feature vectors roughly determines the chance of
infection [5]. He et al. proposed a fractional discrete-time SIR model with vaccination, which proved
and quantified the complex dynamics of the system [6]. Meng et al. developed the SEIRV model and
an evolutionary game model to investigate the differences between forced and voluntary inoculation
methods in heterogeneous networks [7]. Goel developed an SIR model with a Holling type-II
treatment rate and used the Lyapunov approach to investigate the stability of the equilibrium point [8].

The media is crucial in the prevention and control of infectious diseases [9]. When an epidemic
spreads in a country, the government employs the media to educate citizens on how to appropriately
respond. The execution of certain policies and the dissemination of information will have an impact
on human behavior [10, 11]. Public preventative measures that are implemented on time and
effectively can significantly reduce the infection rate [12]. The intensities of publicity, cultural level
and social duty may influence people’s sensitivity to information published in the media [13, 14].
Individualism, collectivism and ethnic diversity will each have an impact on how people respond to
health emergencies [15].

Examining the impact of time delay on system stability constitutes a crucial aspect of investigating
system dynamics. Studying the epidemic model with time delay can better depict the transmission
mechanism of illnesses because most biological processes involve time delay. Misra et al. analyzed the
stability and direction of the Hopf bifurcation, as well as the time delay of carrying out an awareness
plan [16]. According to Gutierrez et al., a delay in reporting the death toll resulted in a significant
increase in illness severity [17]. The public’s behavior and psychological state will be impacted by the
media’s delayed reporting of the pandemic scenario, which is also influenced by technology, capability,
resources and other variables.

Random factors strongly impact the propagation of infectious illnesses in nature. Factors such
as immunity, temperature and humidity, for example, will affect the infection rate. People will take
different countermeasures based on the heterogeneity of information, which will interfere with the
infection rate. The deterministic equation has been idealized. In comparison to the deterministic
equation, the stochastic equation can more accurately represent the actual scenario [18–23]. According
to the Din et al. stochastic model, noise assured the extinction of the hepatitis B virus [24]. Krause
et al. extended the random SIS epidemic model to the spatial network, thus obtaining the random
epidemic ensemble population model; they discovered that Gaussian white noise can be used to offset
the cure rate [25]. These random factors can be approximately simulated by Gaussian white noise
and introduced into the deterministic epidemic model to study the influence of noise on the dynamic
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behavior of the system [26].
Based on the model presented in [27], this paper examines the influence of reporting time delay

and Gaussian white noise on infection rates. It introduces the sensitivity coefficient, denoted as “k,”
which represents the public’s responsiveness to the number of newly infected individuals displaying
symptoms. A stochastic differential equation model incorporating time delay is developed. Excessive
promotion or non-dissemination of information about infectious diseases is generally not
recommended. By conducting dynamic analyses of time delay, noise intensity and the sensitivity
coefficient, this research provides valuable insights for media organizations to devise appropriate
publicity strategies. Numerical simulations were performed to investigate the impact of different
levels of public sensitivity on the selection of effective publicity intensity.

This paper is structured as follows: In the second section, we provide a detailed explanation of the
SEAVQR model, the calculation of the basic reproductive number and the necessary conditions for
the existence of the endemic equilibrium point. We further investigate the Hopf bifurcation conditions
and present the stability analysis. The third section focuses on deriving the stochastic Itô equation and
examining the occurrence of stochastic bifurcation. In the fourth section, we discuss the numerical
simulation to analyze the respective influences of reporting time delay, the sensitivity coefficient and
noise intensity on the spread of infectious diseases. Finally, in the fifth part, we summarize the findings
from the preceding sections.

2. The analysis of the model

Building upon the model proposed in [27], we consider the effects of noise, reporting time delay
and the sensitivity coefficient on the infection rate β, and introduce the SEAQVR model. Figure 1
illustrates the schematic diagram of the model, while the model itself is described as follows:

dS
dt
= (1 − η)Ω + ΓV −

βAS
N
− µS ,

dE
dt
=
βAS

N
+
βgAV

N
− (φ + µ)E,

dA
dt
= αφE − (ρ + µ + δ)A,

dQ
dt
= (1 − α)φE − (γ + µ + δ)Q,

dV
dt
= ηΩ −

βgAV
N
− (Γ + µ)V,

dR
dt
= ρA + γQ − µR,

β (k, τ, t) =
β0

1 +
(
k + ε

1
2 ξ(t)

)
arc tan (Q(t) − Q(t − τ))

.

(2.1)
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Figure 1. Model schematic diagram.

Population has been divided into six categories: susceptible (S ), exposed (E), asymptomatic
infected (A), symptomatic infected (Q), vaccinated (V) and recovered (R). Ω denotes the
supplementary population, µ represents the natural mortality rate, δ signifies the mortality rate, φ
denotes the rate of transition from exposed individuals to infected individuals and γ refers to the
recovery rate of infected individuals, both symptomatic and asymptomatic. η denotes the vaccination
rate, while Γ represents the rate of vaccine failure. α represents the proportion of symptomatic
individuals among the infected population, whereas β and βg denote the infection rates
post-vaccination and without vaccination, respectively. We posit that β is influenced by the collective
awareness of prevention among the general public. As the number of infections escalates, individuals
often proactively adopt measures to safeguard themselves and impede the transmission chain, while
also bolstering their own immunity. k is the coefficient of sensitivity of the public to the number of
new symptomatic infections. Naturally, the level of protection corresponds to the sensitivity of the
public. The greater the sensitivity, the more active and vigilant are the protective measures. However,
in real-world situations, the public’s sensitivity to the number of newly infected individuals varies.
For instance, if the public lacks accurate information, society becomes permeated with feelings of fear
and confusion, consequently disrupting the public’s sensitivity. With a range of

(
−π2 ,

π
2

)
, arc tan x is a

monotonically increasing odd function with a flat change and global boundedness. The model
becomes more logical because it can adjust the infection rate β within (0, 1). ξ (t) is Gaussian white
noise with a power spectral density, and ε is a sufficiently small-scale parameter.

The basic reproductive number R0 represents the average number of infections in a susceptible
population for an infected person in a disturbance-free system. There is always a disease-free
equilibrium point P1(S 1, E1, A1,Q1,V1,R1) in the system, where S 1 =

Ω(Γ+µ(1−η))
µ(µ+Γ) , V1 =

ηΩ

Γ+µ
and

E1 = A1 = Q1 = R1 = 0. The basic reproductive number of the undisturbed model, as calculated via
the next-generation matrix method [28], is

R0 =
Ωφα

(
ηµ

(
βg − β0

)
+ β0 (µ + Γ)

)
µN (µ + Γ) (µ + ρ + δ) (φ + µ)

.

Next, the dynamic behavior near the endemic equilibrium point is considered.

Theorem 2.1. If R0 > 1, system (2.1) has an endemic equilibrium. If R0 < 1, system (2.1) has no
endemic equilibrium.
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Proof. Assuming that the right-hand term of the first six equations in (2.1) are equal to 0, we can
determine the endemic equilibrium point P∗ (S ∗, E∗, A∗,Q∗,V∗,R∗), where

S ∗ = N(1−η)Ω
β0A∗+µN +

ΓηΩN2

(β0A∗+µN)(βgA∗+ΓN+µN) ,

E∗ = ρ+µ+δ

αφ
A∗,

V∗ = ηΩN
βgA∗+ΓN+µN ,

Q∗ = (1−α)(ρ+µ+δ)
(γ+µ+δ)α A∗,

R∗ =
(
ρ

µ
+

γ(1−α)(ρ+µ+δ)
µα(γ+µ+δ)

)
A∗.

A∗ satisfies the following equation:

D (A∗) = m1A∗2 + m2A∗ + m3 = 0, (2.2)

where
m1 = −β0Nβg(µ + φ)(δ + µ + ρ)
m2 = αβ0NφΩβg − µN2βg(µ + φ)(δ + µ + ρ) − β0N2(Γ + µ)(µ + φ)(δ + µ + ρ)
m3 = αηµN2φΩβg + αβ0N2φΩ(Γ − ηµ + µ) − µN3(Γ + µ)(µ + φ)(δ + µ + ρ).
Clearly, considering the condition m1 < 0, let us assume that A1 and A2 represent two roots of (2.2).

If the condition R0 > 1 is met, we have that m3 > 0. Then, A1A2 < 0 is obtained, indicating the
existence of a positive root among the two roots, and, consequently, an endemic equilibrium point. □

In the case of R0 < 1, m3 < 0. So, we have that A1A2 > 0, indicating that both roots can be either
positive or negative. In this scenario, the following formula holds.

m2 = αβ0NφΩβg − µN2βg(µ + φ)(δ + µ + ρ) − β0N2(Γ + µ)(µ + φ)(δ + µ + ρ)

<
1

(Γ + µ)N

(
αηµφΩ

(
β0 − βg

)
−
β0

βg
N(Γ + µ)2(µ + φ)(δ + µ + ρ)

)
< 0.

Consequently, A1 + A2 < 0, indicating that both roots are negative and there is no existence of an
endemic equilibrium point.

Considering that the first five equations of (2.1) do not account for the recovered individuals (R), the
following only analyzes the first five equations and linearizes the system at the endemic equilibrium
point. Let εx1 = S − S ∗, εx2 = E − E∗, εx3 = A− A∗, εx4 = V − V∗ and εx5 = Q −Q∗. The equilibrium
point of (2.1) is shifted to the origin, and the equation is expressed in vector form as follows:

dX(t)
dt = A1X (t) + A2X (t − τ) + F,

A1 =


H11 0 H13 H14 H15

H21 H22 H23 H24 −H15

0 H32 H33 0 0
0 0 H43 H44 0
0 H52 0 0 H55


,
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A2 =


0 0 0 0 −H15

0 0 0 0 H15

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

in which

H11 = −µ −
β0A∗

N ; H13 = −
β0S ∗

N ; H14 = Γ; H15 =
β0kA∗S ∗

N ;
H21 =

β0A∗

N ; H22 = −φ − µ; H23 =
βgV∗

N +
β0S ∗

N ; H24 =
βgA∗

N ;
H32 = αφ; H33 = −ρ − µ − δ; H43 = −

βgV∗

N ; H44 = −
βgA∗

N − Γ − µ;
H52 = −(α − 1)φ; H55 = −γ − µ − δ.

Without Gaussian white noise, (2.1) can be linearized as follows.

dx1

dt
= −

(
β0A∗

N
+ µ

)
x1 −

β0S ∗

N
x3 + Γx4 + A∗S ∗

β0k
N

(x5 − x5 (t − τ)) ,

dx2

dt
=
β0A∗

N
x1 − (µ + φ) x2 +

(
β0S ∗

N
+
βgV∗

N

)
x3 +

βgA∗

N
x4 − A∗S ∗

β0k
N

(x5 − x5 (t − τ)) ,

dx3

dt
= αφx2 − (δ + µ + ρ) x3,

dx4

dt
= −

βgV∗

N
x3 −

(
Γ + µ +

βgA∗

N

)
x4,

dx5

dt
= (1 − α)φx2 − (γ + δ + µ) x5.

(2.3)

The characteristic equation corresponding to (2.3) is∣∣∣λI − A1 − A2e−λτ
∣∣∣ = (

λ + Γ + µ +
βgA∗

N

)
(λ + δ + µ + ρ) ( f1 (λ) − f2 (λ)) = 0, (2.4)

where f1 (λ) =
(
λ +

βgA∗

N + µ
)

(λ + µ + φ) (λ + γ + δ + µ), f2 (λ) = (1 − α)φA∗S ∗ β0k
N

(
1 − e−λτ

)
(λ + µ) .

Given that λ1 = −
(
Γ + µ +

βgA∗

N

)
, λ2 = − (δ + µ + ρ) and f2 (0) = 0 , whether or not 0 is the root of

the characteristic equation relies on whether f1(0) = 0. Since f1(0) > 0, it follows that 0 cannot be the
root of the characteristic equation given by (2.4).

In order to determine if endemic diseases are stable at their equilibrium point when τ = 0, the
characteristic equation given by (2.4) is then transformed into the following.(

λ + Γ + µ +
βgA∗

N

)
(λ + δ + µ + ρ) f1 (λ) = 0.

Hence, λ3 = −
(
βgA∗

N + µ
)
, λ4 = − (µ + φ) and λ5 = − (γ + δ + µ). All roots of the characteristic

equation (2.4) have negative real parts, and the equilibrium point of endemic diseases is locally
asymptotically stable.

Following this, take into account the scenario in which τ > 0, λ = iω and the characteristic equation
are equivalent to

f1 (iω) − f2 (iω) = 0. (2.5)
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Separating the real part from the imaginary part, we get

sinωτ =
ω

(
γ + δ + φ + 2µ + βgA∗

N

)
(1 − α)φA∗S ∗ β0k

N

−
ω
βgA∗

N φ (γ + δ)

(1 − α)φA∗S ∗ β0k
N

(
ω2 + µ2) ,

cosωτ =
ω2 − (γ + δ + µ + φ)

(
µ +

βgA∗

N

)
− φ (γ + δ)

(1 − α)φA∗S ∗ β0k
N

−
µφ (γ + δ) βgA∗

N(
ω2 + µ2) (1 − α)φA∗S ∗ β0k

N

+ 1.

(2.6)

Squaring and adding together the two equations in (2.6), we have

ω8 + d1ω
6 + d2ω

4 + d3ω
2 + d4 = 0. (2.7)

Writing z = ω2, (2.7) is equivalent to

L (z) = z4 + d1z3 + d2z2 + d3z + d4 = 0, (2.8)

where

d1 = (γ + δ + φ + 2µ)2 + 2 (1 − α)φA∗S ∗
β0k
N

> 0,

d2 = 2
(
γ + δ + φ + 2µ +

βgA∗

N

) (
µ2

(
γ + δ + φ + 2µ +

βgA∗

N

)
−
βgA∗

N
φ (γ + δ)

)
+

(
µ2 − H

)2
+ 2 (1 − α)φA∗S ∗

β0k
N

(
2µ2 − H

)
−

(
2µ2H + 2µφ (γ + δ)

βgA∗

N

)
,

d3 =

(
µ2

(
γ + δ + φ + 2µ +

βgA∗

N

)
−
βgA∗

N
φ (γ + δ)

)2

+ 2
(
µ2 − H

) (
(1 − α)φA∗S ∗

β0k
N
µ2 −

(
µ2H + µφ (γ + δ)

βgA∗

N

))
− (1 − α)φA∗S ∗

β0k
N

(
2µ2H + 2µφ (γ + δ)

βgA∗

N

)
,

d4 =

(
µ2H + µφ (γ + δ)

βgA∗

N

)2

− µ2 (1 − α)φA∗S ∗
β0k
N

(
2µ2H + 2µφ (γ + δ)

βgA∗

N

)
,

H = (γ + δ + φ + µ)
(
µ +

βgA∗

N

)
+ φ (γ + δ) .

Since lim
z→∞

L(z) = ∞, if condition (H1): ∃z∗ > 0, L (z∗) < 0 holds, (2.8) has at least one positive real root

zi (1 ⩽ i ⩽ 4); thus, (2.7) has at least one positive real root ωi =
√

zi. Equation (2.6) can be transformed
as follows:

(1) If cosωiτ < 0,

τi j =
1
ωi

arc sin

ωi

(
γ + δ + φ + 2µ + βgA∗

N

)
(1 − α)φA∗S ∗ β0k

N

−
ωi

βgA∗

N φ (γ + δ)

(1 − α)φA∗S ∗ β0k
N

(
ωi

2 + µ2
)  + (2 j + 1) π

ωi
( j = 0, 1, 2, ...) ; (2.9)
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23585

(2) If cosωiτ > 0 and sinωiτ > 0,

τi j = −
1
ωi

arc sin

ωi

(
γ + δ + φ + 2µ + βgA∗

N

)
(1 − α)φA∗S ∗ β0k

N

−
ωi

βgA∗

N φ (γ + δ)

(1 − α)φA∗S ∗ β0k
N

(
ωi

2 + µ2
)  + 2 jπ

ωi
( j = 0, 1, 2, ...) ; (2.10)

(3) If cosωiτ > 0 and sinωiτ < 0,

τi j = −
1
ωi

arc sin

ωi

(
γ + δ + φ + 2µ + βgA∗

N

)
(1 − α)φA∗S ∗ β0k

N

−
ωi

βgA∗

N φ (γ + δ)

(1 − α)φA∗S ∗ β0k
N

(
ωi

2 + µ2
)  + (2 j + 2) π

ωi
( j = 0, 1, 2, ...) . (2.11)

Defining τ0 = min {τi0, i = 1, 2, 3, 4, 5}, when τ = τ0, λ = ±iω0 (ω0 > 0) denotes a pair of pure
imaginary roots of (2.4).

Theorem 2.2. If R0 > 1 and H1 and H2: m =
(
−3ω0

2 + b
) (
−cω0

2 cosω0τ0 + dω0 sinω0τ0

)
+

2aω0

(
dω0 cosω0τ0 + cω0

2 sinω0τ0

)
−c2ω0

2 , 0 are satisfied, the system will generate Hopf bifurcation
at the endemic equilibrium point.

Proof. Differentiating the two sides of (2.5) with respect to τ, the Hopf transversality condition is as
follows: (

dλ
dτ

)−1

=
3λ2 + 2aλ + b(
cλ2 + dλ

)
e−λτ
+

1
λ2 + µλ

−
τ

λ
,

where a = βgA∗

N + 3µ + φ + γ + δ,
b =

(
βgA∗

N + µ
)

(µ + φ) +
(
βgA∗

N + µ
)

(γ + δ + µ) + (µ + φ) (γ + δ + µ),
c = − (1 − α)φA∗S ∗ β0k

N ,
d = µc.

Re
(

dλ
dτ

)−1
∣∣∣∣∣∣∣
τ=τ0

=

(
−3ω0

2 + b
) (
−cω0

2 cosω0τ0 + dω0 sinω0τ0

)
+ 2aω0

(
dω0 cosω0τ0 + cω0

2 sinω0τ0

)
− c2ω0

2

c2 (
ω0

4 + µ2ω0
2) .

Re
(

dλ
dτ

)
and Re

(
dλ
dτ

)−1
have the same signs. Therefore, if condition (H2) holds, according to Hopf

bifurcation theory, Hopf bifurcation occurs at τ = τ0, and the theorem is proved. □

3. Reduction and stochastic bifurcation of systems

In this section, the stochastic center manifold theorem is used to convert the stochastic differential
equation with time delay into a stochastic differential equation.

Assuming that
(
iω − A1 − A2e−iωτ0

)
q(0) = 0 , q(0) is the eigenvector. Let q(θ) = q(0)eiωθ, and,

combined with Euler’s formula, we have that Φ (θ) =
(
ϕ1 (θ) ϕ2 (θ)

)
, where ϕ1 (θ) = Re (q (θ)) and

ϕ2 (θ) = Im (q (θ)). Then, we obtain

Φ (θ) =


ϕ11 (θ) ϕ21 (θ)
ϕ12 (θ) ϕ22 (θ)
ϕ13 (θ) ϕ23 (θ)
ϕ14 (θ) ϕ24 (θ)
ϕ15 (θ) ϕ25 (θ)


,−τ ⩽ θ ⩽ 0,
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ϕ11 (θ) =
N cosω0θ

β0A∗

µ + φ − (
β0S ∗

N
+
βgV∗

N

)
αφ (δ + µ + ρ)

(δ + µ + ρ)2 + ω0
2
+

βg
2A∗V∗φα

N
(
(δ + µ + ρ)2 + ω0

2
)

+
(δ + µ + ρ)

(
A∗βg + ΓN + µN

)
− ω0

2N(
A∗βg + ΓN + µN

)2
+ ω0

2N2

N cosω0θ

β0A∗

+ S ∗k cosω0θ

(
(cosω0τ0 − 1)

(αφ − φ) (δ + µ + γ)
(δ + µ + γ)2 + ω0

2
− sinω0τ0

(αφ − φ)ω0

(δ + µ + γ)2 + ω0
2

)
−

N
β0A∗

sinω0θ

(
ω0 +

(
β0S ∗

N
+
βgV∗

N

)
αφω0

(δ + µ + ρ)2 + ω0
2

)

−
N
β0A∗

sinω0θ

−βg
2A∗V∗φα

(
(δ + µ + ρ)ω0N + ω0

(
A∗βg + ΓN + µN

))
N

(
(δ + µ + ρ)2 + ω0

2
) ((

A∗βg + ΓN + µN
)2
+ ω0

2N2
)


+ S ∗k sinω0θ

(
(cosω0τ0 − 1)

(αφ − φ)ω0

(δ + µ + γ)2 + ω0
2
+ sinω0τ0

(αφ − φ) (δ + µ + γ)
(δ + µ + γ)2 + ω0

2

)
,

ϕ21 (θ) =
N sinω0θ

β0A∗

µ + φ − (
β0S ∗

N
+
βgV∗

N

)
αφ (δ + µ + ρ)

(δ + µ + ρ)2 + ω0
2
+

βg
2A∗V∗φα

N
(
(δ + µ + ρ)2 + ω0

2
)

+
N sinω0θ

β0A∗
(δ + µ + ρ)

(
A∗βg + ΓN + µN

)
− ω0

2N(
A∗βg + ΓN + µN

)2
+ ω0

2N2

+ S ∗k
(
(cosω0τ0 − 1)

(αφ − φ) (δ + µ + γ)
(δ + µ + γ)2 + ω0

2
− sinω0τ0

(αφ − φ)ω0

(δ + µ + γ)2 + ω0
2

)
sinω0θ

+
N cosω0θ

β0A∗
ω0 +

(
β0S ∗

N
+
βgV∗

N

)
αφω0

(δ + µ + ρ)2 + ω0
2

−
βg

2A∗V∗φα
(
(δ + µ + ρ)ω0N + ω0

(
A∗βg + ΓN + µN

))
N

(
(δ + µ + ρ)2 + ω0

2
) ((

A∗βg + ΓN + µN
)2
+ ω0

2N2
) N cosω0θ

β0A∗

+ S ∗k
(
− (cosω0τ0 − 1)

(αφ − φ)ω0

(δ + µ + γ)2 + ω0
2
−

sinω0τ0 (αφ − φ) (δ + µ + γ)
(δ + µ + γ)2 + ω0

2

)
cosω0θ,

ϕ12 (θ) = cosω0θ,

ϕ22 (θ) = sinω0θ,

ϕ13 (θ) =
αφ (δ + µ + ρ)

(δ + µ + ρ)2 + ω0
2

cosω0θ +
αφω0

(δ + µ + ρ)2 + ω0
2

sinω0θ,

ϕ23 (θ) =
αφ (δ + µ + ρ)

(δ + µ + ρ)2 + ω0
2

sinω0θ −
αφω0

(δ + µ + ρ)2 + ω0
2

cosω0θ,
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ϕ14 (θ) = −
αφυβg

[
(δ + µ + ρ)

(
A∗βg + ΓN + µN

)
− ω0

2N
]

[
(δ + µ + ρ)2 + ω0

2
] [(

A∗βg + ΓN + µN
)2
+ ω0

2N2
] cosω0θ

−
αφυβg

[
ω0N (δ + µ + ρ) +

(
A∗βg + ΓN + µN

)
ω0

]
(
δ + µ + ρ + aβg + ΓN + µN − ω0

2N
)2
+ ω0

2
(
A∗βg + ΓN + µN + δ + µ + ρ

)2 sinω0θ,

ϕ24 (θ) = −
αφυβg

[
(δ + µ + ρ)

(
A∗βg + ΓN + µN

)
− ω0

2N
]

[
(δ + µ + ρ)2 + ω0

2
] [(

A∗βg + ΓN + µN
)2
+ ω0

2N2
] sinω0θ

+
αφυβg

[
ω0N (δ + µ + ρ) +

(
A∗βg + ΓN + µN

)
ω0

]
(
δ + µ + ρ + aβg + ΓN + µN − ω0

2N
)2
+ ω0

2
(
A∗βg + ΓN + µN + δ + µ + ρ

)2 cosω0θ,

ϕ15 (θ) = −
(αφ − φ) (δ + µ + γ)
(δ + µ + γ)2 + ω0

2
cosω0θ −

ω0 (αφ − φ)
(δ + µ + γ)2 + ω0

2
sinω0θ,

ϕ25 (θ) = −
(αφ − φ) (δ + µ + γ)
(δ + µ + γ)2 + ω0

2
sinω0θ +

ω0 (αφ − φ)
(δ + µ + γ)2 + ω0

2
cosω0θ,

According to the adjoint relation of Φ (θ) and Ψ (s), we get

Ψ (s) =
(
ψ1 (s)
ψ2 (s)

)
=

(
lψ11 (s) ψ12 (s) ψ13 (s) ψ14 (s) ψ15 (s)
ψ21 (s) ψ22 (s) ψ23 (s) ψ24 (s) ψ25 (s)

)
,

ψ11 (s) = cosω0s,

ψ21 (s) = sinω0s,

ψ12 (s) =
(
µN

A∗β0
+ 1

)
cosω0s +

Nω0

A∗β0
sinω0s,

ψ22 (s) =
(
µN

A∗β0
+ 1

)
sinω0s −

Nω0

A∗β0
cosω0s,

ψ13 (s) =
{

(α − 1)
α

kS ∗
[
(γ + δ + µ) (µ − µ cosω0τ0 − ω0 sinω0τ0) − ω0 (−ω0 − µ sinω0τ0 + ω0 cosω0τ0)

]
(γ + δ + µ)2 + ω2

+
1
αφ

[
µN + A∗β0

A∗β0
(µ + φ) −

Nω0
2

A∗β0

]}
cosω0s +

{
Nω0 (µ + φ)

A∗β0
+
ω0 (µN + A∗β0)

A∗β0
−

(α − 1)
α

kS ∗
[
(γ + δ + µ) (−ω0 − µ sinω0τ0 + ω0 cosω0τ0) + ω0 (µ − µ cosω0τ0 − ω0 sinω0τ0)

]
(γ + δ + µ)2 + ω2

}
sinω0s,

ψ23 (s) =
{

(α − 1)
α

kS ∗
[
(γ + δ + µ) (µ − µ cosω0τ0 − ω0 sinω0τ0) − ω0 (−ω0 − µ0 sinω0τ0 + ω0 cosω0τ0)

]
(γ + δ + µ)2 + ω2

+
1
αφ

[
µN + A∗β0

A∗β0
(µ + φ) −

Nω0
2

A∗β0

]}
sinω0s +

{
−

Nω0 (µ + φ)
A∗β0

−
ω0 (µN + A∗β0)

A∗β0

+
(α − 1)
α

kS ∗
[
(γ + δ + µ) (−ω0 − µ0 sinω0τ0 + ω0 cosω0τ0) + ω0 (µ − µ cosω0τ0 − ω0 sinω0τ0)

]
(γ + δ + µ)2 + ω2

}
cosω0s,
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ψ14 (s) = −
(−ΓNβ0 − µNβg − A∗β0βg)

(
ΓN + µN + A∗βg

)
− N2ω2βg

β0

[
(ΓN + µN + A∗βg)2 + N2ω2

] cosω0s

+

(
ΓN + µN + A∗βg

)
Nωβg

β0

[
(ΓN + µN + A∗βg)2 + N2ω2

] sinω0s,

ψ24 (s) = −
(−ΓNβ0 − µNβg − A∗β0βg)

(
ΓN + µN + A∗βg

)
− N2ω2βg

β0

[
(ΓN + µN + A∗βg)2 + N2ω2

] sinω0s

−

(
ΓN + µN + A∗βg

)
Nωβg

β0

[
(ΓN + µN + A∗βg)2 + N2ω2

] cosω0s,

ψ15 (s) =
kS ∗

[
(γ + δ + µ) (µ − µ cosω0τ0 − ω0 sinω0τ0) + ω0 (ω0 + µ0 sinω0τ0 − ω0 cosω0τ0)

]
(γ + δ + µ)2 + ω2

cosω0s

−
kS ∗

[
(γ + δ + µ) (−ω0 − µ sinω0τ0 + ω0 cosω0τ0) + ω0 (µ − µ cosω0τ0 − ω0 sinω0τ0)

]
(γ + δ + µ)2 + ω2

sinω0s,

ψ25 (s) =
kS ∗

[
(γ + δ + µ) (µ − µ cosω0τ0 − ω0 sinω0τ0) − ω0 (−ω0 − µ0 sinω0τ0 + ω0 cosω0τ0)

]
(γ + δ + µ)2 + ω2

sinω0s

+
kS ∗

[
(γ + δ + µ) (−ω0 − µ0 sinω0τ0 + ω0 cosω0τ0) + ω0ks (µ − µ cosω0τ0 − ω0 sinω0τ0)

]
(γ + δ + µ)2 + ω2

cosω0s.

The solution space C of the linearized equation is spanned by the two-dimensional subspace P,
which is composed of pure, virtual eigenvalues at Hopf bifurcation points, and the infinite-dimensional
subspace Q, which is composed of the other eigenvalues, that is, C = P⊕Q. Furthermore, the basis for
P is Φ (θ) and Ψ (s). We find that ψ j ∈ C

(
[0, τ] ,R2

)
and ϕk ∈ C

(
[−τ, 0] ,R2

)
, j, k = 1, 2. The center

manifold M f ⊆ C ([−τ, 0],Rn) tangent to P is obtained. The defined bilinear operator is as follows:

(
ψ j(s), φk(θ)

)
=

(
ψ j(0), φk(0)

)
−

∫ 0

−τ

∫ τ

0
ψ j(ζ + τ)[dη(θ, µ)]φk(ζ)dζ,

where η (θ, µ) = A1δ (θ) − A2δ (θ + τ0 + µ) and δ (θ) is the Dirac delta function.
Next, substituting (Ψ (s) , Φ (θ)) into the bilinear function, the non-singular matrix is obtained:

(Ψ,Φ)nsg =

(
n11 n12

n21 n22

)
,

n11 = ϕ11 (0)ψ11 (0) + ϕ12 (0)ψ12 (0) + ϕ13 (0)ψ13 (0) + ϕ14 (0)ψ14 (0) + ϕ15 (0)ψ15 (0)

− A∗S ∗
β0k
2N

(
ϕ15 (0)

(
1
ω0

sinω0τ0 + τ0 cosω0τ0

)
+ ϕ25 (0) τ0 sinω0τ0

)
+ A∗S ∗

β0k
N

(
ψ12 (0) ϕ15 (0) + ω0τ0ψ12 (0) ϕ25 (0) − ω0τ0ψ22 (0) ϕ15 (0) − ψ22 (0) ϕ25 (0)

2ω0
sinω0τ0

+

(
τ0

2
ψ12 (0) ϕ15 (0) +

τ0

2
ψ22 (0) ϕ25 (0)

)
cosω0τ0

)
,
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n12 = ϕ21 (0)ψ11 (0) + ϕ22 (0)ψ12 (0) + ϕ23 (0)ψ13 (0) + ϕ24 (0)ψ14 (0) + ϕ25 (0)ψ15 (0)

− A∗S ∗
β0k
N

(
−
τ0

2
ϕ15 (0) sinωτ0 + ϕ25 (0)

(
1

2ω0
sinω0τ0 +

τ0

2
cosω0τ0

))
+ A∗S ∗

β0k
N

((
τ0

2
ϕ25 (0)ψ12 (0) −

τ0

2
ϕ15 (0)ψ22 (0)

)
cosω0τ0

+

(
−
τ0

2
ϕ15 (0)ψ12 (0) +

1
2ω0

ϕ25 (0)ψ12 (0) +
1

2ω0
ϕ15 (0)ψ22 (0) −

τ0

2
ϕ25 (0)ψ22 (0)

)
sinω0τ0

)
,

n21 = ϕ11 (0)ψ21 (0) + ϕ12 (0)ψ22 (0) + ϕ13 (0)ψ23 (0) + ϕ14 (0)ψ24 (0) + ϕ15 (0)ψ25 (0)

− as
β0k
N

(
τ0

2
ϕ15 (0) sinωτ0 + ϕ25 (0)

(
1

2ω0
sinω0τ0 −

τ0

2
cosω0τ0

))
+ as

β0k
N

((
−
τ0

2
ϕ25 (0)ψ12 (0) +

τ0

2
ϕ15 (0)ψ22 (0)

)
cosω0τ0

+

(
τ0

2
ϕ15 (0)ψ12 (0) +

1
2ω0

ϕ25 (0)ψ12 (0) +
1

2ω0
ϕ15 (0)ψ22 (0) −

τ0

2
ϕ25 (0)ψ22 (0)

)
sinω0τ0

)
,

n22 = ϕ21 (0)ψ21 (0) + ϕ22 (0)ψ22 (0) + ϕ23 (0)ψ23 (0) + ϕ24 (0)ψ24 (0) + ϕ25 (0)ψ25 (0)

− as
β0k
N

(
ϕ15 (0)

(
−

1
2ω0

sinω0τ0 +
τ0

2
cosω0τ0

)
+ ϕ25 (0)

τ0

2
sinω0τ0

)
+ as

β0k
N

((
τ0

2
ψ12 (0) ϕ15 (0) +

τ0

2
ψ22 (0) ϕ25 (0)

)
cosω0τ0

+
−ϕ15 (0)ψ12 (0) + ω0τ0ϕ25 (0)ψ12 (0) − ω0τ0ϕ15 (0)ψ22 (0) + ϕ25 (0)ψ22 (0)

2ω0
sinω0τ0

)
.

The normalization process for Ψ (s) to Ψ̄ (s) is Ψ̄ (s) =< Ψ (s) ,Φ (θ) >−1 Ψ(s) , and the result is as
follows:

Ψ̄ (s) =
(
ψ̄11 (s) ψ̄12 (s) ψ̄13 (s) ψ̄14 (s) ψ̄15 (s)
ψ̄21 (s) ψ̄22 (s) ψ̄23 (s) ψ̄24 (s) ψ̄25 (s)

)
.

Substituting
(
Ψ̄ (s) , Φ (θ)

)
into the bilinear function, the identity matrix is obtained:

(
Ψ̄ , Φ

)
id
=

(
1 0
0 1

)
.

Xt (ϕ (θ) , τ, ε) is the only solution of the original nonlinear delay differential equation, where
ϕ (θ) ∈ C. By dividing Xt (ϕ (θ) , τ, ε) and ϕ (θ) into Xt (ϕ (θ) , τ, ε) = xP

t (ϕ (θ) , τ, ε) + xQ
t (ϕ (θ) , τ, ε)

and ϕ (θ) = ϕP (θ) + ϕQ (θ), respectively, xP
t (ϕ (θ) , τ, ε) and ϕP (θ) become members of the space P.

xQ
t (ϕ (θ) , τ, ε) and ϕQ (θ) belong to the space Q.

With regard to the definition of Φ̇ (θ) = Φ (θ) B, it can be expressed as Φ (θ) = Φ (0) eBθ,−τ ⩽

θ ⩽ 0 and Ψ̄ (s) = eBsΨ̄ (0) , 0 ⩽ s ⩽ τ , where B =
(

0 ω0

−ω0 0

)
as

(
Ψ̄ , Φ

)
id
= I . Therefore,
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the solution of the equation can be obtained through the projection of ϕP(θ) = Φ(θ)B ∈ C onto the
center manifold M f for the integral equation Xt (ϕ (θ) , τ, ε). By changing variables through the formula
xP

t (θ) = Φ(θ)y(t) + xQ
t (θ), where y (t) ∈ R2, the first order approximation in ε for θ = −τ is obtained.

x1 (t) = ϕ11 (0) y1 + ϕ21 (0) y2,

x2 (t) = y1,

x3 (t) = ϕ13 (0) y1 + ϕ23 (0) y2,

x4 (t) = ϕ14 (0) y1 + ϕ24 (0) y2,

x5 (t) = ϕ15 (0) y1 + ϕ25 (0) y2,

x5 (t − τ) = (ϕ15 (0) cosω0τ + ϕ25 (0) sinω0τ) y1 − (ϕ15 (0) sinω0τ − ϕ25 (0) cosω0τ) y2,

x′5 (t − τ) = (ω0ϕ15 (0) sinω0τ − ω0ϕ25 (0) cosω0τ) y1 + (ω0ϕ15 (0) cosω0τ + ω0ϕ25 (0) sinω0τ) y2.

The solution to (2.1) on the center manifold M f = {ϕ ∈ C | ϕ = Φy + h(y), h ∈ S } ∈ C is given
below.

Xt (θ) = Φ (θ) y (t) + h (θ, y (t)) , (3.1)

where −τ0 ⩽ θ ⩽ 0.
We use the extended equation of zt (θ) to represent (2.1) and calculate the center manifold as follows:

ẋt(θ) =
{ d[zt(θ)]

dθ ,−τ0 ≤ θ < 0,
L [zt(θ)] + F [zt(θ)] , θ = 0,

(3.2)

where L [zt(θ)] and F [zt(θ)] are the linear and nonlinear parts of (2.1), respectively. After
combining (3.1) with (3.2), we get[

Φ (θ) + Dyh (θ, y (t))
]

ẏ (t) =

Φ (θ) By (t) + ∂h
∂θ
,−τ0 ⩽ θ < 0

Φ (0) By (t) + F
[
Φ (θ) y (t) + h (θ, y (t))

]
+ L (h (θ, y (t))) , θ = 0.

Considering < Ψ̄ (s) , h (θ, y (t)) >= 0, here are the calculated stochastic ordinary differential
equations:

ẏ1 (t) = ω0y2 (t) + ψ̄11 (0) F1 + ψ̄12 (0) F2 + ψ̄14 (0) F4,

ẏ2 (t) = −ω0y1 (t) + ψ̄21 (0) F1 + ψ̄22 (0) F2 + ψ̄24 (0) F4,

where

F1 = ε
1
2 ξ (t)

β0A∗S ∗ (x5 (t) − x5 (t − τ0))
N

+ ετ̃A∗S ∗
β0k
N

x′5 (t − τ0) −
εβ0x1 (t) x3 (t)

N

+
(A∗x1 (t) x5 (t) + S ∗x3 (t) x5 (t)) εβ0l1

N
−
εβ0l1 (S ∗x3 (t) x5 (t − τ0) + A∗x1 (t) x5 (t − τ0))

N

+

(
−x5 (t)2 + 2x5 (t) x5 (t − τ0) − x5 (t − τ0)2

)
εA∗S ∗β0l2

N
+ ε2(

β0l1x1 (t) x3 (t) (x5 (t) − x5 (t − τ0))
N

−
β0l2(A∗x1 (t) + S ∗x3 (t))

N
(x5 (t)2 + x5 (t − τ0)2

− 2x5 (t) x5 (t − τ0))

−
A∗S ∗

N
(
1
3
β0l1 − β0l3)(x5 (t)3 + 3x5 (t) x5 (t − τ0)2

− x5 (t − τ0)3
− 3x5 (t − τ0) x5 (t)2)),
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F2 = −F1 +
βgεx3x4

N
, F4 = −

βgεx3x4

N
,

l1 = k + ε
1
2 ξ (t) , l2 = k2 + 2kε

1
2 ξ (t) .

Carry out the polar coordinate transformation by using the stochastic averaging method [29]:
y1 = R (t) cos θ,
y2 = −R (t) sin θ,
θ = ω0t + φ (t) ,

where R (t) and φ (t) are the amplitude and phase of the solution, respectively. We can obtain the
stochastic ODEs with R (t) and φ (t):

Ṙ (t) =
(
ψ̄11 (0) F1 + ψ̄12 (0) F2 + ψ̄14 (0) F4

)
cos θ −

(
ψ̄21 (0) F1 + ψ̄22 (0) F2 + ψ̄24 (0) F4

)
sin θ,

φ̇ (t) = −
1
R

((
ψ̄11 (0) F1 + ψ̄12 (0) F2 + ψ̄14 (0) F4

)
sin θ +

(
ψ̄21 (0) F1 + ψ̄22 (0) F2 + ψ̄24 (0) F4

)
cos θ

)
.

Since R (t) and φ (t) are both slow varying processes, the random averaging method is used to
average time on the pseudo-period 2π

ω0
. The amplitude process after smoothing R (t) is a Markov

diffusion process, and the Itô equation is obtained as shown below.

dR = m (R) dt + σ (R) dB (t) ,
m (R) = µ1R + µ2R3,

σ (R) =
√
µ3R2,

µ1 = ετ̃r1 + Kεr2,

µ2 = ε
2r4,

µ3 = Kεr5.

R = 0 is the equilibrium point of the system, whose Lyapunov exponent is

λ = lim
t→∞

1
t

ln V = lim
t→∞

1
t

∫ t

0

{
m
′

(R = 0) −
1
2

[
σ
′

(R = 0)
]2
}

dt

= m
′

(R = 0) −
1
2

[
σ
′

(R = 0)
]2
= µ1 −

1
2
µ3.

When λ < 0, that is, µ1 < 1
2µ3, the trivial solution to the equation is locally asymptotically stable.

When λ > 0, that is, µ1 >
1
2µ3, the trivial solution to the equation is unstable. Next, the global dynamic

properties are obtained via boundary classification and the three-exponential method. When µ2 < 0,
the right boundary R → +∞ is an entry boundary, and this condition is the premise of the following
discussion. Because m (0) = σ (0) = 0, the left boundary belongs to the first kind of singular boundary.
Its diffusion coefficient α = 2, drift coefficient β = 1 and characteristic value c = 2µ1

µ3
. When 2µ1

µ3
> 1,

the nontrivial stationary probability density exists in the system.

p(R) =
C

σ2(R)
exp

[∫
2m(R)
σ2(R)

dR
]
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=
C
µ3

R
2µ1
µ3
−2e

µ2R2

µ3 .

Because α − β = 1, the stationary probability density can be simplified as p (R) = O (Rc−α). Dynamic
bifurcation, also known as D-bifurcation, refers to a change in integrability. Phenomenological
bifurcation, P-bifurcation, refers to a change of probability density image shape. Through analysis,
D-bifurcation occurs at µ1 =

1
2µ3, and P-bifurcation occurs at µ1 = µ3, as shown in Figure 2.

(a) µ1 = −0.2, µ2 = −1, µ3 = 1 (b) µ1 = 0.999, µ2 = −1, µ3 = 1 (c) µ1 = 2, µ2 = −1, µ3 = 1

Figure 2. P(D)-bifurcation diagram of the system.

4. Numerical simulation

In this section, in order to reveal the dynamic behavior of the system, we utilize a sample size of 100
and employ the Euler-Maruyama method to carry out the simulations. Based on the theoretical study
in the preceding sections, time delay plays a vital role in studying the spread of infectious diseases as
a bifurcation parameter. The stability of the system changes as the time delay rises, and the system has
a periodic solution.

The basic reproductive number of the system in an undisturbed state R0 = 2.02741 > 1 is
determined using the numbers in Table 1, so the equilibrium point of endemic diseases exists
in system (2.1) and is recorded as P∗ (S ∗, E∗, A∗,V∗,Q∗,R∗), in which S ∗ = 552030.54, E∗ =
1405470.79, A∗ = 87494.34,V∗ = 4741153.57,Q∗ = 71666.036,R∗ = 3142180. L (0) = −10−12 and
m = 25.1664, so both H1 and H2 are satisfied. Through the analysis in the second section, it is
calculated that ω0 = 0.302386, τ0 = 12.5623 and Hopf bifurcation occurs at τ = τ0.

Table 1. Parameter list.

Parameter Value Parameter Value
µ 0.007 k 0.003
Γ 0.00015 Ω 75000
ρ 0.25 β0 0.9
φ 0.02 βg 0.81
α 0.8 N 10000000
ε 0.01 η 0.9
δ 0.000017 γ 1/14
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The noise intensity was set to K = 0 and we drew the time series diagrams of S , E, A,V,Q,R with
τ = 10 and τ = 15, as illustrated in Figures 3 and 4. When τ = 10 < τ0, the endemic equilibrium point
is stable, and when τ = 15 > τ0, an infection periodically develops at the endemic equilibrium point.
It should be mentioned that there is a time interval when the media reports the progress of infectious
diseases. The system may oscillate if the delay of reporting the number of newly infected individuals
with symptoms exceeds the threshold.

(a) (b) (c)

(d) (e) (f)

Figure 3. The time-series plots of S , E, A,V,Q,R for the parameter τ = 10 < τ0.

(a) (b) (c)

(d) (e) (f)

Figure 4. The time-series plots of S , E, A,V,Q,R for the parameter τ = 15 > τ0.
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Suppose that k = 0.1; then, τ0 = 1.75 can be determined; we applied τ = 10, 15, 20 in system (2.1)
correspondingly. Figure 5 depicts the oscillation of the Q/N time-series curve. Observing Figure 5,
the number of symptomatic infections increases as the reporting time delay grows. By maintaining a
reporting time delay below the threshold, it ensures that individuals can comprehend the epidemic
situation and implement timely prevention and control measures. However, when the reporting time is
delayed beyond the threshold, the public lacks access to relevant information, hampering their ability
to make scientifically informed decisions and implement effective prevention measures. As a
consequence, the number of infected individuals increases. As a result, the threshold τ0 is extremely
useful for the study, control and eradication of infectious illnesses.

Figure 5. Effects of different time delays on periodic oscillation when k = 0.1.

We have chosen various sensitivity coefficients, k, and computed τ0 accordingly. Based on these
calculations, we have generated a line chart, as shown in Figure 6, illustrating the relationship between
τ0 and the sensitivity coefficient, k. It is discovered that τ0 decreases as the sensitivity coefficient k
increases. As the sensitivity coefficient increases, there is a corresponding rise in the level of attention
people pay to the number of new symptomatic infections. Consequently, this increased sensitivity
generates a higher demand for real-time reporting.

Figure 6. The curve of threshold changing with the sensitivity coefficient k.

The impact of the sensitivity coefficient k and reporting time delay on the progression of
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infectious diseases is examined further below. Set S (0) = 9999999, E(0) = 1 and
A(0) = V(0) = Q(0) = R(0) = 0 as the initial values, and set K = 0.1 and k = 0.001; then, we get
τ0 = 27.1083. Set the reporting delays τ as 1, 8, 17 and 26 respectively. Figure 7(a) depicts a
time-series plot showing the proportion of symptomatic infected patients in the crowd for various
reporting delays. The increase of time delay τ only minimally influences the peak size, but it delays
the arrival time of the peak. If K = 0.1 and k = 0.4, τ0=0.85 is calculated, and then set τ equal to 0.1
and 0.85, respectively. Figure 7(b) depicts a time-series plot showing the proportion of symptomatic
infected patients in the population. The increase in reporting delay diminishes the peak and delays its
arrival. An appropriately prolonged reporting interval means that the number of reported new
infections increases, which may causes public thinking and has a positive impact on epidemic
prevention and control. Set K = 0.1, τ=1 and k=0.2, 0.3, 0.4, 0.5 to create a time-series plot
representing the fraction of symptomatic infected people in the population, as illustrated in Figure 8.
The arrival time of the peak value is delayed as the sensitivity coefficient k increases, and the peak
value decreases obviously. The increasing sensitivity coefficient k indicates that the public is more
sensitive to the number of new symptomatic infections, which enhances public knowledge of
protection and lowers the infection rate, resulting in a decrease in the number of infected people.

(a) k=0.001 (b) k=0.4

Figure 7. Time-series plots of Q/N for different reported delays τ.

Figure 8. Time-series plots for Q/N given τ=1 and different sensitivity coefficients k.
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Postponing the occurrence of the peak period can be advantageous for the government, as it enables
the allocation of resources, thereby bolstering medical capabilities and providing additional time to
realize the control of infectious diseases. By reducing the peak, the burden on medical resources
can be mitigated and infected individuals can be brought to a manageable stage, ensuring adherence
to medical standards during an outbreak. Hence, it is crucial for the media to exercise reasonable
control over the timing of reporting and publicity efforts. When the sensitivity coefficient, denoted
as k, remains constant, a reporting delay close to τ0 can yield significant results with minimal effort.
Additionally, it should be noted that the value of the sensitivity coefficient, k, can be subject to variation.

The random dynamic behavior close to τ0 will now be then examined. Select noise intensity as the
bifurcation parameter, set τ = 12.562 < τ0, ε = 0.00000001 and refer to Table 1 for additional
parameters. The third section’s theoretical study reveals that the system will randomly bifurcate when
µ1 = µ3, that is, when K=1.613. For Figure 9, we have selected a specific time period ranging
from 3000d to 5000d to conduct simulations and generate the joint probability density diagram and
marginal probability density diagram for susceptible persons (S ) and symptomatic infected persons
(Q) with noise intensity increasing from 1 to 200. The marginal probability map transforms from a
single peak to a multi-peak structure as the noise intensity rises, and a random P-bifurcation takes
place. A time-series plot of Q/N between K = 1 and K = 200 is shown in Figure 10(a) and 10(b).
When the noise intensity is minimal, the system usually remains stable. When the noise intensity is
high, the system oscillates, which implies that, as the noise intensity rises, so does the population of
infected people. Let τ = 10, ε = 0.01 and the noise intensity K traverse 1, 10, 15 and 20 in Figure 11.
The variance of the random process considerably rises with the noise level over a period ranging
from 4000d to 5000d. As can be seen from Figure 12(a) and 12(b), the noise intensity increases and
the system loses stability over a period ranging from 2000d to 5000d. Social networking platforms
like Twitter, Weibo and Facebook are often used, which has facilitated the spread of rumors that might
potentially frighten the population [30, 31]. Furthermore, the dissemination of false information will
impede the reporting of information and may encourage people to select inefficient preventative and
control measures that cannot successfully control infectious diseases [32]. Therefore, media should
convey the information to the public in a stable, objective and scientific manner.

(a) K = 1 (b) K = 200

Figure 9. Probability density diagram with noise intensity K as the bifurcation parameter
when τ = 12.562.
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(a) K=1 (b) K=200

Figure 10. Time-series plots with noise intensity K as the bifurcation parameter when τ =
12.562. (a) K=1, (b) K=200.

Figure 11. Variance plot of Q for different noise intensities at τ = 10, ε=0.01.

(a) K=0.0001 (b) K=20

Figure 12. The probability density diagram of Q/N with τ = 10, ε = 0.01.

We normally believe that, when an epidemic strikes, the greater the media coverage, the better.
However, as shown in Figure 6, τ0 drops as the sensitivity coefficient increases, and the media’s
reporting time delay is restricted by human resources, technical equipment and so on. In some
circumstances, the reporting delay will exceed the threshold τ0. As the amplitude of the periodic
oscillation increases, control methods must be changed over time, posing significant obstacles to
epidemic prevention and control. Furthermore, before the health department can supply the
information, vast volumes of noise information in the data must be collected and pre-processed. A
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minor reporting time delay may reduce the accuracy of the reporting information and influence the
system’s stability. Governments should review whether publicity intensity matches correlative
sectors’ abilities to respond to emergencies and gather and analyze data. It will be self-defeating if the
correlative sectors’ capacity does not fulfill the threshold criteria. It is assumed that the correlative
sectors’ capacity can meet the τ0 requirement, and we choose τ0 as the reporting time.

With increased publicity intensity, the peak might occur considerably sooner, as indicated in
Figure 13(a). In Figure 13(a), an increase in the value of k results in the peak arrival time being
shifted forward by 20 days. Increasing the threshold by reducing the intensity of publicity can reduce
work pressure in the health industry, but the peak size may increase, as illustrated in Figure 13(b).
According to Figure 13(b), reducing the value of k leads to an increase in the peak number of
symptomatic infections by 600 individuals.

(a) (b) (c)

Figure 13. Time-series plots of different publicity strategies.

It should be emphasized that cultural factors influence the sensitivity coefficient k. It cannot be
changed randomly with a change in publicity intensity, but it can change within an interval. In a group
with a sense of duty, k is frequently greater. Figure 13(c) depicts a time-series plot mimicking k at
various publicity intensities ranging from 0.25 to 0.5. We discovered that, assuming that the health
department’s capability can match the publicity intensity, the larger the publicity intensity, the smaller
the peak, and the later the peak occurs. Of course, the sensitivity coefficient’s growth has an upper
bound. Following the previous research, we suspect that there is a k0. When k > k0, we should raise
the degree of publicity. When k < k0, the arrival time and peak value cannot be simultaneously
optimized, and trade-offs must be made based on the actual scenario. The magnitude and timing of
spikes have a substantial societal and economic impact, with overburdened healthcare systems
increasing infectious mortality, direct morbidity and medical consequences [33]. As a result, the
government should make appropriate publicity intensity based on current circumstances, such as
medical resources, social stability and public welfare. The current sensitivity of society which can
roughly reflect the change interval of the sensitivity coefficient under the action of media publicity, is
also an important reference index for the government.

5. Conclusions

In this paper, a SEAVQR model with Gaussian white noise is established. Due to the process of
data collection and preprocessing, there exists a temporal gap in reporting infectious diseases. We
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discovered that an acceptable reporting time delay aids in the control of infectious illness spread. Hopf
bifurcation occurs at τ = τ0 . Setting τ0 as the reporting time-delay threshold, and under the condition
that the reporting time delay is less than the threshold, the public can gain valuable insight into the
epidemic situation and take prompt preventative and control actions. When the reporting time delay
exceeds the threshold, a lack of public information on responses can lead to an increase in the number of
infected people. If the reporting time delay exceeds the threshold, the larger the time delay, the greater
the obstacle to the control of infectious diseases. The system takes into account the effect of noise
on the transmission of infectious diseases. The dissemination of inaccurate information can hinder
the public’s ability to make informed judgments, and the proliferation of rumors can exacerbate the
“fear effect,” leading to an unstable system. When the reporting time delay approaches the threshold,
the system may oscillate periodically if the noise intensity becomes larger. Therefore, the accuracy of
reporting information and the timeliness of reporting should be considered by the government in the
early control of the epidemic.

Furthermore, we discovered that increasing the reporting delay could postpone the arrival of the
peak of symptomatic infected patients and minimize the peak of infection, giving us more precious
time to control the epidemic. The same result can be obtained by increasing the sensitivity coefficient.
In a stable state, adopting a longer reporting delay and the government enhancing public sensitivity
through media awareness will help enhance medical treatment quality and living standards. As a
result, while the sensitivity coefficient is fixed, it is better to set the reporting time delay around the
threshold. However, we observe that increasing the sensitivity coefficient results in a drop in the stated
delay threshold. The media’s publicity intensity for the epidemic is not that the higher the intensity, the
better. When the correlative departments’ work abilities cannot meet the stronger publicity intensity,
the public may be unable to adopt timely preventative and control measures due to low accuracy or
big reporting delays, potentially leading to the spread of infectious illnesses becoming out of control.
We also discovered the existence of k0. When k < k0, government increases in publicity intensity may
cause the peak to arrive earlier. If the government decreases publicity intensity to raise the threshold at
the expense of lowering the sensitivity coefficient, it will result in a peak increase and, to some extent,
undermine public welfare. When k > k0, however, the increase in publicity intensity could be helpful
in postponing and lowering the peak.

To sum up, during the pandemic, the government should correctly understand the public’s attitude
toward this infectious disease. If the sensitivity k exceeds k0, it should try its best to improve the
sensitivity. If k is less than k0, it is necessary to formulate appropriate publicity intensity for media
publicity under the guidance of social and economic conditions and the ability of correlative
departments in order to maximize benefits. In addition, the appropriate reporting time should be taken
near the threshold. The media should grasp timeliness, accuracy and effectiveness in reporting. Code
is available at https://github.com/Wangqiubao/HC num sim.
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