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Abstract: In this work, a class of generalized quadratic Bernstein-like functions having controlling
functions is constructed. It contains many particular cases from earlier papers. Regarding the
controlling functions, sufficient conditions are given. Corner cutting algorithms and the accompanying
quadratic Bézier curves are discussed. A class of generalized quadratic B-splines possessing
controlling functions is proposed. Some important properties for curve and surface design are
proved. Sufficient conditions for C2 continuity, C3 continuity and Cn continuity are also given. Some
applications of the constructed B-splines in R2 and R3 are presented, which show the ability to adjust
the shape of the curves flexibly and locally. These applications show that generalized quadratic B-
splines can be easily implemented and serve as an alternative strategy for modeling curves.
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1. Introduction

Curve and surface design is a basic subject within Computer Aided Geometric Design (CAGD).
Parametric curves and surfaces are usually represented by linear combinations of control points and
basis functions, and the construction of basis functions which are normalized, nonnegative and totally
positive, have received much attention.

In 1946, the theory of B-splines was first proposed by Schoenberg. In 1962, Bézier curves were
proposed by French engineer Pierre Bézier. Bézier curves have an intuitive geometric representation,
but also have strong integrity and weak local adjustment ability, see [1–3]. To adjust the curve shape,
many methods have been presented subsequently. In 1972, de Boor gave a recursive algorithm for
B-spline basis in [4]. The B-spline inherits all strengths of the Bézier methods and it overcomes the
disadvantage that the Bézier curve can only be adjusted as a whole. In 1975, the rational B-spline
was proposed by Versprille in [5] to overcome the problem that the B-spline method cannot accurately
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represent the quadratic curve surface.
Blossoming is essential to construct splines, which is initially introduced in [6]. In [7], based on

previous research on Chebyshev spaces, a blossom can be yielded by the bilinear form, which has an
extension to the Chebyshev splines. In [8], Mazure further applied the main properties of blossoms
in quasi-Chebyshev space, and proposed the requirements of blossom for spline by studying variable
degree polynomial splines with connection matrices. In [9], according to Mazure, the blossom in spline
space makes optimal bases possible automatically. In [10], the approximation power, the existence of
a normalized B-basis and the assumptions required for the structure of a degree-raising process for
some space were studied. In [11], Mazure provided new insights into specific conditions of the quasi
extended Chebyshev spaces, and addressed the dimension elevation process in more general spaces.
In [12], a new spline space with general tension properties was studied, which was profitable to use to
construct shape-preserving curves.

Since Bernstein basis and B-spline basis do not have shape parameters, the shape of their
corresponding curves is only determined by their control points. Therefore, we have to adjust the curve
shape through modifying the control points, which brings inconvenience to the geometric design. In
addition, as parametric curves defined by polynomials, Bézier curves and B-splines cannot represent
other conic curves than parabolas.

In order to solve the above deficiencies, in recent years, many basis functions with shape parameters
similar to Bernstein functions and B-splines in different function spaces have been proposed. By
incorporating the shape parameter in the classical Bernstein basis, Han Xuli obtained a class of
quadratic polynomial functions in [13]. Xie and Hong developed a method of generating quadratic
B-spline curves having several parameters in [14]. In [15], Yan and Liang proposed a kind of quadratic
αβ-Bernstein functions and the accompanying B-splines having local parameters.

The common point of the above work is that the curve properties are similar to those of quadratic
Bézier curves, such as endpoint properties, symmetry, convex hull and geometric invariability.
Moreover, by adjusting the parameters, the curves on both sides of the Bézier curve can be generated,
which breaks through the approximation of the general Bézier curve to the control polygon. However,
there is still the problem of being unable to represent conic sections other than parabolas. In 2002,
Han presented a set of C1 continuous quadratic trigonometric spline bases with one parameter in [16].
Wu proposed a kind of new quadratic trigonometric Bernstein functions having parameters in [17].
With the shape parameters, the trigonometric polynomial curves can yield tight envelopes for the
quadratic B-spline curves and can be closer to the given control polygon than the quadratic B-spline
curves. In [18], Han further extended the spline basis from one parameter in [16] to two local shape
parameters, which serve as local control tension and local control bias in the curves. This work
made the basis function more flexible to adjust curve shape locally. In 2003, Han provided the C2

continuous quadratic trigonometric polynomial curves in [19]. Afterwards, he extended it to that with
one local parameter and provided additional methods of adjusting curves in [20]. In 2013, a G2 and
C2 rational quadratic Bernstein basis with two parameters was given by Bashir and Abbas in [21].
In 2015, Yan constructed a kind of quadratic hyperbolic polynomial curve with parameters called the
H-Bézier curve in [22]. In [23], the problem of assigning tangents to a sequence of points in R3,
compatible with a G1 piecewise-PH-cubic spline interpolating those points, is also briefly addressed.
The performance of these methods, in terms of overall smoothness and shape-preservation properties
of the resulting curves, is illustrated by a selection of computed examples. This curve has shape
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adjustability and can represent a hyperbola. In 2016, least squares approximation of Bézier coefficients
with factored Hahn weights provided the best constrained polynomial degree reduction with respect
to the Jacobi L2-norm in [24]. This work extended many previous findings concerning polynomial
degree reduction. In [25], González and his coauthors presented various designs and models of C2

algebraic-trigonometric Pythagorean hodograph splines with shape parameters.
The present paper proposes a new generalized quadratic Bernstein-like function in space Tu,v :=

span {1, u(t), v(t)}, whose controlling functions u(t) and v(t) have clear geometric control significance
for the generated curved surface shape. The optimal totally positive basis proposed in this paper
includes many special cases with different shape functions, which are stated in [13–22] in detail.
This newly-proposed generalized quadratic Bernstein-like function has good properties and a wide
range of usage. To facilitate the construction of new basis functions, some simplified conditions
for construction are proposed. In view of these simplified conditions, three typical cases of different
controlling functions u(t) and v(t) are verified, and the accompanying applications in these cases are
presented. Furthermore, some additional simplified construction conditions are proposed to enable
the curve to achieve higher-order continuity. Specific examples are verified and the corresponding
applications are given.

The rest of the article is separated into the following parts. Section 2 introduces the materials and
methods that we mainly use. Section 3 presents how we construct the generalized quadratic Bernstein-
like functions and their properties, followed by three typical examples. The accompanying quadratic
Bézier curves and the corner cutting algorithms are provided. Section 4 introduces the construction
and some properties of generalized quadratic B-splines, and the extra conditions that ensure the
controlling functions have higher-order continuity. Section 5 shows the definition and applications
of the corresponding curves. Futhermore, we analyse the relationship between curves and controlling
functions. We also propose continuity conditions. Section 6 discusses and compares the generalized
quadratic B-splines against classical splines. Section 7 gives the conclusion.

2. Materials and methods

2.1. Extended Chebyshev space and blossom theory

Herein, a brief introduction of Chebyshev space and Extended Completed Chebyshev space is given.
The geometry approach of blossom theory is introduced, including a de Casteljau algorithm. These
will be further applied in basis and curve construction. More details are stated in [8, 11, 26–30].

Definition 1. Given an interval I = [a, b], Un+1 := (u0, u1, · · · , un) is said to be an (n+1)-dimensional
Extended Chebyshev space (EC space) on I if any nonzero element of Un+1 has at most n zeros (counted
with multiplicities) in I. It is said to be an Extended Completed Chebyshev space (ECC space) on I if
there exists positive weight functions wi ∈ Cn−i(I), i = 0, 1, · · · , n, satisfying

u0(t) = w0(t),
u1(t) = w0(t)

∫ t

a
w1(t1)dt1,

u2(t) = w0(t)
∫ t

a
w1(t1)

∫ t1
a

w2(t2)dt2dt1,
...

un(t) = w0(t)
∫ t

a
w1(t1)

∫ t1
a

w2(t2) · · ·
∫ tn−1

a
wn(tn)dtn · · · dt1.

(2.1)
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Remark 1. On I = [a, b], an EC space is an ECC space.

The relevant proof is provided in [31].
Blossom is a powerful method for studying polynomial freeform surfaces, which is stated in detail

in [6]. The French scholar Mazure has conducted in-depth and systematic research on the geometry
approach of blossom, and has achieved rich theoretical and application results in [8,11,26–28,32–34].
Next, we introduce the geometry approach of blossom theory.

Definition 2. Let E ⊂ Cn−1 be an (n+1)-dimensional Quasi Extended Chebyshev space of real valued
functions defined on a closed bounded interval I. Let Φ1, · · · ,Φn ⊂ E, such that (1,Φ1, · · · ,Φn) is a
basis of E. The function Φ := (Φ1, · · · ,Φn):I → Rn so defined will be called the generating function,
Φ ∈ Cn−1(I). For all integer i ≤ n-1 and x ∈ I, we have

OsciΦ(x) :=
{
Φ(x) + λ1Φ

′(x) + · · · + λiΦ
(i)(x) | λ1, · · · , λi ∈ R

}
. (2.2)

For positive integer µ1, · · · , µr whose sum is n, and distinct points a1, · · · , ar, the blossom of
generating function Φ(x) is defined as the intersection of osculating planes. Thus, ϕ := (ϕ1, · · · , ϕn) :
In → Rn satisfies

{ϕ(x1, · · · , xn)} :=
n⋂

i=0

Oscn−µiΦ(ai), (2.3)

where (x1, · · · , xn) = (a[µ1]
1 , · · · , a[µr]

r ) := (a1, · · · , a1︸      ︷︷      ︸
µ1

, · · · , ar, · · · , ar︸     ︷︷     ︸
µr

).

For any (a, b) ∈ I2, the value of blossom Πi(a, b) := ϕ(a[n−i], b[i]), i = 0, · · · , n, is called the
Chebyshev-Bézier points of the blossom ϕ at the point (a, b). Obviously, we have

Π0(a, b) = Φ(a), Πn(a, b) = Φ(b),
{Πi(a, b)} = OsciΦ(a) ∩ Oscn−1Φ(b), 1 ≤ i ≤ n − 1. (2.4)

Remark 2. The three important properties of blossom theory are as follows:
(1) Symmetry;
(2) Pseudo affine;
(3) Diagonal property.

Definition 3. We can define a kind of de Casteljau algorithm at the point Πi(a, b) according to the three
properties of blossom when a , b. We can derive from the n-th step of the algorithm that the value of
the blossom ϕ of the convex combination of the point Πi(a, b) is

Φ(x) =

n∑
i=0

B(a,b)
i (x)Πi(a, b),

n∑
i=0

B(a,b)
i (x) = 1, x ∈ I. (2.5)

Knowing that (1,Φ1, · · · ,Φn) is a basis of E, and the osculating plane of the generating function
Φ can span the whole Rn, we have the Chebyshev-Bézier points Πi(a, b) are affinely independent,
i = 0, · · · , n. Thus, B(a,b)

i (x), i = 0, · · · , n, form a basis of E, which is called the quasi Bernstein basis
associated with the point (a, b).
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3. Generalized quadratic Bernstein-like functions

3.1. Construction and properties

In the following part, when t ∈ [0, 1], we will use the generalized quadratic function space Tu,v :=
span {1, u(t), v(t)}, which has good generality. In [13, 15, 16, 20, 22], the corresponding controlling
functions are expressed as follow: u(t) = (1 − λt)(1 − t)2,

v(t) = (1 − λ + λt)t2,
(3.1)

u(t) = (1 − t)3 + 3λt(1 − t)2,

v(t) = 3µt2(1 − t) + t3,
(3.2)

u(t) = (1 − sin π
2 t)(1 − λ sin π

2 t),
v(t) = (1 − cos π

2 t)(1 − λ cos π
2 t),

(3.3)

u(t) = (1 − sin π
2 t)(1 − sin π

2 t + 2 cos π
2 t),

v(t) = (1 − cos π
2 t)(1 − cos π

2 t + 2 sin π
2 t),

(3.4)

u(t) = [cosh(ln(2 +
√

3)(1 − t)) − 1]λ,
v(t) = [cosh(ln(2 +

√
3)t) − 1]λ.

(3.5)

The properties and applications have been shown respectively in the corresponding references.
To derive new basis efficiently, we provide some simplified construction conditions that u(t), v(t) ∈

C2[0, 1] and t ∈ (0, 1) need to meet
u(t) ≥ 0, u′(t) ≤ 0, u′′(t) > 0,
v(t) ≥ 0, v′(t) ≥ 0, v′′(t) > 0,
u(0) = 1, u(1) = 0, u′(1) = 0,
v(0) = 0, v(1) = 1, v′(0) = 0.

(3.6)

The definition of the related generating function is shown as follows:

Φ(t) := (u(t), v(t)) , t ∈ [0, 1]. (3.7)

First, we will prove that the following space

DTu,v = span {u′(t), v′(t)} (3.8)

is an EC-space on [0, 1]. According to Theorem 2.1 of [26], there exists a blossom in the new space
Tu,v, which implies that Tu,v is suitable for curve and surface design.
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Theorem 1. Space DTu,v is a two dimensional EC-space on [0, 1], where u(t), v(t) satisfy Eq (3.6).

Proof of Theorem 1. For any ξi ∈ R, i = 0, 1, t ∈ [0, 1], we construct a linear equation of u′(t) and v′(t)

ξ0u′(t) + ξ1v′(t) = 0. (3.9)

Let t = 0, from Eq (3.6), it is clear that ξ0 = 0. Similarly, let t = 1, we obtain that ξ1 = 0. Therefore,
u′(t) and v′(t) are linearly independent, which indicates that the space DTu,v is a two dimensional
space on [0, 1]. Moreover, we will show DTu,v space is a 2-dimensional ECC-space on (0, 1). When
t ∈ [a, b] ⊆ (0, 1), consider the function

h(t) =

[
v′(t)
u′(t)

]′
=

v′′(t)u′(t) − v′(t)u′′(t)
(u′(t))2 < 0. (3.10)

When t ∈ [a, b], two weight functions w0(t) and w1(t) are defined asw0(t) = −u′(t),
w1(t) = −λh(t),

(3.11)

where λ is an arbitrary positive real number. Obviously, two weight functions are positive, bounded on
[a, b]. They also have C∞ continuity. Define an ECC-space as follows through two weight functions
w0(t) and w1(t) u0(t) = w0(t),

u1(t) = w0(t)
∫ t

a
w1(τ)dτ.

(3.12)

We can prove that both functions ui(t) (i = 0, 1) can be expressed by u′(t) and v′(t), which shows
that DTu,v space is an ECC-space on [a, b]. Since [a, b] is an arbitrary subinterval of (0, 1), we come to
the conclusion that the space DTu,v is an ECC-space on (0, 1).

Finally, we will show DTu,v space is also an EC-space on [0, 1]. We simply need to demonstrate
that any nonzero element of the space DTu,v has at most one zero (regardless of multiplicity) on [0, 1].
When t ∈ [0, 1], consider

F(t) = C0u′(t) + C1v′(t), (3.13)

where C0 , 0 or C1 , 0. We have already proved the space DTu,v is an ECC-space on (0, 1), so F(t)
has at most one zero on (0, 1). Assuming that F(0) = 0, we obtain that C0 = 0 and then, the derivative
of F(t) is

F′(t) = C1v′′(t). (3.14)

Thus, F′(t) > 0, which suggests F(t) is strictly monotonous on [0,1]. We draw the conclusion that
there is no zero of F(t) on (0,1). Similarly, by analyzing the case that F(1) = 0 , we can also obtain
that there is at most one zero on [0, 1]. As discussed, the space DTu,v is an EC-space on [0, 1]. �

According to Theorem 4.1 of [26], we obtain that there is a kind of normalized Bernstein basis
on [0, 1] in space Tu,v. In the next theorem, we give the expression of Chebyshev-Bézier points of the
generating function Φ(t) defined in Eq (3.7) and three generalized quadratic Bernstein-like functions
Bi := Bi

(0,1) of the space Tu,v.
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Theorem 2. The three Chebyshev-Bézier points Pi(i = 0, 1, 2) of the generating function Φ(t) defined
in Eq (3.7) are given by

P0 = (1, 0), P1 = (0, 0), P2 = (0, 1). (3.15)

And generalized quadratic Bernstein-like functions Bi := Bi
(0,1)(i = 0, 1, 2) of the space Tu,v are given

by 
B0(t) = u(t),
B1(t) = 1 − u(t) − v(t),
B2(t) = v(t).

(3.16)

Proof of Theorem 2. Having given the generating function Φ(t) in Eq (3.7), it is obvious that

Φ(0) = (1, 0), Φ(1) = (0, 1),
Φ′(0) = (u′(0), 0), Φ′(1) = (0, v′(1)). (3.17)

Thus, we obtain

P0 = Φ(0) = (1, 0), P2 = Φ(1) = (0, 1),
{P1} = Osc1Φ(0) ∩ Osc2Φ(1) = (0, 0). (3.18)

When t ∈ [0, 1], from Φ(t) =
∑2

i=0 Bi(t)Pi where
∑2

i=0 Bi(t) = 1, the expressions of the generalized
quadratic Bernstein-like functions Bi(t) (i = 0, 1, 2) is easily deduced. �

Remark 3. By observing the generalized quadratic Bernstein-like functions Bi(t) (i = 0, 1, 2)
given in Eq (3.16), it is clear that these basis functions are nonnegative, linearly independent and
normalized. In addition, B0(1) = 0 and B2(0) = 0. Thus, according to Theorem 3.11 of [26], the system
(B0(t), B1(t), B2(t)) is the normalized Bernstein-like basis of the space span Tu,v. This means that the
generalized quadratic Bernstein-like functions are totally positive and have optimal shape preserving
properties, such as variation diminishing and monotonicity preserving. More details are shown in
references [35–39]. The curve never crosses a hyperplane more often than its control polygon does,
because the basis functions have variation diminishing property. Monotonicity preserving means that
the monotonicity of the curve is the same as that of monotone control points, and the length of the
generated parametric curves is bounded above by the length of their control polygon. If the control
polygon is planar and convex, so is the curve.

There are many controlling functions satisfying Eq (3.6). In the following discussion, we verify
three specific examples and then show some figures corresponding to them. To state easily, the
generalized quadratic Bernstein-like functions are denoted by Bi(t; u(t), v(t)), i = 0, 1, 2, Bi(t; u(t)),
i = 0, 1 and Bi(t; v(t)), i = 1, 2.

Example 1. Consider rational functions having parameters λ and µ. Given controlling functionsu(t) = (1 − λt)(1 − t)2,

v(t) = (1 − µ + µt)t2,
(3.19)
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where −1/2 ≤ λ, µ ≤ 1, we will verify that the controlling functions of Eq (3.19) meet Eq (3.6)
mentioned above. Through substitution and derivation, we have

u(0) = 1, u(1) = 0,
u′(t) = (−λ + 3λt − 2)(1 − t) ≤ 0,
u′′(t) = λ(−6t + 4) + 2 > 0,
v(0) = 0, v(1) = 1,
v′(t) = t(3µt − 2µ + 2) ≥ 0,
v′′(t) = µ(6t − 2) + 2 > 0.

(3.20)

The generalized quadratic Bernstein-like functions are different when parameters λ and µ are given
different values, as shown in Figure 1.

Figure 1. Generalized quadratic Bernstein-like functions given in Eq (3.19); (A) λ = −0.4,
µ = 0.9; (B) λ = 0.9, µ = −0.4.

Example 2. Consider trigonometric controlling functions having one parameter λ. Given controlling
functions u(t) = (1 − sinπ

2 t)(1 − λsinπ
2 t),

v(t) = (1 − cosπ2 t)(1 − λcosπ2 t),
(3.21)

where 0 ≤ λ ≤ 1, we verify that the controlling functions meet Eq (3.6) mentioned above. Obviously,u(0) = 1, u(1) = 0,
u′(t) = π

2 cosπ2 t(λ(2sinπ
2 t − 1) − 1) ≤ 0,

(3.22)

Then we only need to prove the second derivative of u(t),

u′′(t) = (λ + 1)
π2

4
sin

π

2
t + λ

π2

2
cosπt (3.23)

is positive when t ∈ (0, 1). As for function defined as

f (x, λ) = π2(−λx2 +
λ + 1

4
x +

λ

2
), (3.24)

AIMS Mathematics Volume 8, Issue 10, 23472–23499.
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according to the properties of quadratic polynomial with one variable, we obtain

min
(0,1)

f (x, λ) > min{ f (0, λ) =
π2λ

2
≥ 0, f (1, λ) =

π2(1 − λ)
4

≥ 0}, (3.25)

which implies that u”(t)>0, when t ∈ [0, 1]. Thus, u(t) satisfies Eq (3.6). Similarly, we can prove that
v(t) also satisfies Eq (3.6).

The figures of the accompanying generalized quadratic Bernstein-like functions where λ is given
different values are shown in Figure 2.

Figure 2. Generalized quadratic Bernstein-like functions given in Eq (3.21); (A) λ = 0.1;
(B) λ = 0.9.

Example 3. Consider hyperbolic controlling functions having one exponential parameter λ. Given
controlling functions u(t) = [cosh c(1 − t) − 1]λ,

v(t) = (cosh ct − 1)λ,
(3.26)

where c = ln(2 +
√

3), 1 ≤ λ ≤ 2, we verify that these controlling functions also satisfy Eq (3.6).
Obviously, u(0) = 1, u(1) = 0, u(t) ≥ 0,

u′(t) = −cλ[cosh c(1 − t) − 1]λ−1sinh c(1 − t) ≤ 0.
(3.27)

Thus, we only need to prove the second derivative of u(t),

u′′(t) = c2λ[cosh c(1 − t) − 1]λ−2[(λ − 1)sinh2c(1 − t) + (cosh c(1 − t) − 1)cosh c(1 − t)] (3.28)

is positive for any t ∈ (0, 1). For cosh c(1-t)>1 and 0<t<1, we know that u′′(t)>0. So u(t) satisfies
Eq (3.6). We can check v(t) in the similar way.

The figures of the accompanying generalized quadratic Bernstein-like functions where λ is given
different values are shown in Figure 3.
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Figure 3. Generalized quadratic Bernstein-like basis functions given in Eq (3.26); (A) λ=1.1;
(B) λ = 1.9.

3.2. New generalized quadratic Bézier curve

Definition 4. Given control points Qi (i = 0, 1, 2) inR2orR3, u(t), v(t) meeting Eq (3.6), the generalized
quadratic Bézier curve with controlling functions u(t) and v(t) is then defined by

Q(t; u(t), v(t)) =

2∑
i=0

Bi(t; u(t), v(t))Qi, t ∈ [0, 1] . (3.29)

In [39], Bernstein-Bézier methods are introduced in detail. From the normalization, total positivity
and nonnegativity of the new generalized quadratic Bernstein-like functions, which is defined in
Eq (3.16), we deduce the corresponding generalized quadratic Bézier curve defined in Eq (3.29)
possesses the properties of affine invariance, variation diminishing and convex hull. For curve and
surface modeling, these properties count for a great deal. Moreover, through simple calculation, we
get the values of the generalized quadratic Bézier curve and its derivative function at 0,1, as shown
below:


Q(0; u(t), v(t)) = Q0,

Q(1; u(t), v(t)) = Q2,

Q′(0; u(t), v(t)) = −u′(0)(Q1 − Q0),
Q′(1; u(t), v(t)) = v′(1)(Q2 − Q1).

(3.30)

The result implies that when u(t) and v(t) meeting Eq (3.6), generalized quadratic Bézier curve
is interpolated at the end points. Besides, the corresponding tangents of the curve at Q0 and Q2 are
exactly Q0Q1 and Q1Q2. As discussed above, the generalized quadratic Bézier curve proposed in this
paper possesses some properties closely similar to quadratic Bézier curve.

Corner cutting algorithms are general treatment of the problem of converting a curve expressed in a
B-spline expansion into its Bézier form. It is constructed using convex combinations. Figure 4 shows
how corner cutting algorithms are applied to compute the quadratic Bézier curve.
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Figure 4. Corner cutting algorithms for constructing the quadratic Bézier curve; (A) The
structure of corner cutting algorithms; (B) u(t) and v(t) are given in Eq (3.19) with t = 0.5,
λ = 0.9, µ = 0.9; (C) u(t) and v(t) are given in Eq (3.21) with t = 0.5, λ = 0.8; (D) u(t) and
v(t) are given in Eq (3.26) with t = 0.5, λ = 1.9.

To develop a similar algorithm and apply to the generalized quadratic Bézier curve, we rewrite the
curve in Eq (3.29) as the matrix product form as follows:

Q(t; u(t), v(t)) =
(

t 1−t
)
×


u(t)

t
1−

u(t)
t

0

0 1−
v(t)
1−t

v(t)
1−t

 ×


Q0

Q1

Q2

 . (3.31)

Now it is easy to derive corner cutting algorithms for constructing the generalized quadratic
Bernstein-Bézier curve, which is presented in more detail in [36]. In [38], shape preserving
approximation is considered when handling the approximation of the control polygon. With reference
to these approximate methods introduced in [38], the construction of corner cutting algorithms and
some applications of the three cases are given in Figure 4.

Furthermore, when t ∈ [0, 1], we rewrite Eq (3.29) as

Q(t; u(t), v(t)) = Q1 + B0(t; u(t))(Q0 − Q1) + B2(t; v(t))(Q2 − Q1). (3.32)

From Eq (3.32), we notice that u(t) and v(t) only have effects on the curve at its edge Q0 − Q1

and Q2 − Q1 respectively. In addition, for any fixed t ∈ (0, 1), B0(t; u(t)) increases with the increase
of u(t). This means that as u(t) increases, the curve will follow edge Q0 − Q1 in the same direction.
On the contrary, when u(t) decreases, the curve moves in the opposite direction to the edge Q0 − Q1.
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The influence of controlling function v(t) on the edge Q2 − Q1 can be analyzed similarly. Therefore,
the controlling functions u(t) and v(t) can be considered as local tension parameters. Their effects on
the generalized quadratic Bézier curve are shown in Figure 5, where we change u(t) and v(t) through
assigning different values to parameters λ and µ.

Figure 5. Effects of controlling functions on the generalized quadratic Bézier curve; (A) u(t)
and v(t) are given in Eq (3.19); (B) u(t) and v(t) are given in Eq (3.21); (C) u(t) and v(t) are
given in Eq (3.26).

4. New generalized quadratic B-splines having controlling functions

Similar to the construction of quadratic B-splines which is based on quadratic Bernstein functions,
here we construct generalized quadratic B-splines based on generalized quadratic Bernstein-like
functions provided in Eq (3.16).

4.1. New generalized quadratic B-splines

Given knots u0 < u1 < . . . < un+3 , a knot vector is denoted by U = (u0, u1, . . . , un+3). Let
h j = u j+1 − u j, and t j(u) =

(
u − u j

)/
h j, j = 0, 1, . . . , n + 2. When ui(t), vi(t) (i = 0, 1, . . . , n) satisfy

Eq (3.6), the new generalized quadratic B-splines are constructed as

Ri(u) =


Ri,0(ti) = ciB2 (ti) , u ∈ [ui, ui+1),
Ri,1(ti+1) =

∑2
j=0 bi+1, jB j (ti+1), u ∈ [ui+1, ui+2),

Ri,2(ti+2) = ai+2B0 (ti+2) , u ∈ [ui+2, ui+3).
0, u < [ui, ui+3),

(4.1)

where B j(ti) (i = 0, 1, . . . , n, j = 0, 1, 2) are the generalized quadratic Bernstein-like functions provided
in Eq (3.16). Consider the properties of C1 continuity at each knot and normalization on [u2, un+1]. We
know that if a function is C1-continuous, its first derivative is C0-continuous at each knot. The C1

continuity of Ri(u) at ui is obvious. When Ri(u) is C1-continuous at ui+1, we obtainRi(u−i+1) = ci = Ri(u+
i+1) = bi+1,0,

R
′

i(u
−
i+1) = 1

hi
civ

′

i(1) = R
′

i(u
+
i+1) = 1

hi+1

(
bi+1,0 − bi+1,1

)
u
′

i+1(0).
(4.2)
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Consider further simplification, we obtain
bi+1,0 = ci,

bi+1,1 =
u
′

i+1(0)hi+1 − v
′

i(1)hi+1

u′i+1(0)hi+1
ci.

(4.3)

When Ri(u) is C1-continuous at ui+2, we obtainRi(u−i+2) = bi+1,2 = Ri(u+
i+2) = ai+2,

R
′

i(u
−
i+2) = 1

hi+1

(
bi+1,2 − bi+1,1

)
v
′

i+1(1) = R
′

i(u
+
i+2) = 1

hi+2
ai+2u

′

i+2(0).
(4.4)

Consider further simplification, we obtain
bi+1,2 = ai+2,

bi+1,1 =
v
′

i+1(1)hi+2 − u
′

i+2(0)hi+1

v′i+1(1)hi+2
ai+2.

(4.5)

Alternatively, we can summarize the calculation results as follows:
bi,0 = ci−1, bi,1 =

u
′

i(0)hi−1 − v
′

i−1(1)hi

u′i(0)hi−1
ci−1,

bi,2 = ai+1, bi,1 =
v
′

i(1)hi+1 − u
′

i+1(0)hi

v′i(1)hi+1
ai+1.

(4.6)

In order to have normalization on [u2, un+1], the generalized quadratic B-splines given in Eq (4.1)
need to satisfy the equation below

n∑
j=0

R j(u) =

i∑
j=i−2

R j(u) =

2∑
j=0

Ri− j, j(ti) = 1. (4.7)

For u ∈ [ui, ui+1), we obtain

2∑
j=0

Ri− j, j(ti) = Ri−2,2(ti) + Ri−1,1(ti) + Ri,0(ti) = (ai + bi,0)B0(ti) + bi,1B1(ti) + (bi,2 + ci)B2(ti). (4.8)

Thus, when t ∈ [0, 1], from
∑2

i=0 Bi(t) = 1, we can write the equation system of ai, bi, j, ci (where
i = 0, 1, . . . , n, j = 0, 1, 2) as follows: 

ai + bi,0 = 1,
bi,1 = 1,
bi,2 + ci = 1.

(4.9)

Solving the system of equations, we obtain

u
′

i+1(0)hi − v
′

i(1)hi+1

u′i(0)hi+1
ci = 1. (4.10)
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To summarize, when the generalized quadratic Bernstein-like functions are C1-continuous at each knot
and have normalization on [u2, un+1], the equations of the coefficients are stated as follows:

bi+1,2 = ai+2 =
v
′

i+1(1)hi+2

v′i+1(1)hi+2 − u′i+2(0)hi+1
,

bi+1,1 = 1,

bi+1,0 = ci =
u
′

i+1(0)hi

u′i+1(0)hi − v′i(1)hi+1
.

(4.11)

Definition 5. With a knot vector U, when ui(t), vi(t) meet Eq (3.6) and the coefficients ai, bi, j, ci meet the
above equations, the expressions given in Eq (4.1) are defined as the associated generalized quadratic
B-splines.

Figure 6 shows three images of generalized quadratic B-splines when parameters λ and µ are given
different values. Here u(t) and v(t) are given in Eqs (3.19), (3.21) and (3.26).

Figure 6. Generalized quadratic B-splines; (A) ui(t) and vi(t) are given in Eq (3.19) with
λ = (0.5, 0.5), µ = (0.1, 0.2) and λ = (0.5, 0.5), µ = (0.7, 0.9); (B) ui(t) and vi(t) are given
in Eq (3.21) with λ = (0.1, 0.1, 0.1) and λ = (0.1, 0.5, 0.9); (C) ui(t) and vi(t) are given in
Eq (3.26) with λ = (1, 1, 1) and λ = (1.5, 1.5, 1.5).

Remark 4. The generalized quadratic B-splines are defined in space S := {s ∈

C1[u0, un+3] s.t. s
∣∣∣[ui,ui+1] ∈ Tu,v}, where ui(t), vi(t) satisfy the conditions given in Eq (3.6), ti(u) =

(u − ui)/hi, i = 0, 1, . . . , n + 2.

Remark 5. Since the coefficients of the B-splines given in Eq (4.1) are positive, the generalized
quadratic B-splines are also positive. Furthermore, with the property of nonnegativity of the
generalized quadratic Bernstein-like functions, the corresponding corner cutting algorithm is stable.
Thus, we can form the convex combination and guarantee overall stability. Instability only occurs if
we calculate quadratic functions.

By simple calculation, we can give the expression of the lemma as follows. It is especially efficient
for the proofs of normalization and continuity of the generalized quadratic B-splines.
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Lemma 1. For any positive integers i, we have

bi,0 + ai = 1, bi,1 = 1,
bi,2 + ci = 1,
bi,0 = ci−1,

bi,1 =
u
′

i(0)hi−1 − v
′

i−1(1)hi

u′i(0)hi−1
ci−1 =

v
′

i(1)hi+1 − u
′

i+1(0)hi

v′i(1)hi+1
ai+1,

bi,2 = ai.

(4.12)

4.2. Properties of the new generalized quadratic B-splines

Herein, we will verify the new generalized quadratic B-splines given in Eq (4.1) that have some
important properties for curve design and surface construction, which suggest that the splines are
normalized (Proposition 1), nonnegative (Proposition 2), linearly independent (Theorem 3), totally
positive (Theorem 4) , C1-continuous (Theorem 5) , C2-continuous under some certain conditions
(Theorem 6), C3-continuous under some certain conditions (Theorem 7), Cn-continuous under some
certain conditions (Theorem 8) and in the case of multiple knots (Theorem 9).

Proposition 1. For any u ∈ [u2, un+1], we obtain that
∑n

i=0 Ri(u) = 1.

Proof of Proposition 1. For u ∈ [ui, ui+1), i = 2, 3, . . . , n, it is obvious to verify that for j , i− 2, i− 1, i,
R j(u) = 0. Notice that 

Ri−2(u) = aiB0(ti),

Ri−1(u) =
2∑

j=0
bi, jB j(ti),

Ri(u) = ciB2(ti),

(4.13)

by applying Lemma 1, we obtain

n∑
i=0

Ri(u) = aiB0(ti) +

2∑
j=0

bi, jB j(ti) + ciB2(ti) =

2∑
j=0

B j(ti) = 1. (4.14)

According to the equations above, the new generalized quadratic B-splines have normalization. �

Proposition 2. For ui < u < ui+3, functions ui(t), vi(t) satisfying Eq (3.6), Ri(u) > 0.

Proof of Proposition 2. For any i ∈ Z+, j = 0, 1, 2, when ui(t), vi(t) meet Eq (3.6), we obtain that ai, bi, j,
ci>0. Therefore, from the property of positivity of the generalized quadratic Bernstein-like functions
B j(ti), Ri(u) > 0 on (ui, ui+3). �

Theorem 3. For any i ∈ Z+, ui(t), vi(t) satisfying Eq (3.6), the set {Ri(u)|i = 0, 1, · · · , n} is linearly
independent on [u2, un+1].

Proof of Theorem 3. For ξi ∈ R (i = 0, 1, . . . , n), functions ui(t), vi(t) satisfying Eq (3.6), u ∈ [u2, un+1],
let

R(u) =

n∑
i=0

ξiRi(u) = 0. (4.15)
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With straightforward computation, we obtain

R(ui) = aiξi−2 + bi,0ξi−1 = 0, (4.16)

R′(ui) =
1
hi

[
aiu

′

i(0)ξi−2 +
(
bi,0 − bi,1

)
u
′

i(0)ξi−1

]
= 0, (4.17)

where i = 2, 3, . . . , n + 1. Thus, the linear system of equations about ξi−2, ξi−1 are as follows:aiξi−2 + bi,0ξi−1 = 0,
aiu

′

i(0)ξi−2 +
(
bi,0 − bi,1

)
u
′

i(0)ξi−1 = 0.
(4.18)

Notice that ai + bi,0 = 1, to compute the determinant of the coefficient matrix Ci given by the above
linear equation system. The specific expression of the determinant is shown as follows:

|Ci| =

∣∣∣∣∣∣ ai bi,0

aiu
′

i(0) (bi,0 − bi,1)u
′

i(0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ai bi,1

aiu
′

i(0) 0

∣∣∣∣∣∣
= −aibi,1u

′

i(0)
> 0. (4.19)

Thus, we can come to a conclusion that for i = 2, 3, . . . , n + 1, ξi−2 = ξi−1 = 0, which suggests that the
set {Ri(u)|i = 0, 1, · · · , n} is linearly independent on [u2, un+1]. �

Theorem 4. For u ∈ [ui, ui+1], ui(t), vi(t) satisfying Eq (3.6), i = 2, 3, . . . , n, the system
(Ri−2(u),Ri−1(u),Ri(u)) is a normalized totally positive basis of the space span Tu,v.

Proof of Theorem 4. For u ∈ [ui, ui+1], i = 2, 3, . . . , n, functions ui(t), vi(t) satisfying Eq (3.6), ti(u) =

(u − ui)/hi, we can easily verify that

(Ri−2(u),Ri−1(u),Ri(u)) = (B0(ti), B1(ti), B2(ti)) Hi, (4.20)

where

Hi =


ai bi,0 0
0 bi,1 0
0 bi,2 ci

 . (4.21)

Since the system (B0(ti), B1(ti), B2(ti)) is the normalized B-basis of the space Tu,v, according to
Theorem 4.2 of [38], we can conclude that Hi is a nonsingular stochastic and totally positive matrix.
For functions ui(t), vi(t) meeting Eq (3.6), i ∈ Z+, j = 0, 1, 2, it is obvious to verify that ai, bi, j ci>0.
Moreover, it is easy to obtain that Hi is stochastic from Lemma 1. This shows that Theorem 4 is
true. �

Theorem 5. With a non-uniform knot vector, the generalized quadratic B-splines Ri(u) with ui(t), vi(t)
meeting Eq (3.6) is C1-continuous at each knot.
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Proof of Theorem 5. We consider the continuity at ui+1 first. For functions ui(t), vi(t) satisfying
Eq (3.6), we obtain

Ri(u−i+1) = ci, Ri(u+
i+1) = bi+1,0,

R′i(u
−
i+1) =

civ
′

i(1)
hi

, R′i(u
+
i+1) =

(
bi+1,0 − bi+1,1

)
u
′

i+1(0)
hi+1

.
(4.22)

We know that the theorem is true at ui+1 from the equations above and Lemma 1. We can similarly
analyze the theorem at other knots. �

Theorem 6. With the property of having C1 continuity at each knot discussed above, when controlling
functions ui(t), vi(t) satisfy 

u
′′

i (1) = 0,
v
′′

i (0) = 0,
u
′′

i+1(0)
u′i+1(0)

hi =
v
′′

i (1)
v′i(1)

hi+1,

(4.23)

the generalized quadratic B-splines Ri(u) are C2-continuous at each knot.

Proof of Theorem 6. On the basis of the proof that the generalized quadratic B-splines Ri(u) have C1

continuity with fixed coefficients ai, bi, j, ci, we only need to verify the second derivative is continuous
in order to have C2 continuity. Next, we will prove that Ri(u) are C2-continuous at each knot.

We calculate the second derivative of Ri(u) at ui, ui+1 , ui+2 and ui+3, which are

R
′′

i (ui) =
ci

h2
i

v
′′

i (0),

R
′′

i (u−i+1) =
1
h2

i

civ
′′

i (1),

R
′′

i (u+
i+1) =

1
h2

i+1

(
bi+1,0 − bi+1,1

)
u
′′

i+1(0),

R
′′

i (u−i+2) =
1

h2
i+1

(
bi+1,2 − bi+1,1

)
v
′′

i+1(1),

R
′′

i (u+
i+2) =

1
h2

i+2

ai+2u
′′

i+2(0),

R
′′

i (ui+3) =
ai+2

h2
i+2

ui+2
′′

(1).

(4.24)

When the controlling functions ui(t) and vi(t) meet Eq (4.23), we obtain
R
′′

i (ui) = 0,
R
′′

i (u−i+1) = R
′′

i (u+
i+1),

R
′′

i (u−i+2) = R
′′

i (u+
i+2),

R
′′

i (ui+3) = 0,

(4.25)

which show that Ri(u) have C2 continuity at each knot.
These indicate that the generalized quadratic B-splines Ri(u) are C2-continuous at each knot. �
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Example 4. Given knots u0 < u1 < · · · < ui+3, the controlling functions are given as follows:

u(t) =
(
1 − sinπ

2 t
) (

1 − sinπ
2 t + 2cosπ2 t

)
,

v(t) =
(
1 − cosπ2 t

) (
1 − cosπ2 t + 2sinπ

2 t
)
.

(4.26)

We will verify that these controlling functions given in Eq (4.26) satisfy Eq (3.6). We calculate their
derivative where endpoint values are 0 and 1, which are



u(0) = 1, u(1) = 0,

u′(t) =
π

2

(
−2cosπ2 t − 2sinπ

2 t + sinπt − 2cosπt
)
≤ 0,

u′′(t) =
π2

4

(
2sinπ

2 t − 2cosπ2 t + 2cosπt + 4sinπt
)
≥ 0,

v(0) = 0, v(1) = 1,

v′(t) =
π

2

(
2sinπ

2 t + 2cosπ2 t − sinπt − 2cosπt
)
≥ 0,

v′′(t) =
π2

4

(
2cosπ2 t − 2sinπ

2 t − 2cosπt + 4sinπt
)
≥ 0.

(4.27)

This implies that Example 4 satisfy Eq (3.6). Next, we calculate both first and second derivatives of
u(t), v(t) where endpoint values are 0, 1,

u′(0) = −2π, u′′(0) = 0,
v′(1) = 2π, v′′(1) = 0,

(4.28)

which satisfy Eq (4.23). So it can be concluded that the generalized quadratic B-splines having
controlling functions given in Eq (4.26) are C2-continuous at each knot.

Theorem 7. With the property of C2 continuity at each knot discussed above, when the controlling
functions ui(t), vi(t) meet


u(3)

i (1) = 0,
v(3)

i (0) = 0,
u(3)

i+1(0)
u′i+1(0)

h2
i =

v(3)
i (1)
v′i(1)

h2
i+1,

(4.29)

the generalized quadratic B-splines Ri(u) are C3-continuous at each knot.

Proof of Theorem 7. Based on the proof that the generalized quadratic B-splines Ri(u) are C2-
continuous with fixed coefficients ai, bi, j, ci, we only need to verify their third derivative is continuous
in order to have C3 continuity. Next, we will prove that Ri(u) are C3-continuous at each knot.
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We calculate the third derivative of Ri(u) at each knot, which are

R(3)
i (ui) =

ci

h3
i

v(3)
i (0),

R(3)
i (u−i+1) =

1
h3

i

civ
(3)
i (1),

R(3)
i (u+

i+1) =
1

h3
i+1

(
bi+1,0 − bi+1,1

)
u(3)

i+1(0),

R(3)
i (u−i+2) =

1
h3

i+1

(
bi+1,2 − bi+1,1

)
v(3)

i+1(1),

R(3)
i (u+

i+2) =
1

h3
i+2

ai+2u(3)
i+2(0),

R(3)
i (ui+3) =

ai+2

h3
i+2

ui+2
(3)(1).

(4.30)

When the controlling functions ui(t) and vi(t) meet Eq (4.29), we obtain
R(3)

i (ui) = 0,
R(3)

i (u−i+1) = R(3)
i (u+

i+1),
R(3)

i (u−i+2) = R(3)
i (u+

i+2),
R(3)

i (ui+3) = 0,

(4.31)

which show that Ri(u) are C3-continuous at each knot.
Thus, we can come to a conclusion that the generalized quadratic B-splines Ri(u) are C3-continuous

at each knot. �

Example 5. Given equidistant knots u0 < u1 < · · · < ui+3, the controlling functions are given as
follows: u(t) = 1

8

(
8 − 9sinπ

2 t − sin3π
2 t

)
,

v(t) = 1
8

(
8 − 9cosπ2 t + cos3π

2 t
)
.

(4.32)

We will verify that these controlling functions given in Eq (4.32) satisfy Eq (3.6). We calculate their
derivative where endpoint values are 0 and 1, which are

u(0) = 1, u(1) = 0,
u′(t) = π

16

(
−9cosπ2 t − 3cos 3π

2 t
)
≤ 0,

u′′(t) = π2

32

(
9sinπ

2 t + 9sin 3π
2 t

)
≥ 0,

v(0) = 0, v(1) = 1,
v′(t) = π

16

(
9sinπ

2 t − 3sin3π
2 t

)
≥ 0,

v′′(t) = π2

32

(
9cosπ2 t − 9cos3π

2 t
)
≥ 0.

(4.33)

This implies that Example 5 satisfy Eq (3.6). Next, we calculate both first and second derivatives of
u(t), v(t) at the endpoint value 0 and 1 respectively, we haveu′(0) = −3

4π, u′′(0) = 0,
v′(1) = 3

4π, v′′(1) = 0,
(4.34)
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which satisfy Eq (4.23). So we conclude that the generalized quadratic B-splines with controlling
functions provided in Eq (4.32) are C2-continuous at each knot.

Next, we calculate the third derivative of u(t), v(t) where endpoint values are 0 and 1, which areu(3)(0) = 9
16π,

v(3)(1) = − 9
16π.

(4.35)

For equidistant knots, consider Eqs (4.34) and (4.35), we find that they satisfy Eq (4.29). So we
conclude that the generalized quadratic B-splines having controlling functions u(t), v(t) provided in
Eq (4.32) have C3 continuity at each equidistant knot.

Theorem 8. For all n ∈ Z+, if the controlling functions ui(t), vi(t) satisfy
u(m)

i (1) = 0,
v(m)

i (0) = 0,
u(m)

i+1(0)
u′i+1(0)

hm−1
i =

v(m)
i (1)
v′i(1)

hm−1
i+1 ,

(4.36)

where m = 1, 2, · · · , n, the generalized quadratic B-splines Ri(u) have Cn continuity at each knot.

Proof of Theorem 8. We prove it by mathematical induction. For n = 1, the conclusion is established
according to Theorem 6. Assuming the theorem holds when n = k(for some k ∈ Z+), we obtain that
the generalized quadratic B-splines Ri(u) have Ck continuity at each knot, and Eq (4.36) holds for
m = 1, 2, · · · , k. Thus, for n = k + 1, the controlling functions ui(t), vi(t) only need to satisfiy Eq (4.36)
where m = k + 1 to have Cn continuity. Next, we calculate (k+1)-th derivative of Ri(u) at each knot,
which are 

R(k+1)
i (ui) = ci

hk+1
i

v(k+1)
i (0),

R(k+1)
i (u−i+1) = 1

hk+1
i

civ
(k+1)
i (1),

R(k+1)
i (u+

i+1) = 1
hk+1

i+1

(
bi+1,0 − bi+1,1

)
u(k+1)

i+1 (0),

R(k+1)
i (u−i+2) = 1

hk+1
i+1

(
bi+1,2 − bi+1,1

)
v(k+1)

i+1 (1),

R(k+1)
i (u+

i+2) = 1
hk+1

i+2
ai+2u(k+1)

i+2 (0),

R(k+1)
i (ui+3) = ai+2

hk+1
i+2

ui+2
(k+1)(1).

(4.37)

These indicate that the controlling functions ui(t) and vi(t) satisfy Eq (4.36) where m = k + 1, which
are 

R(k+1)
i (ui) = 0,

R(k+1)
i (u−i+1) = R(k+1)

i (u+
i+1),

R(k+1)
i (u−i+2) = R(k+1)

i (u+
i+2),

R(k+1)
i (ui+3) = 0.

(4.38)

These indicate that Ri(u) have Ck+1 continuity at each knot. Thus, the generalized quadratic B-splines
Ri(u) are Ck+1-continuous.

Thus, we now know from mathematical induction that the theorem holds for n ∈ Z+. �
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The above discussion is based on the strictly monotonically increasing sequence of simple knots.
Multiple knots will affect the smoothness and numerical stability of the basis functions. In order to
construct well-defined generalized quadratic B-splines at multiple knots, we delete the intervals that
shrink to zero. Without loss of generality, we study the case where ui = ui+1, here we define

Ri(u) =


Ri,1(ti+1) =

∑2
j=0 bi+1, jB j (ti+1), u ∈ [ui+1, ui+2),

Ri,2(ti+2) = ai+2B0 (ti+2) , u ∈ [ui+2, ui+3),
0, u < [ui, ui+3).

(4.39)

Theorem 9. Suppose that the basis functions have a knot of multiplicity k (k = 2 or 3) at a parameter
value u. Then at this piont the continuity of the basis function is reduced from Cn to Cn+1−k (C−1 means
discontinous).

Proof of Theorem 9. In the case of k = 2, ui = ui+1, hi = 0.

bi+1,0 = ci =
u
′

i+1(0)hi

u′i+1(0)hi − v′i(1)hi+1
= 0, (4.40)

bi+1,1 = 1. (4.41)

By Theorem 8, we obtain um−1
i+1 (0) = 0, where m = 1, 2, · · · , n. Obviously

R(m−1)
i (u+

i+1) = −
1

hm−1
i+1

u(m−1)
i+1 (0) = 0. (4.42)

That is, the continuity of the basis decreases from Cn to Cn−1.
Similarly, the case of k = 3 can be proved. �

5. New generalized quadratic B-spline curves

Definition 6. Given a knot vector U and some control points Qi (i = 0, 1, . . . , n) in R2 or R3, for
ui(t), vi(t) meeting Eq (3.6) and any integers n ≥ 2, u ∈ [u2, un+1], a new generalized quadratic B-spline
curve having two functions ui(t), vi(t) is defined by

R(u) =

n∑
i=0

Ri(u)Qi, (5.1)

It is obvious that for u ∈ [ui, ui+1], i = 2, 3, . . . , n, the curve R(u) can be rewritten by the following
curve segment

R(u) =

i∑
j=i−2

R j(u)Q j =
(
aiQi−2 + bi,0Qi−1

)
B0(ti) + bi,1Qi−1B1(ti) +

(
bi,2Qi−1 + ciQi

)
B2(ti). (5.2)

According to Theorems 1 and 2, the generalized quadratic B-splines are normalized and
nonnegative. Thus, the corresponding new generalized quadratic B-spline curve R(u) has affine
invariance. When u ∈ [ui, ui+1], R(u) lies in the control polygon formed by Qi−2, Qi−1, Qi. According to
Theorem 4, since the generalized quadratic B-splines are totally positive, the accompanying B-spline
curve R(u) has variation diminishing. This means R(u) can be used in shape control.
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5.1. Relationship between generalized quadratic B-spline curves and controlling functions

According to the previous discussion of properties, by changing different shape parameters of
controlling functions, we get the desired shape of the curve. As we increase the values of these
parameters, the curves will move near to the control polygon. Next, we demonstrate this relationship
in detail with two examples.

Example 6. Figure 7 shows the closed spline curves in the shape of a fish, which are constructed with
ui(t) and vi(t) provided in Eq (3.19) having distinct controlling parameters. Let all λi = 0.1, µi = 0, 2,
we can obtain the first figure. By changing the value of one λi based on the first one, we can obtain the
second figure. By changing the value of another λi based on the second one, we can obtain the third
figure. The curvature comb plots in the corresponding rectangles are also shown.

A

a

b

c

B

d

C

D

E

Figure 7. Closed curves with uniform knot vector of the controlling functions with ui(t) and
vi(t) given in Eq (3.19); (A) All λi = 0.1, µi = 0, 2; (B) Changing the value of one λi from 0.1
to 1 based on A; (C) Changing the value of another λi from 0.1 to 1 based on B; (D) The
curvature comb plots in rectangles a and c; (E) The curvature comb plots in rectangles b and
d.
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Example 7. Figure 8 shows the closed spline curves in the shape of a cat, which are constructed with
ui(t) and vi(t) provided in Eq (3.21) having distinct controlling parameters. Let all λi = 0.2, we can
obtain the first figure. By changing the value of one λi based on the first one, we can obtain the second
figure. By changing the value of two other µi based on the second one, we can obtain the third figure.
The curvature comb plots in the corresponding rectangles are also shown.

A

a

b c

B

d

C

e f

D

E

F

Figure 8. Closed curves with uniform knot vector of the controlling functions with ui(t) and
vi(t) given in Eq (3.21); (A) All λi = 0.2; (B) Changing the value of one λi from 0.2 to 0.5
based on A; (C) Changing the value of two other µi from 0.2 to 0.5 based on B; (D) The
curvature comb plots in rectangles a and d; (E) The curvature comb plots in rectangles b and
e; (F) The curvature comb plots in rectangles c and f.
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5.2. Continuity conditions of generalized quadratic B-spline curves

It is hard to construct complex curves under continuity conditions of traditional Bézier curves.
While the generalized quadratic B-spline curves have alternative controlling functions, they help us
construct complex curves under parametric continuity conditions.

Proposition 3. With a non-uniform knot vector, the new generalized quadratic B-spline curves R(u)
are C1-continuous. Furthermore, if ui is a simple knot, for i = 2, 3, . . . , n + 1, we obtain

R(ui) = aiQi−2 + bi,0Qi−1, (5.3)

R′(ui) =
aiu

′

i(0)
hi

Qi−2 +

(
bi,0 − bi,1

)
u
′

i(0)
hi

Qi−1. (5.4)

Proposition 4. With a non-uniform knot vector, for all n ∈ Z+, if the controlling functions ui(t), vi(t)
satisfy the conditions given in Theorm 8, the generalized quadratic B-spline curves R(u) are Cn-
continuous.

Example 8. Figure 9 shows the comparison among the traditional quadratic B-spline curve and the
generalized quadratic B-spline curves which are constructed with ui(t) and vi(t) given in Eq (4.26)
and Eq (4.32). The traditional quadratic B-spline curve is C1-continuous. The second one is C2-
continuous, which has been proved in Example 4. The third one is C3-continuous, which has been
proved in Example 5. The curvature comb plots in the corresponding rectangles are also shown.

A B C

Figure 9. Closed curves with the controlling functions with different continuity; (A) C1

continuity, traditional quadratic B-splines; (B) C2 continuity, functions given in Eq (4.26);
(C) C3 continuity, functions given in Eq (4.32).

Example 9. Figure 10 shows the 3-dimensional open spline curves, which are constructed with ui(t)
and vi(t) given in Eq (3.19).
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A B

Figure 10. 3-dimensional open spline curves.

6. Disscusion

In this work, we construct generalized quadratic B-splines having controlling functions. It includes
rational B-spline and some advanced work. We further explore the conditions for higher-order
continuity, which are of practical use in industrial design.

The proposed generalized B-splines have many excellent properties. For example, the controlling
functions given in Example 2 can accurately represent ellipses, see [16]. The controlling functions
given in Example 3 can accurately represent hyperbolas. Besides, the curve can achieve G3 smooth
splicing at the junctions under certain conditions, see [22]. These cannot be executed by traditional
B-spline and its algorithms.

Traditional quadratic B-splines and some quasi quadratic B-splines are C1 continuous, which cannot
meet the needs of many practical applications. Based on C1 continuity, our generalized B-spline can
achieve C2 continuity, C3 continuity, or even higher continuity under some conditions we propose.

Traditional B-splines and NURBS can adjust curves locally. However, the effects are limited. The
proposed generalized B-splines with controlling functions include many splines with better shape
control effects. We give some plots to show the effects of this more flexible and varied shape
control. Analogous to NURBS, we can locally modify curves by adjusting the shape parameters in
corresponding positions. Therefore, it is achievable to embed the proposed generalized B-splines in
CAD systems.

We will continue to explore further applications of these generalized quadratic B-splines having
controlling functions and embed such splines in modeling software in the future.

7. Conclusions

We introduced generalized quadratic Bernstein-like functions having controlling functions and
analyzed their properties. It includes the basis given in [13–20] as special cases. The controlling
functions satisfying specific conditions have wide applications, with three cases presented. The
accompanying generalized quadratic Bézeir curves and corner cutting algorithms are provided. Taking
the new basis functions as a foundation, we proposed generalized quadratic B-splines. They are
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normalized, nonnegative, linearly independent, totally positive and C1-continuous. These properties
are crucial in curve modeling. We further explore the condition that the basis needs to meet for C2 and
C3 continuity, and extend it to the condition of Cn continuity. It greatly expands the application range
of generalized quadratic B-splines. The generalized quadratic B-spline curves and their applications
are shown.
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15. L. Yan, T. Liang, The quadratic Bézier curves that shape can adjust (Chinese), Journal of East
China University of Technology (Natural Science), 31 (2008), 93–97.

16. X. Han, Quadratic trigonometric polynomial curves with a shape parameter, Comput. Aided Geom.
D., 19 (2002), 503–512. https://doi.org/10.1016/s0167-8396(02)00126-7

17. X. Wu, Research on the theories and methods of geometric modeling based on the curves and
surfaces with shape parameter, Ph. D Thesis, Central South University, 2008.

18. X. Han, Quadratic trigonometric polynomial curves concerning local control, Appl. Numer. Math.,
56 (2006), 105–115. https://doi.org/10.1016/j.apnum.2005.02.013

19. X. Han, Piecewise quadratic trigonometric polynomial curves, Math. Comput., 72 (2003), 1369–
1377. https://doi.org/10.1090/s0025-5718-03-01530-8

20. X. Han, C2 quadratic trigonometric polynomial curves with local bias, J. Comput. Appl. Math., 180
(2005), 161–172. https://doi.org/10.1016/j.cam.2004.10.008

21. U. Bashir, M. Abbas, J. Ali, The G2 and C2 rational quadratic trigonometric Bézier curve
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