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1. Introduction

In recent years, more and more scholars have paid extensive attention to the research of the theory
of stochastic orderings and have achieved a lot of research results. Stochastic orderings are the class
of partial order relationships, which are defined on a family of random variables. It is a powerful tool
to describe the size relationship between random variables and compare the degree of correlation of
random variables. Nowadays, stochastic order relationships are widely used in many fields of
probability and statistics, such as the statistical theory of economics and actuarial data, the
comparison of stochastic processes in physics and other disciplines, etc. The comparison of two or
more ordered experimental groups based on multivariate data is commonly used in research and in
various applications in the medical field. For more detailed theoretical results, interested readers can
refer to [1–3].

The problem of the stochastic order of the multivariate normal distribution has been fully researched
and described in detail by Müller [4] and Arlotto and Scarsini [5] and so on. The stochastic orderings
of the multivariate elliptical distribution were later introduced by [6–8] and later the results of the
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multivariate normal distribution were extended to the general multivariate elliptical distribution with
the special cases of multivariate normal, multivariate logistic, multivariate-t and multivariate Laplace
distributions by Yin [9]. Although these two distributions have good properties and characteristics,
they are idealized symmetrical distributions. However, in practice, data often have skewness and heavy
tails. In particular, it was fitted by using these two distributions but cannot achieve a more perfect effect.
Therefore, researchers have promoted the elliptical distribution, either by mixing the two methods or
by adding skewness to the distribution then obtained a series of asymmetric distributions, which can
better fit the actual data.

Azzalini [10] proposed the skew-normal distribution and then Azzalini and Valle [11] extended it
to the multivariate skew-normal families. There are some properties and applications of the
multivariate skew-normal distribution were discussed in [12]. This distribution represents a
mathematically tractable extension of the density of multivariate normal distribution, with adding
parameters to adjust for skewness. The multivariate skew-normal distribution offers reasonable
flexibility in fitting real data while maintaining some convenient formal properties of the normal
density. A complete exposition of the theory of the skew-normal distribution can be found in [13].

Among the numerous stochastic orderings, Hessian, increasing Hessian orderings and linear
orderings have been discussed quite extensively in the literature in recent years. For example, the
results on skewness orderings on the multivariate skew-normal can be found in Arevalillo and
Navarro [14]. Pu et al. [15] studied a class of multivariate generalized location-scale mixtures of
elliptical distributions with respect to stochastic orderings. Amiri et al. [16], Amiri and
Balakrishnan [17] considered the Hessian, increasing Hessian orderings and linear orderings, which is
a practical tool for reducing dimension in multivariate stochastic comparisons. Amiri and
Balakrishnan [17] established some stochastic comparison results for multivariate scale-shape
mixture of skew-normal distributions by restricting the conditions of parameters. Thus, it was shown
that there exists some equivalent correlation between stochastic orderings. Pertinent results of the
comparisons of partial integral stochastic orderings of skew-normal distribution can be found in [18].
Similarly, related results can be found in [19], in which the orders for matrix variate skew-normal
distribution were studied. Current research on integral stochastic orderings of skew-normal
distributions is limited and some well-known stochastic orderings such as componentwise convex,
copositive, completely-positive orderings and a variety of increasing orderings such as increasing
supermodular, increasing directionally convex, increasing copositive, increasing completely-positive
and increasing componentwise convex orderings as well as linear forms of stochastic orderings have
not been well studied.

Whether the existence of sufficient and/or necessary conditions for those stochastic orderings is still
an open question. This paper intends to solve these issues. The results can be also seen as supplements
to the results in [18].

This paper is organized as follows: Section 2 contains an introduction to the skew-normal
distribution and a review of knowledge about integral stochastic orderings. Section 3 derives
necessary and/or sufficient conditions for stochastic orderings of the skew-normal distribution. In
Section 4, necessary and sufficient conditions for the linear orderings of the skew-normal distribution
are given. Section 5 gives some brief summaries.
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2. Preliminaries

We firstly review the concept and property of the multivariate skew-normal distribution which is
introduced by [12]. A n-dimensional random vector Z has the multivariate skew-normal distribution,
denoted as Z ∼ S Nn(ξ,Ω,α), if its probability density function has the following form:

fZ(z) = 2ϕn(z; ξ,Ω)Φ(α⊤ω−1(z − ξ)),

where ξ is the mean vector, α is the skewness parameter, ξ,α ∈ Rn, Ω = [ωi j] is a n × n covariance
matrix which has full rank, denote Ω = ω−1Ωω−1 is the corresponding correlation matrix, where
ω = diag(ω11, ..., ωnn)

1
2 . The following notations will be used throughout the paper: The cumulative

distribution function (CDF) of the univariate standard normal distribution is denoted by Φ(·) and the
probability density function (PDF) of the n-dimensional normal distribution is represented by
ϕn(.; ξ,Ω).

The characteristic function of Z is (refer to [20]):

ΨZ(t) = 2exp
(
iξt −

1
2

t⊤Ωt
)
Φ(iδ⊤t)

= exp
(
iξt −

1
2

t⊤Ωt
)
{1 + iτ(δ⊤t)}, t ∈ Rn,

(2.1)

where

δ = (1 + α⊤Ωα)−
1
2ωΩα, τ(u) =

√
2
π

∫ u

0
exp

(
z2

2

)
dz.

Then, Z has the multivariate skew-normal distribution, also denoted as Z ∼ S Nn(ξ,Ω, δ). Specially,
the standard skew-normal distribution Z0 ∼ S Nn(0,Ω, δ), which can be abbreviated as Z0 ∼ S Nn(Ω, δ).
Its mean vector and covariance matrix can be expressed as

E(Z0) =

√
2
π
δ, Cov(Z0) = Ω −

2
π
δδ⊤. (2.2)

Consider the univariate skew-normal distribution Z1 ∼ S N1(ξ1, σ
2
1, δ

2
1). Then, Z1 has a stochastic

representation of the form (see [13])

Z1
d
= ξ1 + σ1X1 | {X2 < αX1},

where the random variables X1 and X2 are independent standard normal random variables and

α =
δ1

σ1

√
1 −

(
δ1
σ1

)2
.

Lemma 2.1. ([18]) Suppose that X and Y are n-dimensional skew-normal random vectors

X ∼ S Nn(ξ,Ω, δ), Y ∼ S Nn(ξ∗,Ω∗, δ∗). (2.3)
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Define the density function φλ(·) be distributed as

S Nn(λξ∗ + (1 − λ)ξ, λΩ∗ + (1 − λ)Ω, λδ∗ + (1 − λ)δ, 0 ≤ λ ≤ 1,

where
ξλ = λξ

∗ + (1 − λ)ξ, Ωλ = λΩ
∗ + (1 − λ)Ω, δλ = λδ∗ + (1 − λ)δ.

Moreover, define φk
λ(.), k = 1, 2 by

φ1
λ(u) = φλ(u), φ2

λ(u) = ϕn(u; ξλ,Ωλ − δλδ
⊤
λ ).

Assume that f : Rn → R is a twice continuously differentiable function satisfying
(1) limx j→±∞ f (x)φk

λ(x) = 0,

(2) limx j→±∞ f (x) ∂
∂xi
φk
λ(x) = 0,

(3) limx j→±∞φ
k
λ(x) ∂

∂xi
f (x) = 0,

where 0 ≤ λ ≤ 1, x ∈ Rn, i, j = 1, · · · , n, k = 1, 2. Then,

E( f (Y) − f (X)) =
∫ 1

0

∫
Rn

{(
(ξ∗ − ξ)⊤∇ f (x) +

1
2

tr ((Ω∗ −Ω)Hf(x))
)
φ1
λ(x)

+
2
√

2π
(δ∗ − δ)⊤∇ f (x)φ2

λ(x)
}

dxdλ.
(2.4)

Corollary 2.1. Suppose that f , X and Y satisfy the conditions of Lemma 2.1, such that for x ∈ Rn,

(1) Σn
i=1(ξ∗i − ξi)

∂
∂xi

f (x) ≥ 0.

(2) Σn
i=1(δ∗i − δi) ∂

∂xi
f (x) ≥ 0.

(3) Σn
i, j=1(ω∗i j − ωi j) ∂2

∂xi∂x j
f (x) ≥ 0.

Then, E( f (X)) ≤ E( f (Y)).

In the sequel, we introduce the concept of stochastic orderings. Integral stochastic ordering is the
class of stochastic orderings that can be characterized by comparing the expectations of the random
vectors X and Y. Let F is the class of measurable function f : Rn → R. If f satisfies E f (Y) ≥ E f (X)
for two random vectors X and Y whose expectations are assumed to exist and for ∀ f ∈ F where F is
a measurable mapping set, then it is called the integral stochastic ordering X ≤F Y.

A function is supermodular if and only if its Hessian matrix has non-negative off-diagonal elements.

f is increasing supermodular if and only if for all x ∈ Rn, there is ∇ f (x) ≥ 0 and ∂2 f (x)
∂xi∂x j

≥ 0, for i , j;

f is increasing directionally convex if and only if for all x ∈ Rn, there is ∇ f (x) ≥ 0 and ∂2 f (x)
∂xi∂x j

≥ 0, for
1 ≤ i, j ≤ n.

For the notions mentioned above, if f : Rn → R is a twice continuously differentiable function then
we write

∇ f (x) =
(
∂

∂x1
f (x), ...,

∂

∂xn
f (x)

)⊤
, H f (x) =

(
∂2 f (x)
∂xi∂x j

)
n×n

as the gradient vector and the Hessian matrix of f , respectively. For the n-tuple vectors a and b, we
use the notations a ≤ b when ai ≤ bi, and a ≥ 0 when ai ≥ 0, for i = 1, 2, · · · , n.
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Definition 2.1. If a n × n matrix A has quadratic form x⊤Ax ≥ 0 for all x ≥ 0 then A is said to be
copositive. If there is a non-negative matrix Bm×n such that A = B⊤B then A is said to be completely
positive.

Let S be the space of n × n-dimensional symmetric matrices and H be a closed convex cone in S,
which satisfies the inner product ⟨A, B⟩ = tr(AB), for A, B ∈ S. Then, we can define the function class
as

FH = { f : Rn → R : H f (x) ∈ H ,∀x ∈ Rn}

and the class of increasing functions as

L = { f : Rn → R : ∇ f (x) ≥ 0,∀x ∈ Rn}.

Let LH = FH ∩ L.

Definition 2.2. If there is λx ∈ C for x ∈ C,∀λ ≥ 0 then a subset C of vector space V is called a cone.
The cone C is convex if and only if αx + βy ∈ C, for ∀x, y ∈ C, α, β ≥ 0. Besides, if C is closed under
the inner product ⟨·, ·⟩ then

C∗ = {y ∈ V : ⟨x, y⟩ ≥ 0,∀x ∈ C}

is called the dual of C. If C = C∗ is satisfied, then C is called self-dual.
We use Ccop to denote the cone of a copositive matrix and Ccp to denote the cone of a completely

positive matrix. Let C∗cop and C∗cp are the duals of Ccop and Ccp, respectively. Cpsd and C+ are denoted
as the cones of positive semi-definite matrix and non-negative matrix, respectively. C+o f f and C+diag

are ordered as the cones of non-negative off-diagonal elements matrix and non-negative main diagonal
elements matrix, respectively.

Lemma 2.2. ([5, 21, 22]) The cones Ccop and Ccp are closed and convex, and Ccp = C∗cop, Ccop = C∗cp.
Cpsd and C+ are also closed and convex and self-dual Cpsd = C∗psd, C+ = C∗+. C+o f f and C+diag are
closed and convex and their dual cones are

C∗+o f f = {B ∈ S : bii = 0, bi j ≥ 0, i , j ∈ {1, ..., n}},

C∗+diag = {B ∈ S : bii ≥ 0, bi j = 0, i , j ∈ {1, ..., n}}.

Let f : Rn → R be a function with twice continuously derivative. Then, f is convex if and only if
H f ∈ Cpsd, f is directionally convex if and only if it satisfies H f ∈ C+, f is supermodular if and only if
it satisfies H f ∈ C+o f f , f is componentwise convex if and only if it satisfies H f ∈ C+diag.

We introduce some important stochastic orderings as following:

Definition 2.3. ([5]) If f ∈ F = FH then this kind of stochastic orderings is called Hessian orderings.
If f ∈ LH then this kind of stochastic orderings is called increasing Hessian orderings.

If for a ∈ Rn and a scalar convex function ψ, the function f : Rn → R satisfies the condition
f (x) = ψ(a⊤X) then f is said to be linear-convex. If for a ∈ Rn

+ and a scalar convex function ψ, the
function f : Rn → R satisfies the condition f (x) = ψ(a⊤X) then f is said to be positive-linear-convex.

Definition 2.4. Suppose two random variables X and Y.
(1) Usual random order: If E f (Y) ≥ E f (X) holds true for any increasing function f then X ≤st Y.
(2) Convex order: If E f (Y) ≥ E f (X) holds true for any convex function f then X ≤cx Y.
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(3) Componentwise convex order: If F is a class of twice differentiable functions f : Rn → R

satisfying ∂2

∂x2
i

f (x) ≥ 0, where x ∈ Rn and 1 ≤ i ≤ n then X ≤ccx Y.

(4) Completely positive order: If F is a class of functions f that satisfies the condition H f (x) ∈ Ccp

then X ≤cp Y.

(5) Copositive order: If F is a class of functions f satisfying the condition H f (x) ∈ Ccop then
X ≤cop Y.

(6) Increasing convex order: If E f (Y) ≥ E f (X) holds true for any increasing convex function f
then X ≤icx Y.

(7) Increasing supermodular order: If F is a class of twice differentiable functions f : Rn → R

satisfying ∇ f (x) ≥ 0, for all x ∈ Rn, and ∂2 f (x)
∂xi∂x j

≥ 0, for x ∈ Rn, 1 ≤ i < j ≤ n then X ≤ism Y.

(8) Increasing directionally convex order: If F is a class of twice differentiable functions f : Rn →

R, satisfying ∇ f (x) ≥ 0, for all x ∈ Rn and ∂2 f (x)
∂xi∂x j

≥ 0, for x ∈ Rn, 1 ≤ i, j ≤ n then X ≤idcx Y

(9) Increasing componentwise convex order: If F is a class of twice differentiable functions f :
Rn → R, satisfying ∇ f (x) ≥ 0 and ∂2

∂x2
i

f (x) ≥ 0, for x ∈ Rn, 1 ≤ i ≤ n then X ≤iccx Y .

(10) Increasing copositive: If F is a class of increasing functions f satisfying condition H f (x) ∈
Ccop then X ≤icop Y.

(11) Increasing completely-positive: If F is a class of increasing functions f satisfying condition
H f (x) ∈ Ccp then X ≤icp Y.

Then we introduce the definition of several linear stochastic orderings.
(a) If a⊤X ≤st a⊤Y holds true for any a ∈ Rn then X is said to be less than Y in the sense of

linear-usual stochastic order, which is denoted as X ≤lst Y.

(b) If a⊤X ≤st a⊤Y holds true for any a ∈ Rn
+ then X is said to be less than Y in the sense of

positive-linear-usual stochastic order, which is denoted as X ≤plst Y.

(c) If a⊤X ≤cx a⊤Y holds true for any a ∈ Rn then X is said to be less than Y in the sense of
linear-convex order, which is denoted as X ≤lcx Y.

(d) If a⊤X ≤cx a⊤Y holds true for any a ∈ Rn
+ then X is said to be less than Y in the sense of

positive-linear-convex order, which is denoted as X ≤plcx Y.

(e) If a⊤X ≤icx a⊤Y holds true for any a ∈ Rn
+ then X is said to be less than Y in the sense of

increasing-positive-linear-convex order, which is denoted as X ≤plcx Y.

3. Multivariate stochastic orderings results

This section establishes the sufficient and/or necessary conditions for the stochastic comparison
between two random variables that obey the skew-normal distributions. The proofs of sufficient
conditions of the stochastic comparison are fully used the Lemma 2.1 and the identity (2.4). When
proving the necessary conditions, various methods are used to compare the parameters under the
premise of considering the property of the stochastic orderings.
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Lemma 3.1. Suppose that a n-dimensional random vector X ∼ S Nn(ξ,Ω, δ). Then,

E(X) = ξ +

√
2
π
δ.

If the second order moment exists,

Cov(X) = Ω + ξξ⊤ +

√
2
π

(
ξδ⊤ + δξ⊤

)
.

Theorem 3.1. Suppose that the random variables X and Y are defined as in (2.3).

(1) If ξ = ξ∗, δ = δ∗, ωii ≤ ω
∗
ii, 1 ≤ i ≤ n and ωi j = ω

∗
i j, 1 ≤ i < j ≤ n then X ≤ccx Y.

(2) If ξ = ξ∗ then X ≤ccx Y if and only if δ = δ∗, ωii ≤ ω
∗
ii, 1 ≤ i ≤ n and ωi j = ω

∗
i j, 1 ≤ i < j ≤ n.

(3) If δ = δ∗ then X ≤ccx Y if and only if ξ = ξ∗, ωii ≤ ω
∗
ii, 1 ≤ i ≤ n and ωi j = ω

∗
i j, 1 ≤ i < j ≤ n.

Proof. (1) If a convex function f is twice derivable, and H f (x) ∈ C+diag, then X ≤ccx Y by substituting
the condition ξ = ξ∗, δ = δ∗, ωii ≤ ω

∗
ii, 1 ≤ i ≤ n, ωi j = ω

∗
i j and 1 ≤ i < j ≤ n into Corollary 2.1.

(2)-(3) The sufficiency can be directly obtained through Corollary 2.1. The necessity is proved
below. Let X ≤ccx Y, considering a componentwise convex function which satisfies the Definition 2.4.
Suppose that

f1(x) = xi, f2(x) = −xi, 1 ≤ i ≤ n.

Combining with E( f (X)) ≤ E( f (Y)), it quickly yields E( f (X)) = E( f (Y)). Considering the condition
ξ = ξ∗ and using Lemma 3.1, we have δ = δ∗ immediately. The same is true for the proof of (3).
Consider the functions

f3(x) = xix j, f4(x) = −xix j, f5(x) = x2
i ,

where
1 ≤ i ≤ n, 1 ≤ i < j ≤ n.

Obviously, they all satisfy the definition of componentwise convex functions in Definition 2.4.
Therefore, we have

E(XiX j) ≤ E(YiY j), Cov(Xi) ≤ Cov(Yi).

Then, by combining with the expression about the second moment in Lemma 3.1, we can get the
conclusion ωii ≤ ω

∗
ii, 1 ≤ i ≤ n, ωi j = ω

∗
i j and 1 ≤ i < j ≤ n. This ends the proof of Theorem 3.1. □

By considering the n-dimensional random variables X0 and Y0 which obey the standardized skew-
normal distributions, we get the following theorem. The distributions of X0 and Y0 are respectively
denoted as

X0 ∼ S Nn(Ω, δ), Y0 ∼ S Nn(Ω∗, δ∗). (3.1)

Theorem 3.2. Suppose that the random variables X0 and Y0 are defined as in (3.1). Then X0 ≤cp Y0

if and only if δ = δ∗ and Ω∗ −Ω is copositive.

Proof. Sufficiency. Looking at the function f which satisfies the twice differentiable condition and
H f (x) ∈ Ccp, we take into account δ = δ∗ and Ω∗ − Ω in Corollary 2.1, then we derive E( f (X0)) ≤
E( f (Y0)), which means X0 ≤cp Y0.
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Necessity. Take the functions

f1(x) = xi, f2(x) = −xi, 1 ≤ i ≤ n,

f1 and f2 satisfy obviously H f (x) ∈ Ccp of the completely positive function in Definition 2.4.
Considering the condition of X0 ≤cp Y0 and combining with condition E( f (X0)) ≤ E( f (Y0)), we
deduce that their means are equal. Then, from the formula (2.2) we see that δ = δ∗. Let the function

f3(x) =
1
2

(x − E(X))⊤A(x − E(X)),

where A is any n × n dimensional symmetric matrix and A ∈ Ccp, it is clear that

H f3(x) = A ∈ Ccp,

for ∀x ∈ Rn. In order to prove that Ω∗ −Ω is copositive, that is

E((X0 − E(X0))⊤A(X0 − E(X0))) ≤ E((Y0 − E(Y0))⊤A(Y0 − E(Y0))).

Combining with the definition of standardized covariance in formula (2.2), it can be deduced that

tr[(Ω −
2
π
δδ⊤)A] ≤ tr[(Ω∗ −

2
π
δ∗δ∗⊤)A].

Also, we conclude
tr[(Ω∗ −Ω)A] ≥ 0

by considering δ = δ∗. And because of A ∈ Ccp, Ω∗ − Ω ∈ C∗cp where C∗cp = Ccop. Consequently, we
conclude that Ω∗ −Ω is copositive. This completes the proof of Theorem 3.2. □

The following theorem gives the condition of copositive order for the multivariate skew-normal
distribution. The result (1) proves the sufficient condition for the general case, and the necessary
condition for the standard skew-normal distribution is proved in (2).

Theorem 3.3. Suppose that the random variables are defined as in (2.3) and (3.1).

(1) If ξ = ξ∗, δ = δ∗ and Ω∗ −Ω is completely positive then X ≤cop Y.

(2) If X0 ≤cop Y0 then δ = δ∗ and Ω∗ −Ω is completely positive.

Proof. (1) Combining known conditions with Corollary 2.1, it can be obtained immediately.
(2) Suppose that X0 ≤cop Y0 holds. We take copositive functions

f1(x) = xi, f2(x) = −xi, 1 ≤ i ≤ n,

where f1 and f2 satisfy obviously H f (x) ∈ Ccop in Definition 2.4. Combining condition E( f (X0)) ≤
E( f (Y0)), it can be deduced that their means are equal. Then, from (2.2) we can see that δ = δ∗. Take
the function

f3(x) =
1
2

(x − E(X))⊤A(x − E(X)),

AIMS Mathematics Volume 8, Issue 10, 23427–23441.
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where A is any n × n dimensional symmetric matrix and A ∈ Ccop, it is clear that

H f3(x) = A ∈ Ccop

for ∀x ∈ Rn. In order to prove that Ω∗ −Ω is completely positive, that is

E((X0 − E(X0))⊤A(X0 − E(X0))) ≤ E((Y0 − E(Y0))⊤A(Y0 − E(Y0))).

Combining with the definition of standardized covariance in formula (2.2), it can be deduced that

tr[(Ω −
2
π
δδ⊤)A] ≤ tr[(Ω∗ −

2
π
δ∗δ∗⊤)A]

from which we conclude tr[(Ω∗ − Ω)A] ≥ 0 since δ = δ∗. And because of A ∈ Ccop, Ω∗ − Ω ∈ C∗cop

where C∗cop = Ccp, Consequently, we conclude that Ω∗ −Ω is completely positive. This completes the
proof of Theorem 3.3. □

The following theorem introduces several stochastic orderings of univariate skew-normal
distribution, which will be used in the some theorem proof. Suppose that the univariate random
variables X1 and Y1 have univariate skew-normal distributions, denoted as

X1 ∼ S N1(ξ1, σ
2
1, δ1), Y1 ∼ S N1(ξ2, σ

2
2, δ2). (3.2)

Lemma 3.2. ([18]) Suppose that the random variables are defined as in (3.2). Then, X1 ≤st Y1 if and
only if ξ1 ≤ ξ2, σ1 = σ

2
2, δ1 ≤ δ2.

Lemma 3.3. Suppose that the random variables are defined as in (3.2).
(1) If ξ1 ≤ ξ2, σ1 ≤ σ2, δ1 ≤ δ2 then X1 ≤icx Y1.
(2) If X1 ≤icx Y1 and ξ1 = ξ2 then σ1 ≤ σ2, δ1 ≤ δ2.

Proof. (1) It is an immediate consequence of Corollary 2.1.
(2) Suppose that X1 ≤icx Y1 and consider the increasing-convex function f (x) = xi, i = 1, 2. Then,

we claim E(X1) ≤ E(Y1) because of E( f (Y) − f (X)) ≥ 0. By using Lemma 3.1 and the condition
ξ1 = ξ2, we have δ1 ≤ δ2. Also, we know

X1 ∼ S N1(ξ1, σ
2
1, δ1), Y1 ∼ S N1(ξ2, σ

2
2, δ2).

We claim that σ1 ≤ σ2. Suppose that σ1 > σ2. Then,

lim
t→+∞

E(Y1 − t)+
E(X1 − t)+

= lim
t→+∞

∫ +∞
t

(1 − FY1(x))dx∫ +∞
t

(1 − FX1(x))dx

= lim
t→+∞

FY1(t) − 1
FX1(t) − 1

= lim
t→+∞

fY1(t)
fX1(t)

= 0,

(3.3)
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where,

fX1(t) =
2
σ1
ϕ((t − ξ1)/σ1)Φ(α1(t − ξ1)/σ1),

fY1(t) =
2
σ2
ϕ((t − ξ2)/σ2)Φ(α2(t − ξ2)/σ2).

This contradicts X1 ≤icx Y1. Therefore, σ1 ≤ σ2. □

Lemma 3.4. Suppose that the random variables are defined as in (3.2).
(1) If ξ1 = ξ2, σ1 ≤ σ2, δ1 = δ2 then X1 ≤cx Y1.
(2) If X1 ≤cx Y1 and ξ1 = ξ2 then σ1 ≤ σ2, δ1 = δ2.

Proof. (1) Take the convex function f and substitute the known conditions into Corollary 2.1, which
we can get the result immediately.

(2) It is well known that X1 ≤cx Y1 if and only if X1 ≤icx Y1 and E(X1) = E(Y1), which combines
with the mean formula in Lemma 3.1 and ξ1 = ξ2, we get δ1 = δ2. And we claim that σ1 ≤ σ2 by using
Lemma 3.3. □

Theorem 3.4. Suppose that the random variables are defined as in (2.3) and (3.1).
(1) If ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ −Ω is copositive then X ≤icp Y.
(2) If X0 ≤icp Y0 then δ ≤ δ∗ and Ω∗ −Ω is copositive.

Proof. (1) For any f ∈ F where F is the class of increasing functions f which satisfy H f (x) ∈ Ccp.
Considering ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ − Ω is copositive with Corollary 2.1, it is quickly implies that
E f (Y) ≥ E f (X). Then, we draw the conclusion X ≤icp Y.

(2) Suppose that X0 ≤icp Y0. We take the twice differentiable increasingly function f (x) = xi,
satisfying H f (x) ∈ Ccp. Then, from the formula

E( f (Y) − f (X)) ≥ 0

we can know that
E( f (X0)) ≤ E( f (Y0)).

Therefore, we get δ ≤ δ∗ by combining with the (2.2). Let

f (x) = g(a⊤x), a ∈ Rn
+,

where g is an increasing-convex function. Thus, f ∈ LCcp . To sum up, we imply

E(g(a⊤X0)) ≤ E(g(a⊤Y0)),

i.e., a⊤X0 ≤icx a⊤Y0, where

a⊤X0 ∼ S N1(a⊤Ωa, a⊤δ), a⊤Y0 ∼ S N1(a⊤Ω∗a, a⊤δ∗).

Then, from the conclusion of Lemma 3.2, we get that

a⊤(Ω∗ −Ω)a ≥ 0,

i.e., Ω∗ −Ω is copositive. □
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Theorem 3.5. Suppose that the random variables are defined as in (2.3) and (3.1).
(1) If ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ −Ω is completely positive then X ≤icop Y.
(2) If X0 ≤icop Y0 then δ ≤ δ∗ and Ω∗ −Ω is completely positive.

Proof. (1) Obviously, considering any increasing function f ∈ F , H f (x) ∈ Ccop of f and Corollary 2.1
then E f (Y) ≥ E f (X) is immediately available from ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ −Ω is completely positive.
Therefore, X ≤icop Y.

(2) According to the Definition 2.4, we take the twice differentiable increasingly function f (x) = xi

satisfying H f (x) ∈ Ccop. Then, the formula

E( f (Y) − f (X)) ≥ 0

shows
E( f (X0)) ≤ E( f (Y0)).

Combining with formula (2.2), we can derive that δ ≤ δ∗. Consider

f (x) = g(a⊤x), a ∈ Rn
+,

where g is an increasing-convex function, such that f is also an increasing-convex function, it yields
that

H f (x) = a⊤ag(2)(a⊤x).

Note that g(2)(a⊤x) ≥ 0, because of the convexity of g, so H f (x) ≥ 0, i.e., f ∈ LCcop . Assume that
X0 ≤icop Y0 then

E(g(a⊤X0)) ≤ E(g(a⊤Y0)),

i.e., a⊤X0 ≤icx a⊤Y0, where

a⊤X0 ∼ S N1(a⊤Ωa, a⊤δ), a⊤Y0 ∼ S N1(a⊤Ω∗a, a⊤δ∗).

The conclusion of Lemma 3.2 shows that Ω∗ − Ω can be expressed by the product of any two non-
negative matrices, that is to say Ω∗ −Ω is completely positive. □

Theorem 3.6. Suppose that the random variables are defined as in (3.1), then X0 ≤ism Y0 if and only
if δ ≤ δ∗, ωii = ω

∗
ii, 1 ≤ i ≤ n, ωi j ≤ ω

∗
i j and 1 ≤ i < j ≤ n.

Proof. Sufficiency. According to Lemma 1 in [17], we conclude that X0 ≤LH Y0 when δ ≤ δ∗, where
random vectors X0 and Y0 are defined as (3.1). AndH = C+o f f , its dual cone is

C∗+o f f = {B ∈ S : bii = 0, bi j ≥ 0, i , j ∈ {1, ..., n}}.

Then, by the supermodular ordering in Definition 2.4, X0 ≤ism Y0 can be obtained.
Necessity. Suppose that X0 ≤ism Y0, then X0i ≤st Y0i, 1 ≤ i ≤ n and X0 ≤iplcx Y0 can be known

from Müller and Stoyan [1]. First, X0i ≤st Y0i, 1 ≤ i ≤ n guarantees the results of Lemma 3.2. Then, it
is shown that δi ≤ δ

∗
i , ωii = ω

∗
ii and 1 ≤ i ≤ n. Moreover, X0 ≤iplcx Y0, which means

a⊤X0 ≤icx a⊤Y0, a ∈ Rn
+.

According to the conclusion given in Lemma 3.3, we can imply a⊤(Ω∗−Ω)a ≥ 0,Ω∗−Ω is copositive
according to Definition 2.1. Combining the above derivation with the definition of the copositive
matrix, it can be known that Ω∗ − Ω is a matrix whose diagonal elements are 0 and off-diagonal
elements ≥ 0, which means that ωi j ≤ ω

∗
i j and 1 ≤ i < j ≤ n. □
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Theorem 3.7. Suppose that the random variables are defined as in (3.1). Then, X0 − E(X0) ≤idcx

Y0 − E(Y0) if and only if ωi j ≤ ω
∗
i j, 1 ≤ i and j ≤ n.

Proof. Sufficiency. Let f ∈ F , where F be a class of twice differentiable and directionally convex

functions. From Definition 2.4 we know that ∂2 f (x)
∂xi∂x j

≥ 0. Then, according to the condition ωi j ≤ ω
∗
i j, 1 ≤

i, j ≤ n and Corollary 2.1, we can get

X0 − E(X0) ≤idcx Y0 − E(Y0).

Necessity. The condition
X0 − E(X0) ≤idcx Y0 − E(Y0)

means
X0 − E(X0) ≤dcx Y0 − E(Y0).

Then, according to the conclusion derived from Proposition 4.7 in [18], it can be known that ωi j ≤ ω
∗
i j,

1 ≤ i and j ≤ n. □

4. Linear stochastic orderings results

Theorem 4.1. Suppose that the random variables are defined as in (2.3). Then, X ≤plst Y if and only
if ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ = Ω.

Proof. Sufficiency. According to the conclusion derived from Proposition 4.3 in [18], we can see that
X ≤st Y from the known conditions ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ = Ω. Then, we conclude X ≤plst Y.

Necessity. X ≤plst Y implies a⊤X ≤st a⊤Y for a ∈ Rn
+. From the necessary and sufficient conditions

of the usual stochastic ordering of the skew-normal distribution, it can be known that a⊤ξ∗ ≥ a⊤ξ,
a⊤δ∗ ≥ a⊤δ and a⊤(Ω∗ −Ω)a = 0, a ≥ 0. The conclusion is obviously available. □

Theorem 4.2. Suppose that the random variables are defined as in (2.3) and (3.1).
(1) If ξ = ξ∗, δ = δ∗,Ω∗ −Ω is PSD then X ≤lcx Y.
(2) X0 ≤lcx Y0 if and only if δ = δ∗,Ω∗ −Ω ≥ 0.

Proof. (1) From ξ = ξ∗ and δ = δ∗, Ω∗ − Ω is positive semi-definite, we can conclude X ≤cx Y and
then X ≤lcx Y.

(2) Because of X0 ≤lcx Y0, we have a⊤X0 ≤cx a⊤Y0, a ∈ Rn
+, where

a⊤X0 ∼ S N1(a⊤Ωa, a⊤δ), a⊤Y0 ∼ S N1(a⊤Ω∗a, a⊤δ∗).

Combining with the known necessary and sufficient conditions of convex order, we directly get a⊤δ∗ =
a⊤δ and a⊤(Ω∗ − Ω)a ≥ 0, a ∈ Rn. That is, δ = δ∗,Ω∗ − Ω ≥ 0, which means Ω∗ − Ω is positive
semi-definite. □

Theorem 4.3. Suppose that the random variables are defined as in (2.3) and (3.1).
(1) If ξ = ξ∗,Ω∗ −Ω is copositive and δ = δ∗ then X ≤plcx Y.
(2) If X0 ≤plcx Y0 then δ = δ∗ and Ω∗ −Ω is copositive.
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Proof. (1) By using the given conditions and Theorem 3.2, it is obvious that X ≤cp Y can be obtained.
Consider a convex function g: Rn → R and let

f (x) = g(a⊤x), a ∈ Rn
+,

then f : Rn → R is also a convex function. According to completely positive ordering in Definition 2.4,
the condition E f (Y) ≥ E f (X) is satisfied, that is,

E(g(a⊤X)) ≤ E(g(a⊤Y)),

so X ≤plcx Y is launched.
(2) Suppose that X0 ≤plcx Y0, then a⊤X0 ≤cx a⊤Y0, a ∈ Rn

+. Combining with the known conclusion
of univariate convex order in Lemma 3.4, it is shown that a⊤X0 ≤cx a⊤Y0 is equivalent with a⊤δ∗ = a⊤δ
and a⊤(Ω∗ −Ω)a is positive semi-definite. Then, we immediately conclude that δ = δ∗ and Ω∗ −Ω is
copositive. □

Theorem 4.4. Suppose that the random variables are defined as in (2.3) and (3.1).
(1) If ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ −Ω is copositive then X ≤iplcx Y.
(2) If X0 ≤iplcx Y0 then δ ≤ δ∗ and Ω∗ −Ω is copositive.

Proof. (1) Apply the conclusion derived in Theorem 3.4, if ξ ≤ ξ∗, δ ≤ δ∗ and Ω∗ − Ω is copositive,
then X ≤icp Y can be deduced. At this time, consider an increasing-convex function g: Rn → R and let
f (x) = g(a⊤x), a ∈ Rn

+. Then, f : Rn → R is also an increasing-convex function on Rn and f satisfies
the expression of copositive ordering in Definition 2.4, such that ∂

∂xi
f (x) ≥ 0 and

H f (x) = a⊤ag(2)(a⊤x) ∈ Ccp, a ∈ Rn
+.

Thus,
E(g(a⊤X)) ≤ E(g(a⊤Y)), a ∈ Rn

+,

which means X ≤iplcx Y.
(2) When X0 ≤iplcx Y0, there is a⊤X0 ≤icx a⊤Y0, a ∈ Rn

+ where

a⊤X0 ∼ S N1(a⊤Ωa, a⊤δ), a⊤Y0 ∼ S N1(a⊤δ∗, a⊤Ω∗a).

According to the conclusion of increasing-convex order in Lemma 3.3, we can get a⊤δ ≤ a⊤δ∗ and
a⊤(Ω∗ −Ω)a ≥ 0, a ≥ 0, i.e., δ ≤ δ∗, Ω∗ −Ω is copositive. □

5. Conclusions

In this paper we consider the multivariate integral stochastic ordering of skew-normal distribution,
including componentwise convex, copositive, completely positive orderings and increasing
componentwise convex, increasing copositive, increasing completely positive, increasing directionally
convex, increasing supermodular orderings, etc, as well as some important linear stochastic orderings.
We obtain some necessary and/or sufficient conditions. As for future research directions, we will draw
on the idea of a projection pursuit, which is a multivariate statistical method aimed at finding
interesting data projections [23], in the studying of linear random orders. Furthermore, the results
might be extended to other skew-symmetric distributions, such as the (generalized) skew-elliptical
distributions, which are natural generalizations of skew-normal distributions [24].
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