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Abstract: The Allen-Cahn equation is a famous nonlinear reaction-diffusion equation used to study
geometric motion and minimal hypersurfaces. This link has been scrutinized to construct minimal
surfaces for many years. The shape of soap film is very interesting, and it can stimulate mathematical
inspirations since it explains curvatures and equilibrium shapes in nature. There are many interesting
ways to create area-minimizing surfaces with the boundaries, called frame boundaries. However,
dealing with surface’s ends (boundaries) numerically is not easy for constructing surfaces. This
paper presents a mathematical formulation and numerical construction of area-minimizing surfaces,
also known as minimal surfaces. We use differential geometry knowledge for numerical verification.
The proposed numerical scheme involves fixed frame boundary conditions in the Laplacian operator.
We treat the Laplacian with the constraint implicitly and explicitly solve the nonlinear free energy
term. This approach ensures stable and efficient construction of area-minimizing surfaces with frame
boundaries. In the numerical aspect, we suggest the construction of minimal surfaces by illustrating
two classical examples, which are Scherk’s minimal surface and catenoid. Both examples have the
frame boundaries. Scherk’s first surface is a doubly periodic, complete and properly embedded
one with parallel ends. The catenoid is formed between two coaxial circular rings and is classified
mathematically as the only properly embedded minimal surface with two ends and finite curvature. To
be specific, we deal with two different frame boundaries, right angle frame and round frame boundaries,
via two examples, Scherk’s surface and catenoid.
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1. Introduction

The Allen–Cahn (AC) equation has its origin in material science [1], but it has been studied in
many fields such as partial differential equations [3], geometry [8], scientific computations [4, 10, 13,
19, 26, 27], image processing [17], computational biology [2, 23] and references therein. Introducing
the order parameter ϕ and positive and small parameter ϵ in the AC equation, we can observe the
constant functions ±ϕ as the solution. That is, we have the domain Ω = Ω+ ∪ I ∪ Ω−, where Ω+ :=
{x ∈ R3|ϕ(x) = 1}, Ω− := {x ∈ R3|ϕ(x) = −1}, and I := {x ∈ R3| − 1 < ϕ(x) < 1}. It is of interest
to analyze the configuration when two phases coexist. The two phases are distinct from each other by
taking one of the functions ϕ = ±1. The constant function takes values close to 1 in the subdomain Ω+,
and the other value takes −1 in the subdomain Ω− as illustrated in Figure 1(a). One of the reasons that
the AC equation is famous for many applications that it has the intrinsic behavior of phase separation
±1 in the domain Ω.

(a) (b)
Figure 1. (a) Phase separation on the domain Ω = Ω+ ∪ I ∪ Ω−. The domains Ω+ and Ω−
are represented by ϕ = 1 and ϕ = −1, respectively. (b) Double-well free energy with two
minima −1 and 1.

Phase separation is the process of a single homogeneous mixture of two or more components
spontaneously dividing into two or more distinct phases. The components of a mixture can be separated
into different phases based on their different properties, e.g., their solubility or density. The process
can occur in a variety of systems, including fluid dynamics [29, 30].

Mathematically, the phase separation induced by the AC equation can be interpreted as the gradient
flow of the Ginzburg-Landau energy functional. For the gradient flow which occurs with phase
separations, the behavior of the interface between two phases follows the motion by curvature as
the interfacial width ϵ goes to 0. As the singular limit, the curvature driven motion provides a link
between the solution from the AC equation and minimal hypersurface. Thus, the AC equation has
been scrutinized analytically and numerically for geometric analysis [12, 15].

The Allen-Cahn (AC) equation is a semilinear PDE which is closely related to the theory of minimal
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surface [8]. The AC equation is as follows:

∂ϕ(x, t)
∂t

= ϵ2∆ϕ(x, t) − F′(ϕ(x, t)), x ∈ Ω, t > 0,

n · ∇ϕ = 0, x ∈ ∂Ω.
(1.1)

Here, ϕ is an order parameter, F(ϕ) is the double-well free energy as shown in Figure 1(b), where
we have two minima ϕ = −1 and ϕ = 1, and F′(ϕ) is the derivative of F(ϕ) with respect to ϕ. The
double-well potential F and its derivative with respect to ϕ are given by

F(ϕ) =
1
4

(ϕ2 − 1)2, and F′(ϕ) = ϕ3 − ϕ.

In terms of the frame constraints to surface, the free angle is implemented at the frame boundaries
that surface is attached to the fixed frame all the time, but the angle between surface and frame is
free. We implicitly prescribe the frame boundary conditions. but angles in the boundaries are free by
maintaining the zero interface of ϕ in the frame boundaries.

Constructing a minimal surface via a numerical method has been studied for decades [6,9,14]. Most
numerical schemes use the level-set. Their works manage to constrain a surface to the frame boundaries
by reattaching the surface to the frame boundary iteratively or enforce the surface sticking to the frame
boundaries by imposing zero values repeatedly. Yet, in other parts of numerical methods, one can
construct minimal surfaces as the weak limit of level sets of a semilinear elliptic PDE. Thus, one of the
well-known equations is the AC equation. To secure the frame boundary conditions, we combine the
AC’s Laplacian operator with the constraint operator. In this way, we can avoid the instability in the
frame boundaries, instead of repeatedly imposing the zero values in the frame boundaries explicitly.
On the other hand, there are works related the AC equation and minimal surface [16,18,31]. We notice
that their numerical works only concern minimal surfaces with free boundary conditions, e.g., triply
periodic minimal surfaces.

It is worth mentioning that minimal surfaces find extensive utility across numerous industrial
applications. In the research work [20], the composite scaffold can be formulated by integrating
two distinct triply periodic minimal surfaces. Along with advances in additive manufacturing, porous
structures are easily manufactured. In that sense, the modified phase-field equation is a popular choice
for multiscale and minimizing area topology optimization of porous structures [32].

In the differential geometric aspect, minimal surfaces as soap films are beautiful geometric objects
that can be observed everywhere in nature. Researchers have studied them for the past years with the
help of mathematical theories, experiments and even recently computer simulations. Soap film have
many interesting properties such as geometric shapes and macroscopic and molecular behaviors. It
is minimal because the surface tension reduces its area to a minimum. For that reason, mathematical
background for soap films with the frame is mostly related to minimal surface theory. Minimal surfaces
have their root in the calculus of variations developed by Euler and Lagrange and in later investigations
that have been performed over a few centuries.

Euler discovered a surface when a catenary is rotated around the x-axis, and one gets a surface
which minimizes surface area. This surface is called the catenoid. Later, Meusnier formulated it as a
solution of Lagrange’s equation. The catenoid has genus zero, two ends and total curvature 4π, i.e., the
only properly embedded minimal surface with two ends and finite curvature is the catenoid. Embedded
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minimal surfaces with ends have been studied in geometry [5, 21, 22]. A catenoid is created via the
equilibrium shape of a soap film, which is stretched between two parallel circular rings. On the one
hand, Scherk in 1834 discovered a doubly periodic, complete, and properly embedded minimal surface
in Euclidean space. This surface is non-trivial and also spanned into a frame. In fact, Scherk’s surface
is either parameterized by punctured spheres and then has one translational period or one screw motion
period or it is also parameterized by rectangular tori, implying being doubly periodic. Catenoid and
Scherk’s surface are illustrated in Figure 2.

(a) (b)
Figure 2. (a) Catenoid, and (b) Scherk’s first surface. Two surfaces are generated by the
analytic formulations, derived by the Weierstrass-Enneper representation.

The main contribution of this work is to stably secure the frame boundaries so that the area-
minimizing surface with the fixed frame boundary is easily and more efficiently constructed. We
believe that the numerical treatment for the frame boundaries provides a foundation to proceed to
much deeper understanding of minimal surfaces and the behavior of the AC equation.

The rest of this manuscript is organized as follows. In Section 2, we present a brief review of
differential geometry about the Weierstrass-Enneper representation. By using the representation, we
can compare the analytic surface with the numerical surface, and also verify that our numerical surface
is minimal. In section 3, we provide the numerical treatment for the frame boundary conditions, and
then perform numerical simulations to validate the proposed scheme. In the conclusion, section 5, we
summarize our work with further discussions.

2. Theoretical approach for minimal surface

In this paper, we start with the differential geometry knowledge that can be used for numerical
verification of the proposed scheme. We give the basics of the Weierstrass-Enneper integral
representation of minimal surfaces, demonstrating that Scherk’s first surface and catenoid can be
described in terms of holomorphic functions of a complex variable. Later, we compare the solutions
from the Weierstrass representation with numerical solutions in order to verify our proposed numerical
scheme.

We consider that X : U → R3 is a parameterized surface of the form:

X(u, v) = (x(u, v), y(u, v), z(u, v)).

With the parameterization X(u, v), it is said to be isothermal if

Xu · Xu = Xv · Xv, and Xu · Xv = 0.
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A minimal surface is a surfaceM with mean curvature H ≡ 0 at all points p ∈ M. When we suppose
E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv, as the coefficients of the first fundamental form, and l = Xuu · n,
m = Xuv · n, and n = Xvv · n as the coefficients of the second fundamental form. Then, the formula of
mean curvature is H = (lG − 2mF + nE)/(2EG − 2F2). If the parameterization X is isothermal and
minimal, then we have

Xuu + Xvv = 2EHn = 0.

The Weierstrass-Enneper representation is well known for the useful way that it creates minimal
surfaces. In order to know how it is possible, let M be a minimal surface defined by an isothermal
parametrization X(u, v) and z = u + iv, corresponding complex coordinate, with u = (z + z̄)/2 and
v = (−i (z − z̄))/2. So, we can write

∂

∂z
=

1
2

(
∂

∂u
− i

∂

∂u

)
,

∂

∂z̄
=

1
2

(
∂

∂u
+ i

∂

∂u

)
.

Then, we can also know x(z, z̄) = (x1(z, z̄), x2(z, z̄), x3(z, z̄)), and xi(z, z̄) is a complex valued function
which takes real values. So, xi is ∂xi/∂z = (xi

u − ixi
v)/2 by the definition of ∂/∂z, and let us define

ϕ
def
=
∂x
∂z
= (x1

z , x
2
z , x

3
z ).

Since (xi
z)

2 = (1/4)((xi
u)2 − (xi

v)
2 − 2ixi

uxi
v), and x(u, v) is isothermal,

(ϕ)2 =
1
4

 3∑
j=1

(x j
u)2 −

3∑
j=1

(x j
v)

2 − 2i
3∑

j=1

x j
ux j

v


=

1
4

(|xu|
2 − |xv|

2 − 2ixu · xv)

=
1
4

(E −G − 2iF) = 0.

As we know, if (ϕ)2 = 0, the parametrization is isothermal. If we suppose M is a surface with
parametrization x, ϕ = ∂x/∂z and (ϕ)2 = 0, M is minimal, and ϕ2 is holomorphic. In addition,
(ϕ)2 = 0 if and only if each ϕi is holomorphic. This implies that

∂ϕ

∂z̄
=
∂

∂z̄

(
∂ϕ

∂z

)
=

1
4
∆X = 0.

Let (ϕ)2 = 0 and with the definition above ϕ = ∂X/∂z, we have the following Weierstrass-Enneper
representation.

Definition 1. The Weierstrass-Enneper representation I
Suppose f is holomorphic on a domain D, g is meromorphic on D, and f g2 is holomorphic on D. Then,
we can get a minimal surface defined by the parametrization x(z, z̄) = (x1(z, z̄), x2(z, z̄), x3(z, z̄)), where

x1(z, z̄) = Re 2
∫

f g dz, x2(z, z̄) = Re
∫

f (1 − g2) dz,

and x3(z, z̄) = Re
∫

i f (1 + g2) dz.
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Let us choose one function instead of two, and then we get a holomorphic g which has an inverse
function g−1(that is holomorphic). So, we define τ = g, which is dτ = g′ dz, and F(τ) = f /g′, which is
F(τ) dτ = f dz. Then, we can replace g with τ and f dz with F(τ) dτ.

Definition 2. For any analytic function F(τ), the Weierstrass-Enneper representation II is given by

x1(z, z̄) = Re 2
∫

τF(τ) dτ, x2(z, z̄) = Re
∫

(1 − τ2)F(τ) dτ

and x3(z, z̄) = Re
∫

i(1 + τ2)F(τ) dτ,

where we define x(z, z̄) = (x1(z, z̄), x2(z, z̄), x3(z, z̄)).

According to the Weierstrass-Enneper representation II, we get that

Φ = (ϕ1, ϕ2, ϕ3) =
(
τF(τ),

1
2

(1 − τ2)F(τ),
i
2

(1 + τ2)F(τ)
)
.

Let us define τ =: u + iv, and then we use 1 + iτ = 1 − v + iu and 1 − iτ = 1 + v − iu. With τ =: u + iv,
the Weierstrass-Enneper representation II of Scherk’s first surface is given by F(τ) = 2/(1− τ4). Then,
we can find the surface (x1(u, v), x2(u, v), x3(u, v)):

x1 = Re
(
2τ

∫
2

1 − τ4

)
dτ = Re

(∫
2τ

τ2 + 1
−

2τ
τ2 − 1

dτ
)
= Re

(
ln(τ2 + 1) − ln(τ2 − 1)

)
=

1
2

ln
(
(u2 − v2 + 1)2 + 4u2v2

(u2 − v2 − 1)2 + 4u2v2

)
,

x2 = Re
∫ (

1 − τ2
) 2

1 − τ4 dτ = Re
∫

2
1 + τ2 dτ = Re

∫ (
1

1 + iτ
+

1
1 − iτ

)
dτ

= Re [−i ln(1 + iτ) + i ln(1 − iτ)]
= Re

(
−i

[
ln(|1 + iτ|) + i arg(1 + iτ)

]
+ i

[
ln(|1 − iτ|) + i arg(1 − iτ)

])
= Re

(
arg(1 + iτ) − arg(1 − iτ)

)
= Re

(
arg(1 − v + iu) − arg(1 + v − iu)

)
= arctan

( u
1 − v

)
− arctan

( u
1 + v

)
= arctan

(
2u

1 − v2 − u2

)
, and

x3 = Re
∫ (

i
(
1 + τ2

) 2
1 − τ4

)
dτ = arctan

(
−2v

1 − v2 − u2

)
.

Note that x3 can be computed in a similar fashion as in the part x2, and x1 can be rewritten by x1 =

ln(cos x3/ cos x2). Here, a piece of the surface is constructed within the square domain Ω := (x2, x3) ∈
[−π/2, π/2] × [−π/2, π/2].

Next, we see the next example. The Weierstrass-Enneper representation II of the catenoid is given
by F(τ) = 1/(2τ2). To see the surface, let F(τ) = 1/(2τ2) be a holomorphic function. Then, with the
substitution τ=ez, we obtain the catenoid x(u, v). Together with holomorphic function F(τ), we get the
catenoid by the parameterization x(u, v) = (x1(u, v), x2(u, v), x3(u, v)):

x1 = Re
(
2
∫ (

τ
1

2τ2

))
dτ = Re

(∫
1
τ

dτ
)
= Re (ln τ) = Re (ln ez)
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= Re (z) = u,

x2 = Re
∫ (

1 − τ2
) 1

2τ2 dτ = Re
∫

1
2

(
1
τ2 − 1

)
dτ = Re

(
−

1
2
τ−1 −

τ

2

)
= − Re

(
τ−1 + τ

2

)
= − Re

(
e−z + ez

2

)
= − Re (cosh z) = − cosh u · cos v, and

x3 = Re
∫ (

i
(
1 + τ2

) 1
2τ2

)
dτ = Re

∫
1
2

( i
τ2 + i

)
dτ = Re

[
−

i
2
τ−1 +

τi
2

]
= Re

(
−τ−1i + τi

2

)
= Re

(
−e−zi + ezi

2

)
= Re (sinh z · i) = − cosh u · sin v.

For more details, we refer the reader to [7, 24].

3. Numerical implementation of the Allen-Cahn equation with the frame boundary

The finite difference method is one way of solving a differential equation using an approximate
value of a derivative. In other words, this method is an approximate solution for ϕ(x, t) at a finite set
of x and t. Note that we discretize the fixed boundary conditions in addition to the operator of the AC
equation. Let us consider the 3 dimensional domain Ω = (0, 1) × (0, 1) × (0, 1), and then discretize it
as follows: Ωh = {(xi, y j, zk)|xi = (i − 0.5)h, y j = ( j − 0.5)h, zk = (k − 0.5)h, i = 1, . . . ,Nx, j =
1, . . . ,Ny and k = 1, . . . ,Nz}, where N = Nx = Ny = Nz is a large integer. Therefore, the computational
domain Ωh is defined by

Ωh := {xi, j,k ∈ R
3|((i − 0.5)h, ( j − 0.5)h, (k − 0.5)h) : 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}.

Here, h = 1/N = 1/Nx = 1/Ny = 1/Nz is the spatial step size. Let ϕn
i jk = ϕ(xi, y j, zk, tn), where tn

is the discrete time. Let ∆t = tn+1 − tn be a temporal step. For simplicity of exposition, we denote
ϕ(xi, j,k, n∆t) by ϕn

i, j,k, where ∆t = T/nT is a temporal step size, T is the final time, and nT is the total
number of temporal steps. With these notations, let us consider the fully explicit Euler scheme for the
AC equation with the time-dependent interfacial parameter:

ϕn+1
i jk − ϕ

n
i jk

∆t
= −F′(ϕn

i jk) + ϵ
2∆nϕ

n
i jk, (3.1)

where the three-dimensional discretization for the Laplace operator is given by

∆nϕ
n
i j =

ϕn
i+1, j,k + ϕ

n
i−1, j,k + ϕ

n
i, j+1,k + ϕ

n
i, j−1,k + ϕ

n
i, j,k+1 + ϕ

n
i, j,k−1 − 6ϕn

i j

h2 .

Here, the operator ∆n indicates the Laplacian with the Neumann boundary condition. For the sake
of notation convenience, we write the discrete operator as the the Neumann Laplacian. We let the
interfacial width parameter 0 < ϵ ≪ 1, and Ω ⊂ Rd for d = 3, where d is the number of dimensions.
The other cases d = 1, 2 can be considered similarly in general. For constraints, we make the zero-
level set of ϕ lie on Γ ⊂ Ω. In fact, the AC equation can be interpreted as the gradient flow of the
Ginzburg-Landau energy functional with constraints

E(ϕ) =
∫
Ω

[
ϵ|∇ϕ|2

2
+

F(ϕ)
ϵ

]
dx +

γ

2

∫
Ω

Cg|ϕ|
2dx.
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Note that γ > 0, and Cg is dependent on the corresponding geometric constraints, which must satisfy
the following condition:

Cg(x) :=

 limh→0 ϕ(x + hn) + ϕ(x − hn) = 0, if (x, t) ∈ Γ, and n is normal to Γ,
0, otherwise.

This operator Cg is for the frame boundary conditions. Its basis is to attach the surface to the frame by
the boundary condition of the surface. Here, the operator Cg is implicitly treated to improve the stability
by combining the frame boundary condition with the discrete Laplacian operator. We elaborate on the
discretized form of Cg in the subsequent paragraphs.

To solve Eq (3.1) with the fixed frame boundaries, the operator splitting method is applied:

∂ϕ

∂t
= ∆nϕ + γCgϕ, (3.2)

∂ϕ

∂t
= −

F′(ϕ)
ϵ2 =

1
ϵ2

(
ϕ − ϕ3

)
. (3.3)

If we vectorize ϕn
i, j,k for numerical purposes, the discrete solution at the n-th temporal step is simply

represented by

ϕn := {ϕn
i+( j−1)Nx++( j−1)(k−1)Nx·Ny

: 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}.

First, we discretize Eq (3.2) as below:

ϕ∗ − ϕn

∆t
= Lnϕ

∗ + γCϕ∗. (3.4)

We set up a symmetric matrix C such that

αi, j,kϕ
∗
i, j,k = βp,q,rϕ

∗
p,q,r if

{
(p, q, r) : xi, j,k,p,q,r ∈ Γ for p = i ± 1, q = j ± 1, r = k ± 1

}
, (3.5)

where we define xi, j,k,p,q,r := (1 − ωp,q,r)xi, j,k + ωp,q,rxp,q,r. The positive coefficients αp,q,r > 0, βp,q,r > 0
and 1 > ωp,q,r > 0 are properly chosen to satisfy ϕ(xi, j,k,p,q,r) = 0 and symmetry of matrix C elements.

Second, we solve equation (3.3) with ϕ∗ analytically using the method of separation of variables
introduced in [19, 28], but we apply this for the 3 dimensional case:

ϕn+1
i, j,k =

ϕ∗i, j,k√
e−

2∆t
ϵ2 + (ϕ∗i, j,k)

2(1 − e−
2∆t
ϵ2 )
. (3.6)

For the frame boundaries, we make use of the fixed boundary condition implicitly. Before further
proceeding, we observe the Laplacian operator with the frame boundary condition as follows. We
combine the geometric constraints with the AC’s Laplacian operator for the fixed frame boundaries.
Note that the discrete operator Ln approximates the Neumann Laplacian ∆n, and we define C by the
constraint operator for (3.5). To solve the system of Eqs (3.4) and (3.5), we combine the Neumann
Laplacian Ln and boundary constraints C, i.e., −Lc := −Ln + C. After vectorizing our computations,
we obtain for ϕ∗

ϕ∗ = (In − ∆tLc)−1ϕn, where In is the Nx · Ny · Nz × Nx · Ny · Nz identity matrix.
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Lemma 3. The Laplacian with constraints, −Lc is symmetric and positive semidefinite. Moreover, the
linear operator (In − ∆tLc) is symmetric and positive definite.

Proof. As stated above, we describe the symmetric matrix C such that

αi, j,kϕ
∗
i, j,k = βp,q,rϕ

∗
p,q,r if

{
(p, q, r) : xi, j,k,p,q,r ∈ Γ for p = i ± 1, q = j ± 1, r = k ± 1

}
,

where xi, j,k,p,q,r := (1 − ωp,q,r)xi, j,k + ωp,q,rxp,q,r. The positive coefficients αp,q,r > 0, βp,q,r > 0 and 1 >

ωp,q,r > 0 are properly chosen to satisfy ϕ(xi, j,k,p,q,r) = 0 and symmetry of matrix C elements. Once the
diagonal coefficient ¯αi, j,k is determined for the diagonal index (i, j, k) of C, the off-diagonal coefficient

¯βp,q,r follows
(

¯βi, j,k
2
/ ¯αp,q,r

)
ϕp,q,r = ¯βi, j,kϕ

∗
i, j,k for the other diagonal index (p, q, r) and off-diagonal index

(i, j, k) of C. This implies that the matrix C is symmetric and singular, but the geometric constraints
solely influence the specific elements of the matrix C. Since −Lc := −Ln + C, we decompose it into
the Neumann Laplacian Ln and frame boundary constraints C.

Let us first look at the eigenvalues of the Neumann Laplacian Ln. With notations θ = πk/Nx,
ψ = πl/Ny, and ρ = πl/Nz, the eigenvalues of −Ln are of the form

λk,l,m =
2
h2

(
sin2 θ

2
+ sin2 ψ

2
+ sin2 ρ

2

)
≥ 0 for 1 ≤ k, l,m ≤ n.

Then, the combined linear operator −Lc is strictly diagonally dominant. Since a symmetric and
diagonally dominant matrix

∣∣∣(Lc)i,i

∣∣∣ > ∑
i, j

∣∣∣(Lc)i, j

∣∣∣ with real non-negative diagonal entries is positive
definite, the Laplacian with constraints operator −Lc = −Ln + C is also symmetric and positive
semidefinite. Furthermore, (In − ∆tLc) is symmetric and positive definite for ∆t > 0. □

Theorem 4. For 0 < ∆t ≤ h2/(2d + 2), the numerical scheme from (3.4), (3.5) and (3.6) preserve the
boundedness of numerical solutions by 1. In other words, max |ϕn

i, j| ≤ 1 for 0 < n and 1 ≤ i, j ≤ Nx ·Ny.

Proof. First, let us define two infinity norms of m-by-n matrix A and n-by-1 vector v. They are
respectively defined as follows:

∥A∥∞ = max

 n∑
j=1

|A1, j|,

n∑
j=1

|A2, j|, . . . ,

n∑
j=1

|Am, j|

 and ∥v∥∞ = max(vi), for 1 ≤ i ≤ n.

Then, we know that ∥Av∥∞ ≤ ∥A∥∞∥v∥∞. Together with Lemma 3 and adding at most 2/h2 to the
operator Ln as the constraints, it implies that the size of the Laplacian with constraints is bounded by

∥Ln∥∞ ≤ ∥Lc∥∞ ≤
2d + 2

h2 .

Next, we assume that ∥ϕn∥ ≤ 1, and discuss the numerical solution’s boundedness by mathematical
induction. Again from Lemma 3 and the condition 0 < ∆t ≤ h2/(2d + 2), we see readily that the linear
operator (In−∆tLc) is nonsingular. Note that ∥Lc∥∞ ≤ 1, and the spectral radius of Lc follows ρ(Lc) ≤ 1
since (Lc)i,i +

∑
j,i |(Lc)i, j| ≤ 1 for all i, j ∈ [1,Nx · Ny]. Observe that the infinity norm of (In − ∆tLc)−1

follows from
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Together with ∥ϕ∗∥∞ ≤ 1, we have that |ϕ∗i, j,k| ≤
√

(ϕ∗i, j,k)
2 + e−

2∆t
ϵ2 (1 − (ϕ∗i, j,k)

2) since (1 − (ϕ∗i, j,k)
2) and

e−
2∆t
ϵ2 are always positive. Therefore, the numerical solution satisfies

∥ϕn+1
i, j,k∥∞ =

∥∥∥∥∥∥∥∥∥
ϕ∗i, j,k√

(ϕ∗i, j,k)
2 + e−

2∆t
ϵ2 (1 − (ϕ∗i, j,k)

2)

∥∥∥∥∥∥∥∥∥
∞

≤ 1 for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.

□

4. Numerical tests for the proposed method

Now, our aim is to construct a surface with boundary Γ and mean curvature zero at all points.
We present the two classical examples and one example containing the certain frame boundary as the
benchmark cases. In the case of Scherk’s surface, the right angle frames on the top of the surface are
the main interest of the present work. In the catenoid as the next case example, we consider the round
frames in the top and bottom of the surface.

4.1. Example 1: Scherk’s surface

First, let us consider the numerical construction of Scherk’s surface. We set 128×128×128 uniform
grid points for the computational domain Ωh := {(xi, y j, zk) ∈ (0, 1)× (0, 1)× (0, 1) ≤ i, j, k ≤ 128}. The
parameters used are the grid size N = Nx = Ny = Nz = 256, spatial step size h = 1/N, ∆t = h2/16, and
ϵ = 4h/(2

√
2 tan−1(0.9)).

The boundary condition as zero constraints is created to form a box frame missing two parallel
edges on the top and two parallel edges on the bottom. With the index set S = {1, . . . , 8} and width
parameter a1 = 20, we define the constraint domains Γ = ∪i∈SΓi as below:

Γ1 = {(xi, y j, (a1 + 0.5)h) : 1 < i < Nx, 1 < j ≤ a1, },

Γ2 = {(xi, y j, (a1 + 0.5)h) : 1 < i < Nx, Ny − a1 + 1 ≤ j < Ny, },

Γ3 = {(xi, y j, (Nz − a1 + 0.5)h) : 1 < i ≤ a1, a1 + 1 ≤ j ≤ Ny − a1, },

Γ4 = {(xi, y j, (Nz − a1 + 0.5)h : Nx − a1 + 1 ≤ i < Nx, a1 + 1 ≤ j ≤ Ny − a1, },

Γ5 = {(xi, (a1 + 0.5)h, zk) : 1 < i ≤ a1, a1 + 1 ≤ k ≤ Nz − a1, },

Γ6 = {(xi, (a1 + 0.5)h, zk) : Nx − a1 + 1 ≤ i < Nx, a1 + 1 ≤ k ≤ Nz − a1, },

Γ7 = {(xi, (Ny − a1 + 0.5)h, zk) : 1 < i ≤ a1, a1 + 1 ≤ k ≤ Nz − a1, }, and
Γ8 = {(xi, (Ny − a1 + 0.5)h, zk) : Nx − a1 + 1 ≤ i < Nx, a1 + 1 ≤ k ≤ Nz − a1, }.

Then, the zero constraints on Γ are given by

ϕ(xi, y j, (a1 + 1)h) = −ϕ(xi, y j, a1h) if (xi, y j, (a1 + 0.5)h) ∈ Γ1,2,

ϕ(xi, y j, (Nz − a1 + 1)h) = −ϕ(xi, y j, (Nz − a1)h) if (xi, y j, (Nz − a1 + 0.5)h) ∈ Γ3,4,

ϕ(xi, (a1 + 1), zk) = −ϕ(xi, a1h, zk) if (xi, (a1 + 0.5)h, zk) ∈ Γ5,6,

ϕ(xi, (Ny − a1 + 1), zk) = −ϕ(xi, (Ny − a1)h, zk) if (xi, (Ny − a1 + 0.5)h, zk) ∈ Γ7,8.

(4.1)
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For numerical purposes, let us vectorize ϕi, j,k by concatenating the elements vertically, i.e., ϕi, j,k =

ϕi+( j−1)Nx+(k−1)NxNy . We define Ri :=
∑

j,i |Ci, j| for 1 ≤ i, j ≤ NxNyNz. Then, the constraint matrix C
from (4.1) follows |Ci,i| ≥ Ri for 1 ≤ i ≤ NxNyNz, where Ci, j denotes the entry in the i-th row and j-th
column. This implies that C is positive semidefinite by the Gershgorin circle theorem.

Figure 3 shows the zero level contours of numerical solutions. Each surface in Figure 3(a), (c) and
(d) is represented by the zero level sets. The shaded regions in Figure 3(b) are imposed with ϕ = 0
implicitly as in the equations (4.1).

(a) (b)

(c) (d)
Figure 3. Numerical evolutions for Scherk’s surface. (a) With zero constraints, we can make
the fixed boundary frame of a box missing four edges. (b) initial datum, (c) t = 1.831× 10−1,
and (d) t = 9.766 × 10−1.

The frame boundaries are represented by black dotted lines in Figure 4. Surfaces are also illustrated
by the zero level set of solutions. On the right side of each figure, the curved surface is attached due to
the geometric constraints. The dotted lines are construction lines , indicating right angles and straight
lines. The yellow colored surface is held up by the frame all the time. To numerically validate the
numerical security of the frame boundary, we take a closeup look at the right-top corner of the surface
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in Figure 4: (a) closeup at time t = 0, (b) closeup at time t = 1.831 × 10−1 and (c) closeup at time
t = 9.766 × 10−1.

Scherk’s surface is one of the plateau’s surfaces. It forms the shape of a soap film having the
boundary of a square which is bent upward on two opposing sides and downward on the other two
sides as in Figure 3(a). This surface is represented by {(x, y, z) ∈ R3|z = ln(cos(y)) − ln(cos(x))}. A
piece of Scherk’s surface defined on −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 is plotted in Figure 5(a). Comparison
of Figure 5(a) and (b) confirms numerically that the proposed scheme seems to provide almost the
same result by the analytic formulation. For comparison purposes, we excluded the frame boundary
conditions of the curved surface, and plot the surface in Figure 5(b).

(a) (b) (c)
Figure 4. To numerically validate the numerical security of the frame boundary, we take a
closeup look at the right-top corner of the surface. (a) closeup at time t = 0, (b) closeup at
time t = 1.831 × 10−1, and (c) closeup at time t = 9.766 × 10−1.

(a) (b)
Figure 5. (a) Scherk’s first surface, which is generated by the analytic formulation, and (b)
displays the partial plot of Figure 3 (d). We remove the frame parts since they are not a part
of the surface.
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4.2. Example 2: Catenoid

The catenoid is one of the minimal surfaces, and it is readily formed by a soap film stretched across
two wire discs, the planes of which are perpendicular to the line joining their centers. The catenoid is
a member of the one-parameter family of surfaces of revolution of the catenary y = a cosh(x/b), where
a and b are constants. The parametric equations for the catenoid are given by

x = v, y = c cosh
(v
c

)
cos(u), and z = c cosh

(v
c

)
sin(u).

We derived the analytic formulation by the Weierstrass representation in the previous section, but
we also note that the catenoid can be generated by the calculus of variations. We give an exposition for
the completeness of our demonstration.

Let us begin with the catenary. By assuming a continuous solution in C2, we derive a curve which
is called a catenary. We find the minimum surface area of revolution among all the curves joining two
points (x1, u1) and (x2, u2). We can obtain the catenary by the calculus of variations. The surface area
of revolution is obtained by

Area(x) =
∫

2πy ds = 2π
∫ x2

x1

y(x)
√

1 + (ẏ(x))2 dx.

Here, we find y∗(x) ∈ C2([x1, x2]) as a minimizer of above the function Area(x). Let F(y, ẏ) = y
√

1 + ẏ2,
and we know that

dF(y, ẏ)
dx

=
∂F
∂y

dy
dx
+
∂F
∂ẏ

dẏ
dx
⇐⇒

∂F
∂y

dy
dx
=

dF(y, ẏ)
dx

−
∂F
∂ẏ

dẏ
dx
.

Then, the Euler-Lagrange equation implies that

∂F
∂y
−

d
dx

(
∂F
∂ẏ

)
= 0⇐⇒ −

[
∂F
∂y

ẏ −
d
dx

(
∂F
∂ẏ

)
ẏ
]
= −

[
∂F
∂y

dy
dx
−

d
dx

(
∂F
∂ẏ

)
ẏ
]

= −

(
dF
dx
−
∂F
∂ẏ

dẏ
dx

)
+

d
dx

(
∂F
∂ẏ

)
ẏ =

d
dx

(
−F + ẏ

∂F
∂ẏ

)
= 0.

This gives us the first integral:

C = −F + ẏ
∂F
∂ẏ
= −y

√
1 + (ẏ)2 + ẏ

yẏ√
1 + (u′)2

, where C is a constant.

Then, the equation reduces to

y(x) = C
√

1 + (ẏ(x)2).

With the arbitrary constants, this differential equation can be solved by

y(x) = C cosh
( x +C1

C

)
.

Now, let us consider the numerical construction of the catenoid. We perform this test for numerical
comparisons between analytic and numerical surfaces. Solutions from the numerical test are radially
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symmetric, but we are concerned about the connection with zero interface I of the solution and the
rounded frame boundaries.

On the computational unit cubic domainΩh = (0, 1)× (0, 1)× (0, 1), the parameters used are the grid
size N = Nx = Ny = Nz = 256, spatial step size h = 1/N, ∆t = h2/16, and ϵ = 4h/(2

√
2 tan−1(0.9)),

and the initial data as shown in Figure 6(a) is given by

ϕ(x, y, z, 0) =

1 if x2 + y2 − 0.4 ≤ 0, and 0 < z < 1,
−1 otherwise.

(a) (b)

(c) (d)
Figure 6. Numerical evolutions of the catenoid. (a) initial datum. (b) With zero constraints,
we can make the circular frame boundaries in the bottom and top. (c) Numerical solution at
time t = 0.0381, and (d) numerical solution at time t = 0.9537.

As the frame boundaries, there are two circular bands positioned on top of each other. The bands
are upright, and the faces of the bands face the front. We display the specific frame boundaries in
Figure 6(b). The shaded regions are imposed with ϕ = 0 implicitly in the same fashion of Scherk’s
surface. We always attach the solution to the circular bands, using them as geometric constraints. We
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show the numerical solution with 40000 iterations in 6(c). The surface is bent in the middle part of
the cylinder. Then, the bending motion lasts no longer in Figure 6(d). We simulate, resulting in the
numerical solution after 1.0 × 106 iterations at time t = 0.9537 when solution converges.

Figure 7 presents the final shape of the zero level-set of the numerical solution. Since the frame
boundaries are not part of the minimal surface, we get rid of the frames for schematic definiteness. The
Surface from the numerical solution is overlapped by the gray colored analytic surface. Three different
(tilted, side, top) perspectives are illustrated in Figure 7. The left portion of the merged surface is
constructed using numerical solutions, with the top and bottom being blocked by representation of the
zero level-set. As we can see that, all results are consistent with the analytic surface.

(a)
(b) (c)

Figure 7. Comparison of analytic and numerical surfaces. To verify the difference between
them, we divide the surface in half. The shaded region resulted from the analytic formulation.
The other, yellow half surface was generated by the proposed scheme.

4.3. Example 3: Two right-angled bands

So far, we have dealt with surfaces with well-known analytical solutions, i.e., Scherk’s surface and
catenoid. In this example, we construct a surface by using the proposed numerical method for the
case where the analytic solution is unknown. Apart from the surfaces that exhibit the periodicity in
three directions, i.e., triply periodic minimal surfaces, there are only a few minimal surfaces with ends
in differential geometry. Even if such minimal surfaces are known, the majority of them are highly
unstable to construct numerically. For this reason, stability is necessary to be stable in order to find
minimal surfaces numerically. In this case, let us examine a surface with stability similar to the catenoid
but with the ends forming right angles with straight lines.

We now consider two parallel band constraints. Two bands are formed by straight lines at right
angles. This is a problem that does not have a known solution. However, in this problem, we can
approximate the analytic solution as a numerical solution. There are two bands, one on top of the
other. The bands are standing upright, and the surfaces of the bands face the front. This is depicted in
Figure 8(a). The grayed parts corresponds to the frame boundaries. We restrict the solution based on
these bands as the frame boundary conditions, and observe the evolution of the rest of the surface. The
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initial datum as shown in Figure 8(b) is given by

ϕ(xi, y j, zk) = 1 if a1 ≤ xi ≤ Nx − a1, and a1 ≤ y j ≤ Ny − a1.

(a) (b)

(c) (d)
Figure 8. Numerical evolutions for top and bottom square constraints. (a) With zero
constraints, we can make two band frame boundaries in the bottom and top. (b) The initial
datum represented by the zero-level set is set up like a wall on all four sides. (c) Numerical
solution at time t = 0.0153, and (d) numerical solution at time t = 0.1717.

The boundary condition as zero constraints is created to form two parallel and angled bands. The
frame boundary conditions are divided into two parts, one below, Γ1, Γ2, Γ3,Γ4, and one above,
Γ5, Γ6, Γ7, Γ8. With the index set S = {1, . . . , 8} and width parameter a1 = 20, a2 = 60, we define the
constraint domains Γ = ∪i∈SΓi as below:

Γ1 = {(xi, (a1 + 0.5)h, zk) : a1 ≤ i < Nx − a1, 1 ≤ k ≤ a2},

Γ2 = {((a1 + 0.5)h, y j, zk) : a1 ≤ j < Ny − a1, 1 ≤ k ≤ a2},

Γ3 = {(xi, (Ny − a1 + 0.5)h, zk) : a1 ≤ i < Nx − a1, 1 ≤ k ≤ a2},
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Γ4 = {((Nx − a1 + 0.5)h, y j, zk) : a1 ≤ j < Ny − a1, 1 ≤ k ≤ a2},

Γ5 = {(xi, (a1 + 0.5)h, zk) : a1 ≤ i < Nx − a1, Nz − a2 ≤ k ≤ Nz},

Γ6 = {((a1 + 0.5)h, y j, zk) : a1 ≤ j < Ny − a1, Nz − a2 ≤ k ≤ Nz},

Γ7 = {(xi, (Ny − a1 + 0.5)h, zk) : a1 ≤ i < Nx − a1, Nz − a2 ≤ k ≤ Nz}, and
Γ8 = {((Nx − a1 + 0.5)h, y j, zk) : a1 ≤ j < Ny − a1, Nz − a2 ≤ k ≤ Nz}.

Then, the zero constraints on Γ are given by

ϕ(xi, (a1 + 1)h, zk) = −ϕ(xi, a1h, zk, ) if (xi, y j, zk) ∈ Γ1,5,

ϕ((a1 + 1)h, y j, zk) = −ϕ(a1h, y j, zk, ) if (xi, y j, zk) ∈ Γ2,6,

ϕ(xi, (Ny − a1 + 1), zk) = −ϕ(xi, (Ny − a1)h, zk) if (xi, y j, zk) ∈ Γ3,7,

ϕ((Nx − a1 + 1), y j, zk) = −ϕ((Nx − a1)h, y j, zk) if (xi, y j, zk) ∈ Γ4,8.

(4.2)

The AC equation is derived from the Ginzburg-Landau (GL) energy functional

E(ϕ) =
∫
Ω

[
F(ϕ)
ϵ
+
ϵ |∇xϕ|

2

2

]
dx. (4.3)

The critical points of the above energy functional are of interest for area-minimizing surfaces. By
decreasing the GL energy functional (4.3), we can locally minimize the area of each point on the
surface. In this regard, there have been several studies on the connection between the Allen-Cahn
equation and the minimal surface ( [11, 12, 25] and references therein). In this third example, we
can numerically confirm that the surface obtained by the proposed method is a minimal surface, as it
decreases the GL energy functional (4.3).

We discretize the GL energy functional (4.3), and calculate the energy in order to show numerically
that the Ginzburg-Landau energy functional decreases. The GL functional can be discretized at time tk

as

Eh

(
ϕk

)
=
∥∇hϕ

k∥22

2ϵ
+
ϵ

4

∥∥∥∥1 −
(
ϕk

)2∥∥∥∥2

2
.

Figure 9 shows that the GL energy functional decreases over time t, and eventually reaches a point
where the decrease stops. The energy is initially high, as illustrated at t = 0 in Figure 8(b) and Figure
9; but as it decreases rapidly, the shape of the surface also undergoes a rapid change, as seen in Figure
8(c). From a certain point on, the surface hardly evolves, as seen in Figure 8(d), and the energy also
stops decreasing.
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Figure 9. The discrete energy is illustrated. The GL energy functional decreases over time.

5. Conclusions

The connection of the Allen–Cahn (AC) equation and minimal surfaces has been studied over the
past decades, and several numerical schemes have been proposed and developed. However, there is
an obstacle to dealing with the fixed frame boundary. Often, the frame boundary makes the numerical
scheme unstable and unable to construct minimal surfaces. As far as we know, there is no research
work on the frame boundary conditions.

Therefore, we propose a numerical scheme, which is stable and secure for the frame boundaries.
We have proven that the AC’s Laplacian operator with the frame boundary is still nonsingular, and
solutions are bounded by our proposed numerical scheme. In addition, we have demonstrated two
classical examples, Scherk’s surface and catenoid and one surface for which the analytical solution is
unknown. In these cases, we observed the frame boundaries containing right angle and straight lines
or rounded frames. As seen before, we have checked that the proposed scheme works well in various
frame conditions.

Last, we notice that the construction of some minimal surfaces can be impossible or unstable due to
the geometric properties that the surface inherently has. These instabilities are not related to the frame
boundaries. However, there is no consensus on the stability of minimal surfaces. We hope that our
ongoing research will guide us to a better understanding of the AC equation and minimal surfaces.
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