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Abstract: Binary options have a payoff that is either a fixed value or nothing at all. In this paper,
the generalized pricing formulas of binary options, including European binary call options, European
binary put options, American binary call options and American binary put options, are investigated in
uncertain financial markets. By applying the Liu’s stock model to describe the stock price, the explicit
pricing formulas of binary options are derived successfully. Besides, the corresponding numerical
examples for the above four kinds of binary options are discussed in this paper.
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1. Introduction

Binary options, as a special kind of barrier options, are also called digital options, including binary
call options and binary put options, and are the class of options where the return for holder is a fixed
cash or nothing, in other words, the holder knows that it has a chance to obtain the amount of money in
advance. Moreover, it has been the fastest growing trading product and is used to finish the hedging and
speculation in the over-the-counter markets. In addition, it is an important tool for financial engineers
to design the more complex derivative products.

Since binary options are the simplest and the most popular options for investors, the related
research work under the framework of probability theory has been investigated by many scholars. For
example, Buchen [1] investigated the binary options based on the stock price modelled by Itô stochastic
differential equation, Reiner and Rubinstein [12] studied the pricing problem of binary options based
on the Black-Scholes model and Ballestra [2] explored the pricing problem of binary options by means
of the repeated spatial extrapolation. Specially, Hyong-Chol et al. [7] solved the pricing problem of
i-th binary options.
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Traditionally, the stock price was assumed to follow the stochastic differential equation. Is it really
reasonable? In fact, this widely accepted presumption was challenged among others by Liu [11], and
provided the uncertain differential equation driven by Liu process in uncertainty theory to describe
the stock price. In other words, frequency is the empirical basis of probability theory, while belief
degree is the empirical basis of the uncertainty theory, probability theory and uncertainty theory that
complementary mathematical systems.

Based on the context of the uncertainty theory, the stock price was assumed to follow the uncertain
differential equations, and many kinds of barrier options in uncertain financial markets have been
investigated, such as the pricing problem of European barrier options was considered by Yao and
Qin [18], the pricing problem of geometric Asian barrier options was explored by Gao et al. [5], the
pricing problem of arithmetic Asian barrier options was initialled by Yang et al. [17] and the pricing
problem of lookback barrier options was studied by Gao and Jia [6]. The above research work were
based on the stock price that was described by Liu’s stock model and the other different kinds of
uncertain stock model were applied to obtain the price of barrier options. For example, the barrier
options based on uncertain fractional first-hitting time model with Caputo type were presented by
Jin et al. [9], the barrier options based on uncertain mean-reverting stock model were constructed by
Tian et al. [14] and the knock-in barrier options based on uncertain stock model with floating interest
rate were given by Jia and Chen [8].

Except for the barrier options explored in uncertain financial markets, European options in
uncertain financial markets were studied by Liu [11], American options in uncertain financial markets
were presented by Chen [3], Lookback options in uncertain financial markets were considered by
Zhang et al. [21], Gao et al. [4] and Tian et al. [15], Asian options in uncertain markets were
investigated by Sun and Chen [13] and Zhang and Liu [19], Power options in uncertain financial
markets were developed by Zhang et al. [20].

This paper investigates the pricing problem of binary options in uncertain financial markets.
The rest of this paper is structured as follows. Section 2 reviews some relevant basic contents.
Section 3 investigates the pricing problem of binary options, including European binary call options,
European binary put options, American binary call options and American binary put options, and their
corresponding generalized pricing formulas and corresponding explicit pricing formulas are derived.
Section 4 summarizes some results of this paper.

2. Preliminaries

Uncertainty theory was initialled by Liu [10], and investigated by many scholars. This section
provides some significant contents for uncertain differential equations. Let Γ be a nonempty
set (sometimes called universal set), and let L be a σ-algebra over Γ. The element Λ in L is called
a measurable set. In order to rationally deal with belief degree, the uncertain measure M on the σ-
algebra L is defined to follow the following four axioms:
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ} +M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, · · · , we have

M

 ∞⋃
i=1

Λi

 ≤ ∞∑
i=1

M{Λi}.
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Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . The product
uncertain measure M is an uncertain measure satisfying

M

 ∞∏
k=1

Λk

 = ∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 2.1. An uncertain variable is a function from an uncertainty space (Γ,L,M) to the set of
real numbers, such that, for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

is an event.

Definition 2.2. [10] As we consider the uncertain event B, and its complementary event Bc, then the
duality axiom is

M{B} +M{Bc} = 1.

Theorem 2.1. [10] As we consider two uncertain events B1 and B2. If B1 ⊂ B2, then we have

M{B1} ≤ M{B2}.

Definition 2.3. The uncertain variables ζ1, ζ2, · · · , ζm are said to be independent if

M

 m⋂
i=1

{ζi ∈ Bi}

 = m∧
i=1

M {ζi ∈ Bi}

for any Borel sets B1, B2, · · · , Bm of real numbers.

The uncertainty distribution of an uncertain variable ζ is defined as

Θ(x) = M {ζ ≤ x}

for any real number x. An uncertainty distribution Θ(x) is said to be regular if it is a continuous and
strictly increasing function with respect to x at which 0 < Θ(x) < 1, and

lim
x→−∞

Θ(x) = 0, lim
x→+∞

Θ(x) = 1.

If ζ has a regular uncertainty distribution Θ(x), then the inverse function Θ−1(α) is called the inverse
uncertainty distribution of ζ. By means of the inverse uncertain distribution (IUD), we can obtain the
expected value

E[ζ] =
∫ 1

0
Θ−1(θ)dθ. (2.1)

Theorem 2.2. [16] Let the uncertain differential equation

dS t = a(t, S t)dt + b(t, S t)dCt
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has a solution S t, and the related equation of the uncertain differential equation

dS αt = a(t, S αt )dt + |b(t, S αt )|Λ−1(α)dt

has a solution α-path S αt , where

Λ−1(α) =

√
3
π

ln
α

1 − α
.

Then,
M{S t ≤ S αt ,∀t} = α, M{S t > S αt ,∀t} = 1 − α,

and S t has an IUD
Θ−1

t (α) = S αt .

Moreover, two important functions

ΥH(y) =
{

1, if y ≥ H,
0, if y < H

and

LH1H2 =

{
H1 − H2, if H1 ≥ H2,

0, if H1 < H2

are defined herein, where H, H1 and H2 represent the positive constant number.

3. Binary options

Binary options as a kind of barrier options have four cases, including European binary call options,
European binary put options, American binary call options and American binary put options. Assume
the binary options with a expiration time T and a exercise price H, and apply the Liu’s stock model to
describe the stock price, where the Liu’s stock model has an IUD, that is

Φ−1
t (α) = S 0 exp

h1t +

√
3h2t
π

ln
α

1 − α

 , S 0 ≥ 0, h2 > 0. (3.1)

3.1. European binary call options

European binary call options are the options that pay zero if the terminal stock price is below the
exercise price or pay a fixed cash. Apply the generalized uncertain stock model to describe the stock
price, the payoff of European binary call options is given below:

Payoff =
{

C, if S (T ) ≥ H,
0, otherwise.

At time T , the buyer of European binary call options pays

C · ΥH (S (T )) .

Assume that the price of the European binary call options is f e
c , then, at time zero, the profit of buyer is

− f e
c +C · exp(−h3T ) · ΥH (S (T )) .
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Moreover, at time T , the seller of European binary call options receives

C · ΥH (S (T )) .

Then, at time zero, the profit of seller is

f e
c −C · exp(−h3T ) · ΥH (S (T )) .

According to the fairness principle, at time zero, the expected profit of the buyer and the seller should
be the same, so we have

− f e
c +C · exp(−h3T ) · E [ΥH (S (T ))] = f e

c −C · exp(−h3T ) · E [ΥH (S (T ))] .

Thus, the definition of European binary call options pricing formula is presented as below.

Definition 3.1. Apply the generalized uncertain stock model to describe the stock price, then the
pricing formula of European binary call options is

f e
c = C · exp(−h3T ) · E [ΥH (S (T ))] .

Theorem 3.1. Apply the Liu’s stock model to model the stock price, then the price of European binary
call options is

f e
c = C · exp(−h3T ) · (1 − α1),

where

α1 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

.

Proof. Firstly, we can easily obtain

{ΥH (S (T )) ≤ ΥH (S (Tα))} ⊇ {S (T ) ≤ S (Tα)}

and

{ΥH (S (T )) > ΥH (S (Tα))} ⊇ {S (T ) > S (Tα)} .

According to the Theorems 2.1 and 2.2, we have

M {ΥH (S (T )) ≤ ΥH (S (Tα))} ≥ M {S (T ) ≤ S (Tα)} = α

and

M {ΥH (S (T )) > ΥH (S (Tα))} ≥ M {S (T ) > S (Tα)} = 1 − α.

By using the Definition 2.2, we can obtain

M {ΥH (S (T )) ≤ ΥH (S (Tα))} +M {ΥH (S (T )) > ΥH (S (Tα))} = 1.
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Thus,

M {ΥH (S (T )) ≤ ΥH (S (Tα))} = α,

which indicates the uncertain variable
ΥH (S (T ))

has an IUD
ΥH (S (Tα)) .

When S (Tα) ≥ H, we obtain

α ≥

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

and then set

α1 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

.

Therefore, the price is

f e
c = C · exp(−h3T ) · E [ΥH (S (T ))]

= C · exp(−h3T ) ·
∫ 1

0
ΥH (S (Tα)) dα

= C · exp(−h3T ) · (1 − α1).

Example 3.1. Set h1 = 0.04, h2 = 0.02 and h3 = 0.06 in Liu’s stock model, and let S 0 = 4, T = 16,
C = 10 and H = 8 for European binary call options. Then, f e

c = 1.6283.

As the exercise price is increasing and the other parameters keep unchanged in Example 3.1, then
Figure 1 presents that the price of European binary call options f e

c is decreasing.
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Exercise price H
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Figure 1. The relation of f e
c and H in the Example 3.1.
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3.2. European binary put options

European binary put options are the options that pay zero if the terminal stock price is over the
exercise price or pay a fixed cash. Apply the generalized uncertain stock model to describe the stock
price, the payoff of European binary put options is given below:

Payoff =
{

C, if S (T ) ≤ H,
0, otherwise.

At time T , the buyer of European binary put options pays

C · (1 − ΥH (S (T ))) .

Assume that the price of the European binary put options is f e
p , then, at time zero, the profit of buyer is

− f e
p +C · exp(−h3T ) · (1 − ΥH (S (T ))) .

Moreover, at time T , the seller of European binary put options receives

C · (1 − ΥH (S (T ))) .

Then, at time zero, the profit of seller is

f e
p −C · exp(−h3T ) · (1 − ΥH (S (T ))) .

According to the fairness principle, at time zero, the expected profit of the buyer and the seller should
be the same, so we have

− f e
p +C · exp(−h3T ) · (1 − E [ΥH (S (T ))]) = f e

p −C · exp(−h3T ) · (1 − E [ΥH (S (T ))]) .

Thus, the definition of European binary put options pricing formula is presented as below.

Definition 3.2. Apply the generalized uncertain stock model to describe the stock price, then the
pricing formula of European binary put options is

f e
p = C · exp(−h3T ) · (1 − E [ΥH (S (T ))]) .

Theorem 3.2. Apply the Liu’s stock model to describe the stock price, then the price of European
binary put options is

f e
p = C · exp(−h3T ) · α2,

where

α2 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

.

Proof. Firstly, it exists an IUD
ΥH (S (Tα))

for the uncertain variable
ΥH (S (T ))
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from the Theorem 3.1, where

S (Tα) = S 0 exp
h1T +

√
3h2T
π

ln
α

1 − α

 .
When S (Tα) ≥ H, we obtain

α ≥

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

and then set

α2 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

.

Therefore, the price is

f e
p = C · exp(−h3T ) · (1 − E [ΥH (S (T ))])

= C · exp(−h3T ) ·
(
1 −

∫ 1

0
ΥH (S (Tα)) dα

)
= C · exp(−h3T ) · α2.

Example 3.2. Set h1 = 0.02, h2 = 0.05 and h3 = 0.03 in Liu’s stock model, and let S 0 = 8, T = 18,
C = 12 and H = 6 for the European binary put options. Then, f e

p = 1.4914.

As the exercise price is increasing and the other parameters keep unchanged in Example 3.2, then
Figure 2 presents that the price of European binary put options f e

p is increasing.
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Figure 2. The relation of f e
p and H in the Example 3.2.

3.3. American binary call options

American binary call options are the options that pay zero if the maximum value of stock price is
below the exercise price or pay a fixed cash during the lifetime. Apply the generalized uncertain stock
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model to describe the stock price, the payoff of American binary call options is provided as below:

Payoff =

 C, if max
0≤t≤T
{S (t)} ≥ H,

0, otherwise.

At time T , the buyer of American binary call options pays

C · ΥH

(
max
0≤t≤T
{S (t)}

)
.

Assume that the price of the American binary call options is the character f a
c , at time zero, then the

profit of buyer is

− f a
c +C · exp(−h3T ) · ΥH

(
max
0≤t≤T
{S (t)}

)
.

Moreover, at time T , the seller of American binary call options receives

C · ΥH

(
max
0≤t≤T
{S (t)}

)
.

Then, at time zero, the profit of seller is

f a
c −C · exp(−h3T ) · ΥH

(
max
0≤t≤T
{S (t)}

)
.

According to the fairness principle, at time zero, the expected profit of the buyer and the seller should
be the same, so we have

− f a
c +C · exp(−h3T ) · E

[
ΥH

(
max
0≤t≤T
{S (t)}

)]
= f a

c −C · exp(−h3T ) · E
[
ΥH

(
max
0≤t≤T
{S (t)}

)]
.

Thus, the definition of American binary call options pricing formula is presented below.

Definition 3.3. Apply the generalized uncertain stock model to describe the stock price, then the
pricing formula of American binary call options is

f a
c = C · exp(−h3T ) · E

[
ΥH

(
max
0≤t≤T
{S (t)}

)]
.

Theorem 3.3. Apply the Liu’s stock model to describe the stock price, then set h = max{α0, α3}, the
price of American binary call options is

f a
c = C · exp(−µ3T ) · (1 − h),

where

α0 =

(
exp

(
πh1
√

3h2

+ 1
))−1

and

α3 =

1 + exp
π(µ1T + ln(S 0/H))

√
3µ2T

−1

.
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Proof. Firstly, we can easily obtain{
ΥH

(
max
0≤t≤T
{S (t)}

)
≤ ΥH

(
max
0≤t≤T
{S (tα)}

)}
⊇

{
max
0≤t≤T
{S (t)} ≤ max

0≤t≤T
{S (tα)}

}
⊇ {S (t) ≤ S (tα), ∀t ∈ [0,T ]}

and {
ΥH

(
max
0≤t≤T
{S (t)}

)
> ΥH

(
max
0≤t≤T
{S (tα)}

)}
⊇

{
max
0≤t≤T
{S (t)} > max

0≤t≤T
{S (tα)}

}
⊇ {S (t) > S (tα), ∀t ∈ [0,T ]} .

According to the Theorems 2.1 and 2.2, we have

M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
≤ ΥH

(
max
0≤t≤T
{S (tα)}

)}
≥ M {S (t) ≤ S (tα), ∀t ∈ [0,T ]} = α

and

M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
> ΥH

(
max
0≤t≤T
{S (tα)}

)}
≥ M {S (t) > S (tα), ∀t ∈ [0,T ]} = 1 − α.

By using the Definition 2.2, we can obtain

M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
≤ ΥH

(
max
0≤t≤T
{S (tα)}

)}
+M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
> ΥH

(
max
0≤t≤T
{S (tα)}

)}
= 1.

Thus,

M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
≤ ΥH

(
max
0≤t≤T
{S (tα)}

)}
= α,

which indicates the uncertain variable
ΥH

(
max
0≤t≤T
{S (t)}

)
has an IUD

ΥH

(
max
0≤t≤T
{S (tα)}

)
.

Meanwhile, we have

dS αt /dt = S αt ·
h1 +

√
3h2

π
ln
α

1 − α

 .
Thus, we can set

α0 =

(
exp

(
πh1
√

3h2

+ 1
))−1
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and easily obtain that, if α > α0, S αt is increasing with respect to t, then max
0≤t≤T

{
S αt

}
≥ H means S αT ≥ H.

When S αT ≥ H, we obtain

α ≥

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

and then set

α3 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

.

Conversely, if α ≤ α0, S αt is decreasing with respect to t, then max
0≤t≤T

{
S αt

}
≥ H means S 0 ≥ H, this will

be not established. Therefore, we set h = max{α0, α3}, the price is

f a
c = C · exp(−h3T ) · E

[
ΥH

(
max
0≤t≤T
{S (t)}

)]
= C · exp(−h3T ) ·

∫ 1

0
ΥH

(
max
0≤t≤T
{S (tα)}

)
dα

= C · exp(−h3T ) · (1 − h).

Example 3.3. Set h1 = 0.05, h2 = 0.02 and h3 = 0.06 in Liu’s stock model, and let S 0 = 4, T = 16,
C = 10 and H = 6 for the American binary call options. Then, f a

c = 3.4593.

As the exercise price is increasing and the other parameters keep unchanged in Example 3.3, then
Figure 3 presents that the price of American binary call option f a

c is decreasing.
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Figure 3. The relation of f a
c and H in the Example 3.3.

3.4. American binary put options

American binary put options are the options that pay nothing if the minimum value of stock price is
above the exercise price or pay a fixed cash during the life time. Apply the generalized uncertain stock
model to describe the stock price, the payoff of American binary put options is provided as below:

Payoff =

 C, if min
0≤t≤T
{S (t)} ≤ H,

0, otherwise.
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At time T , the buyer of American binary put options pays

C ·
(
1 − ΥH

(
min
0≤t≤T
{S (t)}

))
.

Assume that the price of the American binary put options is the character f a
p , at time zero, then the

profit of buyer is

− f a
p +C · exp(−h3T ) ·

(
1 − ΥH

(
min
0≤t≤T
{S (t)}

))
.

Moreover, at time T , the seller of American binary put options receives

C ·
(
1 − ΥH

(
min
0≤t≤T
{S (t)}

))
.

Then, at time zero, the profit of seller is

f a
c −C · exp(−µ3T ) ·

(
1 − ΥH

(
min
0≤t≤T
{S (t)}

))
.

According to the fairness principle, at time zero, the expected of the buyer and the seller should be the
same, so we have

− f a
c +C · exp(−h3T ) ·

(
1 − E

[
ΥH

(
min
0≤t≤T
{S (t)}

)])
= f a

c −C · exp(−h3T ) ·
(
1 − E

[
ΥH

(
min
0≤t≤T
{S (t)}

)])
.

Thus, the definition of the American binary put option pricing formula is provided below.

Definition 3.4. Apply the generalized uncertain stock model to describe the stock price, then the
pricing formula of American binary put options is

f a
c = C · exp(−h3T ) ·

(
1 − E

[
ΥH

(
min
0≤t≤T
{S (t)}

)])
.

Theorem 3.4. Apply Liu’s stock model to describe the stock price, then the price of American binary
put options is

f a
c = C · exp(−h3T ) · (α0 − (α0 − α4) · Lα0α4),

where

α0 =

(
exp

(
πh1
√

3h2

+ 1
))−1

and

α4 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

.

Proof. Firstly, we can easily have{
ΥH

(
min
0≤t≤T
{S (t)}

)
≤ ΥH

(
min
0≤t≤T
{S (tα)}

)}
⊇

{
min
0≤t≤T
{S (t)} ≤ min

0≤t≤T
{S (tα)}

}
⊇ {S (t) ≤ S (tα), ∀t ∈ [0,T ]}
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and {
ΥH

(
min
0≤t≤T
{S (t)}

)
> ΥH

(
min
0≤t≤T
{S (tα)}

)}
⊇

{
min
0≤t≤T
{S (t)} > min

0≤t≤T
{S (tα)}

}
⊇ {S (t) > S (tα), ∀t ∈ [0,T ]} .

According to the Theorems 2.1 and 2.2, we have

M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
≤ ΥH

(
max
0≤t≤T
{S (tα)}

)}
≥ M {S (t) ≤ S (tα), ∀t ∈ [0,T ]} = α

and

M

{
ΥH

(
max
0≤t≤T
{S (t)}

)
> ΥH

(
max
0≤t≤T
{S (tα)}

)}
≥ M {S (t) > S (tα), ∀t ∈ [0,T ]} = 1 − α.

By using the Definition 2.2, we can obtain

M {ΥH (S (t)) ≤ ΥH (S (tα)) ,∀t ∈ [0,T ]} +M {ΥH (S (t)) > ΥH (S (tα)) , ∀t ∈ [0,T ]} = 1.

Thus,

M

{
ΥH

(
min
0≤t≤T
{S (t)}

)
≤ ΥH

(
min
0≤t≤T
{S (tα)}

)}
= α,

which indicates the uncertain variable
ΥH

(
min
0≤t≤T
{S (t)}

)
has an IUD

ΥH

(
min
0≤t≤T
{S (tα)}

)
.

Meanwhile, we have

dS αt /dt = S αt ·
h1 +

√
3h2

π
ln
α

1 − α

 .
Thus, we can set

α0 =

(
exp

(
πh1
√

3h2

+ 1
))−1

and easily obtain that, if α > α0, S αt is increasing with respect to t, then min
0≤t≤T

{
S αt

}
≥ H means S 0 ≥

H, this will be always established. Conversely, if α ≤ α0, S αt is decreasing with respect to t, then
min
0≤t≤T

{
S αt

}
≥ H means S αT ≥ H. When S αT ≥ H, we obtain

α ≥

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

and then set

α4 =

(
1 + exp

(
π(h1T + ln(S 0/H))

√
3h2T

))−1

,
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if α4 < α0, then we obtain α4 ≤ α ≤ α0, if α4 ≥ α0, it becomes no solution. Therefore, the price is

f a
p = C · exp(−h3T ) ·

(
1 − E

[
ΥH

(
min
0≤t≤T
{S (t)}

)])
= C · exp(−h3T ) ·

(
1 −

∫ 1

0
ΥH

(
min
0≤t≤T
{S (tα)}

)
dα

)
= C · exp(−h3T ) · (α0 − (α0 − α4) · Lα0α4).

Example 3.4. Set h1 = 0.03, h2 = 0.02 and h3 = 0.04 in Liu’s stock model, and let S 0 = 10, T = 18,
C = 20 and H = 8 for American binary put options. Then, f a

c = 0.2038.

As the exercise price is increasing and the other parameters keep unchanged in Example 3.4, then
Figure 4 presents that the price of the binary put option f a

p is increasing.

3 4 5 6 7 8

Exercise price H

0

0.05

0.1

0.15

0.2

0.25

P
ri
c
e

Figure 4. The relation of f a
p and H in the Example 3.4.

4. Conclusions

In this paper, the generalized pricing formulas of binary options in uncertain financial markets,
including European binary call options, European binary put options, American binary call options
and American binary put options, were derived by means of the fairness principle. By applying the
Liu’s stock model to describe the stock price, the explicit pricing formulas for the above four kinds of
binary options were obtained, respectively.
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