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Abstract: In this paper, a stochastic Alzheimer’s disease model with the effect of calcium on amyloid
beta is proposed. The Lyapunov function is constructed, followed by the feasibility and positivity
and the existence of a stationary distribution for the positive solutions of the proposed model. The
sufficient conditions for the extinction of the stochastic Alzheimer’s disease model are derived through
the Lyapunov function. This indicates that beta-amyloid plaque and the complex of beta-amyloid
oligomers with prion protein may go extinct and there is a possibility of a cure for the disease.
Furthermore, our numerical simulations show that as the intensity of the random disturbance increases,
the time it takes for the disease to go extinct decreases.
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1. Introduction

Alzheimer’s disease (AD), a major form of dementia, is accompanied by cognitive decline, memory
impairment, impaired ability to learn new information and language dysfunction. As one of the top
10 causes of death worldwide today, it will severely affect the daily life of the patient [1]. According
to the global burden of disease study in 2019 (GBD 2019), the number of people with Alzheimer’s-
like dementia has 50 million in 2018 and it will reach 152 million by 2050 [2]. In the USA, total
payments for medicare, long-term care, and hospice services for dementia are estimated to be up to
$335 billion in 2021 [3]. With no reliable and effective treatment, dementia will affect the patient’s
ability to perform daily live by impairing cognitive function and pose an increasing challenge to health
care systems worldwide [4–6].

In the earliest phase of Alzheimer’s disease (cellular phase), amoid beta (Aβ) accumulate in the
brain, along with the spread of tau pathology [7]. The peptide Aβ, obtained by amyloid precursor
protein (APP), can form Aβ oligomers (two main Aβ forms, Aβ40 and Aβ42), which will reduce the
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number of synapses and decrease glucose metabolism in the brain. This process will finally lead to
brain atrophy [8]. To discuss how Aβ peptide aggregates into Aβ oligomers, Masoud Hoore et al. [9]
developed a model of Aβ fibrillation on a minimal scale. The results showed that Aβ monomers rapidly
increased once Aβ oligomers produced. Furthermore, by considered Aβ40 and Aβ42 as two forms of
Aβ oligomers, Li and Zhao [10] proved that the targeted therapeutic drug Aducanumab of Aβ cannot
completely cure AD. However, many studies have found that the prion protein (PrPC) inhibits the
activity of the protease that cleaves APP and slows the proliferation of Aβ [11, 12]. To understand the
dynamics of PrPC, Helal et al. [13] devised an in vitro model to study the role of protein and analyzed
the kinetics of Aβ plaques, Aβ oligomers, PrPC and Aβ−x−PrPC complex. Considering the process of
diffusion of these substances, Hu et al. [14] focused on the dynamic behaviors of the system in a finite
time interval and under what conditions the state value may exceed a certain value.

Various factors are involved in the transmission of neural signals. For example, in the cerebrospinal
fluid, the level of Aβ oligomers is affected by Ca2+, microglia activity, reactive oxygen species and
Na+ concentration etc. [15–18]. For example, Caluwé and Dupont [19] designed a positive loop
between Aβ and Ca2+ to explore the role of Ca2+ on Aβ oligomers during the progression of a healthy
pathological state to a severe pathology. All the factors always fluctuate in a small range over long
periods which will affect the level of Aβ oligomers and the pathological status of AD. Therefore,
stochastic perturbations cannot be ignored and parameters are often assumed in biomathematics to
be perturbed by linear functions of white noise, a phenomenon described by stochastic differential
equations (SDE) [20–23]. Hu et al. [24] formulated a stochastic model of the in vivo progression of
AD incorporating the role of prions derived from Helal et al. [13] and discussed the existence of the
ergodic stationary distribution of the model.

Studies have been done on minimizing the concentrations of Aβ plaques and Aβ−x−PrPC complex
in Alzheimer’s disease models, but the conditions are complex and not well measured in many practical
situations [14]. And the random factors in the interstitial fluid (ISF) cannot be neglected, therefore it is
necessary to study stochastic models of Alzheimer’s disease to explore the convergence to extinction
in a probabilistic sense. For this purpose, we introduce calcium ions into the system based on Helal
et al. [12] and consider the effect of random noise on Brownian motion in the environment. The main
contributions of this paper are as follows:

(i) A stochastic Alzheimer’s disease model is formulated by taking the influence of calcium ions and
environmental noise on Aβ oligomers into account.

(ii) The sufficient conditions for extinction of the model are established.

The remaining paper is organized as follows. In the next section, the mathematical model
of Alzheimer’s disease with Ca2+ is established. Section 3 shows the existence, uniqueness and
boundedness of the solution of the model. The conditions for the existence of a steady state distribution
are derived in Section 4. Section 5 focuses on the threshold conditions for the extinction of plaques and
complex and shows how random noise affects the development of Alzheimer’s disease. In Section 6,
a numerical simulation is performed to prove the validity of the theoretical derivation. In the ending
section, we present our conclusion.

2. Mathematical model

In this section, we introduce the model and then give the necessary definitions and lemmas.
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2.1. Model formation

To explore the role of prions in memory impairment, Helal et al. [13] introduced a mathematical
model of in vivo Alzheimer’s disease progression that explains the relationship between Aβ plaque, Aβ
oligomers, PrPC and Aβ−x−PrPC complex. The model is as follows

Ȧ = αun − ηA,
u̇ = λ2 − τup + σb − αnun − ρuA − k2u,
ṗ = λ3 − τup + σb − k3 p,
ḃ = τup − σb − k4b.

(2.1)

Where A(t), u(t), p(t) and b(t) represent the concentration of Aβ plaque, Aβ oligomers, PrPC and
Aβ−x−PrPC complex. Where α is the rate of formation of oligomers, η is the rate of degradation of a
plaque, τ is the rate of binding of Aβ oligomers to PrPC, σ is the rate of unbinding of Aβ−x−PrPC, ρ
is the conversion rate of oligomers to plaque, ki(i = 2, 3, 4) is the degradation of Aβ oligomers, PrPC

and Aβ−x−PrPC complex, λi(i = 2, 3) is the source of PrPC and Aβ oligomers.
In this paper, by considering that the presence of PrPC can optimize and control Ca2+ input [11]

and this process is affected by the level of Ca2+, it can be assumed to be a bilinear model [25, 26].
Furthermore, there is positive feedback between the level of Ca2+ and the level of Aβ [19], so
Ca2+ is introduced into the model. Moreover, due to the randomness of real life, especially in
the neurobiological environment, there exist various random factors involved in signaling. In many
stochastic models of infectious diseases, factors such as noise, Brownian motion, pollution, etc. have
been considered [27–29]. Then, we assume that the white noise in the environment is proportional to
the variables C(t), u(t), p(t), b(t), and A(t). The stochastic differential model can be written as

dC = (λ1 + v2u − v3 pC − k1C) dt + ξ1CdB1(t),
du = (λ2 − τup + σb + v1

C
k+C − αnun − ρuA − k2u) dt + ξ2u dB2(t),

dp = (λ3 − τup + σb − k3 p) dt + ξ3 p dB3(t),
db = (τup − σb − k4b) dt + ξ4b dB4(t),
dA = (αun − ηA) dt + ξ5A dB5(t).

(2.2)

Where λ1 is the source of Ca2+, v2 is the acceleration of Ca2+ due to Aβ, v3 is the limitation of Ca2+

due to PrPC, k1 is the degradation of Ca2+, v1is the maximal rate of the positive feedback of Ca2+

on Aβ and k is half-saturation constant, Bi(t) denote independent and standard Brownian motions
and ξ2

i are the intensities of the white noise, i = 1, 2, 3, 4, 5. The other parameters in model (2.2)
have identical significance as in model (2.1). Our main purpose is to explore the threshold related to
epidemic transmission and try to establish the threshold dynamics of model (2.2).

2.2. Preliminaries

Throughout this paper, we let (Ω,F , {F }l>0,P) be a complete probability space with filtration {F }l>0

satisfying the usual conditions (that is to say, it is increasing and right continuous while F0 contains all
P -null sets). Let Bi(t)(i = 1, 2, 3...) denote the independent standard Brownian motions defined on this
probability space. We also denote Rd

+ =
{
x ∈ Rd : xi > 0 for all 1 6 i 6 d

}
and a ∧ b = min{a, b}.

Generally speaking, consider the d-dimensional stochastic differential equation (SDE)

dx(t) = f (x(t), t) dt + g(x(t), t) dBt, (2.3)
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where f (t, x(t)) is a function in Rd defined in [t0,∞] × Rd and g(x(t), t) is a d × m matrix, f ,
g are locally Lipschitz functions in x. Bt denotes an m-dimensional standard Brownian motion
(Bt = (B1(t), B2(t), ..., Bm(t))T , Bi(t)(i = 1, 2, ...,m) is standard normal distribution and Bi(t) ∼ N(0, t))
defined on the complete probability space (Ω,F , {F }t≥0,P). Denote by C2,1

(
Rd× [t0,∞] ;R+) the

family of all nonnegative functions V(x(t), t) defined on Rd × [t0,∞] such that they are continuously
twice differentiable in x and once in t.

We define the differential operator L of Eq (2.3) by [30]

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1
2

d∑
i, j=1

[
gT (x, t)g(x, t)

]
i j

∂2

∂xi∂x j
. (2.4)

If L acts on a function V ∈ C2,1
(
Rd × [t0,∞] ,R+

)
then

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trace
[
gT (x, t)Vxx(x, t)g(x, t)

]
(2.5)

where Vt(x, t) = ∂V
∂t , Vx(x, t) =

(
∂V
∂xi
, . . . , ∂V

∂xd

)
,Vxx(x, t) =

(
∂2V
∂xi∂x j

)
d×d

. From Itô’s formula, if x(t) ∈ Rd,
then

dV(x, t) = LV(x, t) dt + Vx(x, t)g(x, t) dBt. (2.6)

Here are some definitions and lemmas what we will use in the following text.

Definition 1. [21] (Fokker-Plank equation) The respective Fokker-Plank equation for an unknown
probability density function (PDF) in variables x(t) can be assigned to Eq (2.3):

∂
∂t p(t, x) = − ∂

∂x ( f p(t, x)) + ∂2

∂x2

(
1
2g2 p(t, x)

)
,

where p(t, x) means the probability density function of x(t) at t.

Definition 2. [30] For a set Ωk composed of elementary random events ω, the indicator function of
Ωk, denoted by 1Ωk , is the random variable, where

1Ωk =

{
1 if ω ∈ Ωk,

0 if ω < Ωk.

Definition 3. [31] The SDE (2.3) is said to be stochastically ultimately bounded if for any ε ∈ (0, 1),
there is a positive constant χ = χ(ε) such that for any initial data {x(t) : −τ 6 t 6 0} ∈ C

(
[−τ, 0];Rd

+

)
,

the solution x(t) of Eq (2.3) has the property that

lim sup
t→∞

P{|x(t)| > χ} < ε. (2.7)

Definition 4. [30] For the Markov process {X(t), t > 0}, the state space is S = {1, 2, ...,T }, if there
exists a positive integer m such that

pi j(m) > 0 for every i, j ∈ S ,

then X(t) has the ergodic feature.

Definition 5. [23, 24, 27] The diffusion matrix of system (2.3) is defined as follows:
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A(x) =
(
ai, j(x)

)
, ai, j(x) =

k∑
r=1

gi
r(x).g j

r(x).

Definition 6. [23] Let N(t) = (Ni(t))T (i = 1, 2, ..., d) be the solution of model (2.2) with initial value
N(0) ∈ Rd

+. If for any 0 < ε < 1, there exists a pair of positive constants θ = θ(ε) and χ = χ(ε) such
that

lim
t→∞

inf P {Ni(t) > θ} > 1 − ε, lim
t→∞

inf P {Ni(t) 6 χ} > 1 − ε

then the species i is said to be stochastically permanent.

Definition 7. [20, 22, 28] For model (2.3), the infected individuals xi(t) are said to be extinctive if
lim
t→∞

xi(t) = 0, almost surely (a.s.).

Lemma 1. [23] (Chebychev inequality) Let X = {Xt}t>0 be a nonnegative random variable, its mean
value is noted as E(X), for a given r > 0. Then,

P(X > r) 6
1
r
E(X) for every r > 0.

Lemma 2. [21,28] The Markov process X(t) has a unique ergodic stationary distribution µ(·) if there
exists a bound D ⊂ Rd with regular boundary Γ and the following conditions:

(1) In the domain D and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix
A(x) is bounded away from zero.

(2) There exists a nonnegative C2-function V such that LV is negative for any Rd\D. Then,

Px

{
lim

T→+∞

1
T

∫ T

0
f (X(t))dt =

∫
Ed

f (x)µ(dx)
}

= 1

for all x ∈ Rd, where f is a function integrable with respect to the measure µ.

Lemma 3. [20] (Strong Law of Large Number) Let M = {M}t60 be continuous and real-valued local
martingale, which vanishes as t → 0, then

lim
t→∞
〈M,M〉t = ∞, a.s.,⇒ lim

t→∞

Mt

〈M,M〉t
= 0, a.s.

lim
t→∞

sup
〈M,M〉t

t
< 0, a.s.,⇒ lim

t→∞

Mt

t
= 0, a.s.

3. Existence and uniqueness of the solution

Theorem 1. For any initial value

X(0) = (C(0), u(0), p(0), b(0), A(0)) ∈ R5
+,

there exists a positive salutation X(t) = (C(t), u(t), p(t), b(t), A(t)) of the stochastic model (2.2) for t > 0
and the solution will hold in R5

+ with probability one.

Proof. We can easily know that the coefficients of model (2.2) are locally Lipschitz continuous. Then,
for any given initial value (C(0), u(0), p(0), b(0), A(0)) ∈ R5

+, there exists a unique local solution
(C(0), u(0), p(0), b(0), A(0)) on t ∈ [0, τe), where τe is the explosion time (see [20]). To prove that
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the solution is global, all you have to do is to prove τe = ∞ almost surely. Let k0 > 0 be sufficiently
large so that (C(0), u(0), p(0), b(0), A(0)) all lie within the interval

[
1
k0
, k0

]
. For each integer k > k0,

define the following stopping time:

τk = inf{t ∈ [0, τe) : min{(C(0), u(0), p(0), b(0), A(0))} 6
1
k

or max{(C(0), u(0), p(0), b(0), A(0)) > k}}.

Where throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). According to the
definition of the stopping time, τk is increasing as k → ∞. Set τ∞ = lim

t→∞
τk with τ∞ 6 τe almost surely.

Namely, we need to show that τ∞ = ∞ almost surely. If τ∞ , ∞, we assumed that there exists a pair of
constants T > 0 and ε ∈ (0, 1) such that

P {τ∞ 6 T } > ε. (3.1)

As a result, there is an integer k1 > k0 such that

P {τk 6 T } > ε, for all k > k1.

Now, we define a C5-function V(C, u, p, b, A) ∈ R5
+ as follows

V(C, u, p, b, A) =m1(A − 1 − ln A) + C − 1 − ln C + m2u − 1 − ln u

+ m3P − 1 − ln P + m4(b − 1 − ln b),

where mi(i = 1, 2, 3, 4) are positive constants to be determined below. Then, by using the Itô’s formula,
we have

dV = LV dt + m1(A − 1)ξ5 dB5(t) + (C − 1)ξ1 dB1(t)
+ (m2u − 1) ξ2 dB2(t) + (m3 p − 1) ξ3 dB3(t) + m4(b − 1)ξ4 dB4(t),

where

LV =m1

(
1 −

1
A

)
(αun − ηA) +

m1ξ
2
5

2
+

(
1 −

1
C

)
(λ1 + v2u + v3 pC − k1C) +

ξ2
1

2

+

(
m2 −

1
U

) (
λ2 − τup + σb + v1

C
k + C

− αnun − ρuA − k2u
)

+
ξ2

2

2

+

(
m3 −

1
p

)
(λ3 − τup + σb − k3 p) +

ξ2
3

2
+ m4

(
1 −

1
b

)
(τup − σb − k4b) +

m4ξ
2
4

2

=m1αun − m1ηA + m1η −
m1

A
αun +

m1ξ
2
5

2

+ λ1 + v2u + v3 pC − k1C + k1 − v3 p −
1
C

(λ1 + v2u) +
ξ2

1

2

+ m2λ2 − m2(τup − σb) + m2v1
C

k + C
− m2αnun − m2ρuA − m2k2u

+ τp + αnun−1 + ρA + k2 −
1
u

(
λ2 + σb + v1

C
k + C

)
+
ξ2

2

2
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+ m3λ3 − m3(τup − σb) − m3k3 p + τu + k3 −
1
p

(λ3 + σb) +
ξ2

3

2

+ m4(τup − σb) − m4k4b + m4 (σ + k4) −
m4

b
· τup +

m4ξ
2
4

2
6 − (m2n − m1)αun + αnun−1 + (v2 − m2k2 + τ) u − (m1η − ρ) A

+ (τ − m3k3) p + m1η +
m3ξ

2
5

2
+ λ1 + k1 +

ξ2
1

2
+ m2λ2 + m2v1 + k2 +

ξ2
2

2

+ m3λ3 + k3 +
ξ2

3

2
+ m4 (σ + k4) +

m4ξ
2
4

2
+ (m4 − m2 − m3) (τup − σb).

Choosing

m1 =
ρ

η
, m2 = max

{
v2 + τ

k2
+ 1,

m1

n
+ 1

}
,

m3 =
τ

k3
+ 1, m4 = m3 + m2,

such that
v2 − m2k2 + τ < 0, m2n − m1 > 0, τ − m3k3 < 0.

And there exists a constant K such that LV 6 K, where K is define as follows

K := max
{
− (m2n − m1)αun + αnun−1 + m1η +

m3ξ
2
5

2
+ λ1 + k1 +

ξ2
1

2
+ m2λ2

+m2v1 + k2 +
ξ2

2

2
+ m3λ3 + k3 +

ξ2
3

2
+ m4 (σ + k4) +

m4ξ
2
4

2

}
.

Integration of the above inequality from 0 to τk ∧ T and taking the expectation on both sides, we get
the following inequality

E (V (C (τk ∧ T ) , u (τk ∧ T ) , p (τk ∧ T ) , b (τk ∧ T ) , A (τk ∧ T )))

6 V (C(0), u(0), p(0), b(0), A(0)) + T K.
(3.2)

Now, we set Ωk = {τk 6 T }, k > k1. It follows from the inequality (3.1) that P (Ωk) > ε. Note that for

each ω ∈ Ωk, C (τk, ω), u (τk, ω), p (τk, ω), b (τk, ω), A (τk, ω) equals either k or
1
k

. Consequently,

V (V (C (τk ∧ T ) , u (τk ∧ T ) , p (τk ∧ T ) , b (τk ∧ T ) , A (τk ∧ T )))

> min
{

k − 1 − ln k,
1
k
− 1 + ln k

}
.

(3.3)

From (3.2) and (3.3) we get

V (C(0), u(0), p(0), b(0), A(0)) + T K

> E
(
1Ωk(ω)V (C (τk, ω) , u (τk, ω) , p (τk, ω) , b (τk, ω) , A (τk, ω))

)
> εmin

{
k − 1 − ln k,

1
k
− 1 + ln k

}
,

where 1Ωk is the indicator function of Ωk. Letting k → ∞ leads to
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∞ > V (C(0), u(0), p(0), b(0), A(0)) + T K = ∞.

This is a contradiction. As a consequence, τ∞ = ∞ a.s. The proof is completed. �

Theorem 2. For any initial value X(0) = (C(0), u(0), p(0), b(0), A(0)) ∈ R5
+, the solutions of the

model (2.2) are stochastically ultimately bounded and permanent.

Proof. For facilitate calculation, define N = nA + mC + u + p + 2b, choosing Λ =

min {η, k1, k2 − mv2, k3 + mv3, k4}, 0 < m < min
{

k2

v2
,

k3

v3

}
and define

V =
1
N

+ N.

By using the Itô’s formula, we have

LV =mλ1 + λ2 + λ3 − ηnA + mv2u − mv3 p − mk1C +
v1C

k + C
− ρuA − k2u − k3 p

− 2k4b −
1

N2 (mλ1 + λ2 + λ3 − ηnA + mv2u − mv3 p − mk1c +
v1C

k + C
− ρuA)

+
1

N2 (−k2u − k3 p + 2k4b) +
1

N3 (ξ2
5n2A2 + ξ2

1m2C2 + ξ2
2u2 + ξ2

3 p2 + 4ξ2
4b2)

6mλ1 + λ2 + λ3 + v1 − ηnA − mk1C − (k2 − mv2)u − (k3 + mv3)p − 2k4b

−
1

N2
(mλ1 + λ2 + λ3 + v1) −

1
N2

(−ηnA − mk1C − (k2 − mv3)u)

+
1

N2 (−(k3 − mv3)p + 2k4b) +
1

N3 (ξ2
5n2A2 + ξ2

1m2C2 + ξ2
2u2 + ξ2

3 p2 + 4ξ2
4b2)

6mλ1 + λ2 + λ3 + v1 − Λ(nA + mC + u + p + 2b) −
1

N2 (mλ1 + λ2 + λ3 + v1)

+
1

N2 (−ηnA − mk1C − (k2 − mv3)u − (k3 − mv3)p − 2k4b)

+
1
N

(Λ + ξ2
5 + ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4)

6G − ΛV,

where

G =
4(mλ1 + λ2 + λ3 + v1)2 + (Λ + ξ2

5 + ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4)2

4(mλ1 + λ2 + λ3 + v1)
.

Then, by a similar proof of Theorem 4.3 in literature [32] we can get the X(t) of model (2.2) is V-
geometrically ergodic. And through a simple calculation we have

E
[
eΛtV

]
= E[V(0)] + E

[∫ t

0
eΛs (ΛV(s) + LV(s)) ds

]
6 E[V(0)] + GE

[∫ t

0
eΛsds

]
= E[V(0)] +

G
Λ

(
eΛt − 1

)
.

It follows that
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23321

E[V(t)] 6 e−ΛtE[V(0)] +
G
Λ

(
1 − e−Λt

)
6 E[V(0)] +

G
Λ

:= H.

Thus, lim
t→∞

supE[V(t)] 6 H, we chose a constant χ which is sufficiently large, such that
H
χ
< 1. By

using Chebychev inequality in Lemma 1,

P {V(t) > χ} 6
1
χ
E [V(t)] 6

H
χ

:= ε.

Note that,

1 − ε 6 P {V(t) 6 χ} 6 P
{

1
χ
6 N 6 χ

}
.

That means,

P {N > χ} + P

{
N <

1
χ

}
< ε.

Thus,

P {| A(t),C(t), u(t), p(t), b(t) |> χ} 6 P {N > χ} < ε.

According to Definition 3 and Definition 6, model (2.2) is stochastically ultimately bounded and
permanent. The proof is completed. �

4. The stationary distribution of Alzheimer’s disease model

In this section, we will consider whether there is a unique stationary distribution of the model (2.2)
that allows the disease to persist rather than die off.

Theorem 3. If there exist constants ci (i = 1, 2, 3) such that inequality (4.1) holds then for any initial
value

X(0) = (C(0), u(0), p(0), b(0), A(0)) ∈ R5
+,

the model (2.2) admits a unique stationary distribution µ(·) and it has the ergodic feature.


c1ηn − ρ > 0,
c2k2 − v2 − τ > 0,
c3k3 − τ > 0,
c2 − c1 > 0.

(4.1)

Proof. According to Lemma 5, the diffusion matrix of model (2.2) is given by

a(x) =


ξ2

1C2 0 0 0 0
0 ξ2

2u2 0 0 0
0 0 ξ2

3 p2 0 0
0 0 0 ξ2

4b2 0
0 0 0 0 ξ2

5A2


.
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Choose
G = min

(C,u,p,b,A)∈Dδ⊂R
4
+

{
ξ2

1C2, ξ2
2u2, ξ2

3 p2, ξ2
4b2, ξ2

1A2
}
,

we can get that
4∑

i, j=1
ai j(C, u, p, b, A)θiθ j = ξ2

1C2θ2
2 + ξ2

2u2θ2
2 + ξ2

3 p2θ2
3 + ξ2

4b2θ2
4 + ξ2

5A2θ2
5 > G‖θ‖2,

for any (C, u, p, b, A) ∈ D, θ = (θ1, θ2, θ3, θ4, θ5) ∈ R5
+. Then the condition (1) in Lemma 2 is satisfied.

To prove condition (2) of Lemma 2 is fulfilled, we need to develop a non-negative C5−function V:
R5

+ → R. To do this, we first define

V1(C, u, p, b, A) = c1nA + C + c2u + c3 p + (c2 + c3)b.

By using the Itô’s formula in the proposed model (2.2), we obtain

L(− ln C) = −
λ1

C
−

v2u
C
−

v3P
C

+ k1 +
ξ2

1

2
,

L(− ln u) = −
λ2

u
+ k2 + τp −

σb
u
− v1

C
(k + C)u

+ αnun−1 + ρA +
ξ2

2

2
,

L(− ln p) = −
λ3

p
+ k3 + τu −

σb
p

+
ξ2

3

2
,

L(− ln b) = −
τup

b
+ σ + δ +

ξ2
4

2
,

L(− ln nA) = −
αun

A
+ η +

n2ξ2
5

2
.

Therefore, we have

LV1 = L(c1nA + C + c2u + c3 p + (c2 + c3)b)

=c1αnun − c1ηnA + λ1 + v2u − v3 pC − k1C + c2λ2 + c2v1
C

k + C
− c2αnun − c2ρuA − c2k2u − c3k3 p − (c2 + c3)k4b

6 − (c2 − c1)αnun − c1ηnA − k1C − (c2k2 − v2)u − c3k3 p − (c2 + c3)k4b

+ λ1 + c2λ2 + c2v1.

Let
V2(C, u, p, b, A) = V1 − ln nA − ln C − ln u − ln p − ln b.

In addition, we can obtain

LV2 = LV1 −
αun

A
+ η +

n2ξ2
5

2
−
λ1

C
−

v2u
C
−

v3P
C

+ k1 +
ξ2

1

2

−
λ2

u
+ k2 + τp −

σb
u
− v1

C
(k + C)u

+ αnun−1 + ρA +
ξ2

2

2

−
λ3

p
+ k3 + τu −

σb
p

+
ξ2

3

2
−
τup

b
+ σ + δ +

ξ2
4

2
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6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
− (c2 − c1)αnun + αnun−1 + λ1 + c2λ2 + c2v1 + η + k1 + k2 + k3 + σ + δ

+
n2ξ2

5

2
+
ξ2

1

2
+
ξ2

2

2
+
ξ2

3

2
+
ξ2

4

2
.

For the sake of simplicity, we define

F = max
{
−(c2 − c1)αnun + αnun−1 + λ1 + c2λ2 + c2v1 + η

+k1 + k2 + k3 + σ + δ +
n2ξ2

5

2
+
ξ2

1

2
+
ξ2

2

2
+
ξ2

3

2
+
ξ2

4

2

}
.

Also,

M = max {F, v2 + v3, σ}.

Now we define a C5-function V(C, u, p, b, A) ∈ R5
+ as follows

V(C, u, p, b, A) = V2(C, u, p, b, A) − V2(C0, u0, p0, b0, A0).

Applying the Itô’s formula and using the proposed model, we get

LV 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M.

The next step is to define the set

D =

{
ε 6 C 6

1
ε
, ε 6 u 6

1
ε
, ε 6 p 6

1
ε
, ε3 6 b 6

1
ε3 , ε

n+1 6 A 6
1
εn+1

}
,

where 0 < ε < 1 is a constant that is sufficiently small and satisfies the following Eq (4.2)

ε =
1
2

min
{
α

M
,

λ1

M − c2 − c3
,

λ2

M − σ
,
τ

M
,

c1ηn − p
M

,

k1

M
,

c2k2 − v2 − τ

M
,

c2k3 − τ

M
,

(c2 + c3) k4

M

}
.

(4.2)

We divide the domain R5
+\D into the ten regions is follows

D1 =
{
(C, u, p, b, A) ∈ R5

+, 0 < C < ε
}
, D6 =

{
(C, u, p, b, A) ∈ R5

+,C >
1
ε

}
,

D2 =
{
(C, u, p, b, A) ∈ R5

+, 0 < u < ε
}
, D7 =

{
(C, u, p, b, A) ∈ R5

+, u >
1
ε

}
,

D3 =
{
(C, u, p, b, A) ∈ R5

+, 0 < p < ε
}
, D8 =

{
(C, u, p, b, A) ∈ R5

+, p >
1
ε

}
,
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D4 =
{
(C, u, p, b, A) ∈ R5

+, 0 < b < ε3
}
, D9 =

{
(C, u, p, b, A) ∈ R5

+, b >
1
ε3

}
,

D5 =
{
(C, u, p, b, A) ∈ R5

+, 0 < A < εn+1
}
, D10 =

{
(C, u, p, b, A) ∈ R5

+, A >
1
εn+1

}
.

Obviously, Θc
ε = R5

+/Θ
c = D10

i=1Θi. In what follows, we will prove that

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ R5
+.

We divide the proof into ten cases.

Case 1: If (C, u, p, b, A) ∈ D1, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
1
ε

(λ1 + v2ε + v3ε) + M 6 −
λ1

ε
+ M − v2 − v3.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D1.

Case 2: If (C, u, p, b, A) ∈ D2, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
1
ε

(λ2 + σε) + M 6 −
λ2

ε
+ M − σ.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D2.

Case 3: If (C, u, p, b, A) ∈ D3, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
1
ε

(λ3 + σε) + M 6 −
λ3

ε
+ M − σ.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D3.
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Case 4: If (C, u, p, b, A) ∈ D4, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
τε2

ε3 + M 6 −
τ

ε
+ M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D4.

Case 5: If (C, u, p, b, A) ∈ D5, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
αεn

εn+1 + M 6 −
α

ε
+ M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D5.

Case 6: If (C, u, p, b, A) ∈ D6, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
k1

ε
+ M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D6.

Case 7: If (C, u, p, b, A) ∈ D7, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
1
ε

(c2k2 − v2 − τ) + M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D7.
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Case 8: If (C, u, p, b, A) ∈ D8, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
1
ε

(c3k3 − τ) + M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D8.

Case 9: If (C, u, p, b, A) ∈ D9, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
1
ε

(c2 + c3)k4 + M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D9.

Case 10: If (C, u, p, b, A) ∈ D10, we can derive that

LW 6 − (c1ηn − ρ)A − k1C − (c2k2 − v2 − τ)u − (c3k3 − τ)p − (c2 + c3)k4b

−
αun

A
−

1
C

(λ1 + v2u + v3P) −
1
u

(λ2 + σb) −
1
p

(λ3 + σb) −
τup

b
+ M

6 −
c1ηn − ρ

ε
+ M.

According to (4.2),

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ D10.

Including the analysis from Cases 1 to 10, we can derive that

LW(C, u, p, b, A) < 0, for any (C, u, p, b, A) ∈ R5
+.

Consequently, condition (2) in Lemma 2 is satisfied. This finishes the proof. �

5. Stochastic extinction dynamics

In this section we are going to discuss under what conditions the disease will be extinct, for

convenient, we define 〈X(t)〉 =
1
t

∫ t

0
x(r)dr, and define another threshold parameter as follows:

R1 =
(σ + k4)(λ2 + v1)

k4(σ + k4 +
ξ2

4

2
)

, R2 =
λ2 + v1

η +
ξ2

5

2

.
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Theorem 4. If R1 < 1 and R2 < 1 hold, the b(t) and A(t) will die out with probability one, moreover

lim
t→∞

A(t) = 0,

lim
t→∞

p(t) =
λ3

k3
,

lim
t→∞

b(t) = 0, a.s.

Proof. By using the Itô’s formula to the equation of model (2.2), we can get

d
(

σ

σ + k4
b + u

)
=

[
λ2 −

k4

σ + k4
τup + v1

c
k + c

− αnun − ρµA − k2µ

]
dt

+ ξ2u dB2(t) +
σ

σ + k4
ξ4b dB4(t).

Integration both sides of the equation above from 0 to t, we get

σ

σ + k4

b(t) − b(0)
t

+
u(t) − u(0)

t

=λ2 −
k4

σ + k4
〈τup〉 + v1〈

c
k + c

〉 − 〈αnun〉 − ρ〈uA〉

− k2〈u〉 +
ξ2

t

∫ t

0
u(s) dB2(s) +

σξ4

(σ + k4) t

∫ t

0
b(s) dB4(s).

By simple calculation, we can obtain

〈τup〉 =
σ + k4

k4
(λ2 + v1〈

c
k + c

〉) −
σ + k4

k4
(〈αnun〉 + ρ〈uA〉 + k2〈u〉) + φ1(t),

where the value of φ1(t) is defined via the subsequent equation

φ1(t) =
σ1k4

k4
·
ξ2

t
M1(t) +

σξ4

k4t
M2(t) −

σ

k4

b(t) − b(0)
t

−
σ + k4

k4

u(t) − u(0)
t

.

With the large number theorem as stated in Lemma 3 and local martingales, lim
t→∞

φ1(t) = 0. Similarly,
we also can get

〈αnun〉 = λ2 + v1〈
c

k + c
〉 − (

k4

σ + k4
〈τup〉 + ρ〈uA〉 + k2〈u〉) + φ2(t),

where φ2(t) is defined by

φ2(t) =
ξ2

t
M1(t) +

σξ4

(σ + k4) t
M2(t) −

σ

σ + k4

b(t) − b(0)
t

−
u(t) − u(0)

t
.

Similarly, lim
t→∞

φ2(t) = 0.
Likewise, we integrate both sides of the last two equations of the proposed model (2.2), yielding

these equations

d(p + b) = λ3 − k3 p − k4b + ξ3 p dB3(t) + ξ3b dB4(t)

and
p(t) − p(0)

t
+

b(t) − b(0)
t

= λ3 − k3〈p〉 − k4〈b〉 +
ξ3

t

∫ t

0
p(s) dB3(t) +

ξ4

t

∫ t

0
b(s) dB4(t).
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With a simple calculation, we can get

〈p〉 =
λ3

k3
−

k4

k3
〈b〉 + φ3(t),

where

φ3(t) =
1
k3

[
−

p(t) − p(0)
t

−
b(t) − b(0)

t
+
ξ3

t

∫ t

0
p(s) dB3(s) +

ξ4

t

∫ t

0
b(s) dB4(s)

]
.

Clearly, lim
t→∞

φ3(t) = 0.
By using the Itô’s formula on the fourth equation of model (2.2), we have

d ln b(t) =〈
τup

b
〉 − (σ + k4) −

ξ2
4

2
+
ξ4

t

∫ t

0
B4(t)

6
σ + k4

k4

(
λ2 + v1〈

c
k + c

〉

)
−
σ + k4

k4
(〈αnun〉 + ρ〈uA〉 + k2〈u〉) + φ1(t)

− (σ + k4) −
ξ2

4

2
+
ξ4

t

∫ t

0
B4(t)

6
(σ + k4) (λ2 + v1)

k4
+ φ1(t) −

(
σ + k4 +

ξ2
4

2

)
+
ξ4

t

∫ t

0
B4(t)

=

(
σ + k4 +

ξ2
4

2

)
(R1 − 1) + φ1(t) +

ξ4

t

∫ t

0
B4(t).

Obviously,

lim
t→∞

sup
ξ4

t

∫ t

0
B4(t) = 0, a.s.

Therefore when R1 < 1, we obtain

lim
t→∞

sup
ln b(t)

t
6

(
σ + k4 +

ξ2
4

2

)
(R1 − 1) < 0.

That implies that,

lim
t→∞

b(t) = 0, a.s.

In the same way, by applying the Itô’s formula to the last equation of model (2.2), we can obtain,

d ln nA =〈
αnun

nA
〉 − η −

ξ2
5

2
+
ξ5

t

∫ t

0
B5(t)

6〈αnun〉 − η −
ξ2

5

2
+
ξ5

t

∫ t

0
B5(t)

=λ2 + v1〈
c

k + c
〉 −

(
k4

σ + k4
〈τup〉 + ρ〈uA〉 + k2〈u〉

)
+ φ2(t)

− η −
ξ2

5

2
+
ξ5

t

∫ t

0
B5(t)

6λ2 + v1 −

(
η +

ξ2
5

2

)
+ φ2(t) +

ξ5

t

∫ t

0
B5(t)
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=

(
η +

ξ2
5

2

)
(R2 − 1) + φ2(t) +

ξ5

t

∫ t

0
B5(t).

Obviously,

lim
t→∞

sup
ξ5

t

∫ t

0
B5(t) = 0, a.s.

Therefore when R2 < 1, we obtain

lim
t→∞

sup
ln nA(t)

t
6

(
η +

ξ2
5

2

)
(R2 − 1) < 0.

It implies that,

lim
t→∞

nA(t) = 0, a.s.

That is to say

lim
t→∞

A(t) = 0, a.s.

With 〈p〉 =
λ3

k3
−

k4

k3
〈b〉 + φ3(t) above, we can get that

lim
t→∞

p(t) =
λ3

k3
, a.s.

This completes the proof. �

Remark 1. Theorem 4 reveals that the extinction or not of the disease depends on the sign of R1 and
R2. With Ri < 1(i = 1, 2), both the Aβ oligomers and Aβ-x-PrPC complex incline to go extinct. That
is, stochastic perturbations of the environment are beneficial to the extinction of both materials. This
means that in real life, it is useful to pay attention to the physical condition of the patient and improve
the internal environment of the body [33]. A more interesting result is that such random perturbations
may lead to disease extinction. This provides a theoretical basis for disease cure.

6. Numerical simulations

To illustrate the theoretical results obtained, we give some examples in this section. Using the
Milstein’s higher order method developed in [34], we present our results. Let us consider the
corresponding discretizing equations,
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Ci+1 =Ci + (λ1 + v2ui − v3 piCi − k1Ci) ∆t + ξ1$1,iCi

√
∆t +

1
2
ξ2

1Ci

(
$2

1,i − 1
)
∆t,

ui+1 =ui + (λ2 − τui pi + σbi + v1
Ci

k + Ci
− αnun

i − ρuiAi − k2ui)∆t + ξ2$2,iui

√
∆t

+
1
2
ξ2

2ui

(
$2

2,i − 1
)
∆t,

pi+1 =pi + (λ3 − τui pi + σbi − k3 pi) ∆t + ξ3$3,i pi

√
∆t +

1
2
ξ2

3 pi

(
$2

3,i − 1
)
∆t,

bi+1 =bi + (τui pi − σbi − k4bi) ∆t + ξ4$4,ibi

√
∆t +

1
2
ξ2

4bi

(
$2

4,i − 1
)
∆t,

Ai+1 =Ai +
(
αun

i − ηAi
)
∆t + ξ5$5,iAi

√
∆t +

1
2
ξ2

5Ai

(
$2

5,i − 1
)
∆t.

Where $ j,i j = 1, 2, 3, 4, 5 are the realization of five independent Gaussian random variables with
distribution N(0, 1) and time step ∆t = 0.01. Using MATLAB, numerical simulations were performed
on the proposed stochastic Alzheimer’s disease model (2.2) and an approximate solution of the model
is obtained. In addition, it is shown that noise intensity has a significant influence. By assuming
numerical values of the parameters related to their biological feasibility, we verified the extinction of
the disease and the existence of a stationary distribution.

First, we choose λ1 = 0.2, v1 = 1, v2 = 0.6, v3 = 0.4, k1 = 7, ξ1 = 0.1, k = 0.3, k2 = 0.35, ρ = 0.5,
ξ2 = 0.25, λ3 = 0.5, k3 = 0.2, ξ3 = 0.2, τ = 0.85, σ = 0.6, η = 0.8, α = 0.3, n = 3, ξ5 = 0.5, ξ4 = 0.1.
Furthermore, we consider the initial size of population density as X(0) = (C(0), u(0), p(0), b(0), A(0)) =

(0.2, 0.5, 0.5, 1.2, 1). These assumptions satisfy the Theorem 3, which implies that model (2.2) has a
unique stationary distribution as shown in Figure 1 and means the disease will be persistent.

Next, based on the previous assumptions, we change λ1, v1, ξ1, k2, ξ2, λ3, ξ3, η, ξ4, ξ5 to be λ1 = 0.02,
v1 = 0.08, ξ1 = 2.8, k2 = 3, ξ2 = 4, λ3 = 0.85, ξ3 = 5, η = 0.12, ξ4 = 0.6 and ξ5 = 1.6. We can easily
calculate the basic reproduction number R1 = 0.8556 < 1 and R2 = 0.2357 < 1. And according to
Theorem 4 the solution of model (2.2) must obey

lim
t→∞

sup
ln b(t)

t
6

(
σ + k4 +

ξ2
4

2

)
(R1 − 1) < 0

and

lim
t→∞

sup
ln nA(t)

t
6

(
η +

ξ2
5

2

)
(R2 − 1) < 0.

This means that the disease will die out in this case and the numerical simulation of Figure 2
confirms our theoretical results. Figure 2 shows that the stochastic equation (2.2) and the deterministic
equation have differences in their behavior. By this, we can point out that the disease tends towards the
extinction with environmental noise. The numerical simulation shows that the surrounding noise have
a very large effect on the mentioned disease. That is, the environmental interference will cause the Aβ
plaque and Aβ−x−PrPC complex to disappear.

Finally, to simulate the effect of different intensities of environmental interference, we fix the
parameters above except ξ4 and ξ5. We change the values of ξ4 and ξ5 in Figure 3. As the intensity of
white noise increases, Aβ plaques and Aβ-x-PrPC complex will accelerate extinction.
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Figure 1. The stationary distribution of the Alzheimer’s disease, five small images of (a)
show the changes of C, u, p, b and A number over a period of time. (b) are the number
histogram of C, u, p, b and A, respectively.
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Figure 2. The extinction of Aβ plaques and Aβ-x-PrPC complex on the stochastic model (2.2)
along with its corresponding deterministic model (ξi = 0, i = 1, 2, ..., 5).
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Figure 3. The effects of the environmental random disturbance on Aβ plaques and Aβ-x-
PrPC complex.

7. Conclusions

During neural signaling, the concentration of Aβ is influenced by a number of stochastic factors.
For example, calcium ions can regulate of Aβ levels in the interstitial fluid (ISF) by affecting the
permeability of the cell membrane. We established a random Alzheimer’s disease model containing
Ca2+ and investigated the transmission dynamics with changing biological environment. Using the
stochastic Lyapunov functions theory, the existence and positivity were proved. The extinction and the
stationary distribution were also discussed, the related conditions implied that the random parameters
such as the random of Ca2+ concentration will lead to disease’s extinction. In contrast to the optimal
control conditions proposed by Hu et al. [14], this paper directly derives more explicit and simple
conditions for the extinction of Aβ plaques and Aβ−x−PrPC complex, which will form the basis in
formulating novel therapeutic solutions for control strategies regarding AD pathology. In the future,
the model can be further extended by adding drugs. One can also talk about the drug-target kinetics of
the model by adding drugs and the influence of toxicological effects of drugs on therapeutic efficacy.
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