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Abstract: In real Hilbert spaces, for the purpose of trying to deal with the pseudo-monotone
variational inequalities problem, we present a new extrapolation projection contraction algorithm based
on the golden ratio in this study. Unlike ordinary inertial extrapolation, the algorithms are constructed
based on a convex combined structure about the entire iterative trajectory. Extrapolation parameter ψ
is selected in a more relaxed range instead of only taking the golden ratio φ =

√
5+1
2 as the upper bound.

Second, we propose an alternating extrapolation projection contraction algorithm to better increase the
convergence effects of the extrapolation projection contraction algorithm based on the golden ratio. All
our algorithms employ non-constantly decreasing adaptive step-sizes. The weak convergence results of
the two algorithms are established for the pseudo-monotone variational inequalities. Additionally, the
R-linear convergence results are investigated for strongly pseudo-monotone variational inequalities.
Finally, we show the validity and superiority of the suggested methods with several numerical
experiments. The numerical results show that alternating extrapolation does have obvious acceleration
effect in practical application compared with no alternating extrapolation. Thus, the obvious effect of
relaxing the selection range of parameter ψ on our two algorithms is clearly demonstrated.

Keywords: golden ratio; variational inequalities; linear rate; pseudo-monotone operator; projection
algorithms; weak convergence
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1. Introduction

In the present investigation, H is a real Hilbert space and C is a nonempty, closed, and convex subset
of H, A : H → H is a continus mapping. The variational inequality problem (abbreviated, VI(A,C)) is
of the form: find z∗ ∈ C satisfied with

〈Az∗, z − z∗〉 ≥ 0, ∀z ∈ C. (1.1)
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Numerous domains have important uses for variational inequalities. Many academics have studied and
come up with a multitude of findings [1–4].

The problem VI(A,C) (1.1) is analogous to the problem of fixed points:

z∗ = PC (z∗ − λAz∗) , λ > 0.

As a result, VI(A,C) (1.1) is possible solved by using the fixed point problem (see, e.g., [5, 6]). The
following projection gradient algorithm is the simplest one:

zn+1 = PC (zn − λAzn) . (1.2)

However, this method’s convergence necessitates a moderately strong supposition that A is a η-strongly
monotone and L-Lipschitz continuous mapping, η is a positive constant and step-size λ ∈

(
0, 2η

L2

)
.

However, algorithm (1.2) does not work when A is monotone.
The extragradient algorithm of the following type was presented by Korpelevich in [7]: given z1 ∈

C,  yn = PC (zn − λnAzn) ,
zn+1 = PC (zn − λnAyn) ,

(1.3)

where λn ∈
(
0, 1

L

)
. A is relaxed to a monotone mapping based on algorithm (1.2). Moreover, it has

been shown that the sequence {xn} will eventually arrive at a solution for the (1.1). However, PC lacks
a closed form formula and (1.3) requires calculating PC twice in each iteration, which will result in an
increase in the amount of computing that the procedure requires. There has been a lot of research done
in this area by Censor et al ( [8–10]). The issue that it can be tricky to calculate PC was solved by using
the projection onto the half space or intersection of half spaces rather than subset C. He first proposed
projection and contraction method (PCM) in [11]. Cai et al. in [12] have studied the optimal step size
ηn for PCM, and the method which takes the following form:

yn = PC (zn − λAzn) ,
d (zn, yn) = zn − yn − λ (Azn − Ayn) ,
zn+1 = zn − γηnd (zn, yn) ,

(1.4)

where

ηn =

 〈zn−yn,d(zn,yn)〉
‖d(zn,yn)‖2

, ‖d (zn, yn)‖ , 0,

0, ‖d (zn, yn)‖ = 0.
(1.5)

The benefit of this method is that A is as flexible as the algorithm (1.3) and only needs to calculate
the projection once. The method’s efficacy will be vastly enhanced by both theoretical and numerical
experiments. After adding the optimal step size ηn, the speed of convergence is enhanced further. The
focus of numerous professionals has been drawn to method (1.4) because of its great characteristics
and results. Based on the method (1.4), numerous academics have achieved numerous significant
advancements (see, e.g., [12–14] and others). Recently, Dong et al. in [13] added inertial to
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method (1.4) in order to obtain better convergence effect. In [15], Shehu and Iyiola incorporated
alternating inertial and adaptive step-sizes:

vn =

un + αn (un − un−1) , n = odd,
un, n = even,

un = PC (vn − λnAvn) ,
d (vn, un) = vn − un − λn (Avn − Aun) ,
un+1 = vn − γηnd (vn, un) ,

(1.6)

where

λn+1 =

min
{
µ‖vn−un‖

‖Avn−Aun‖
, λn

}
, Avn , Aun,

λn, otherwise,
(1.7)

and

ηn =

 〈vn−un,d(vn,un)〉
‖d(vn,un)‖2

, ‖d (vn, un)‖ , 0,

0, ‖d (vn, un)‖ = 0.
(1.8)

When the assumption of mapping A is relaxed to pseudo-monotone, convergence of the algorithm is
proved. Additionally, they gave R-linear convergence analysis when A is a strongly pseudo-monotone
mapping. In numerical experiments, the algorithm with alternating inertial in [15] performs better than
the algorithm with general inertial in [13].

A fascinating concept has lately been created by Malitsky in [16] to solve mixed variational
inequalities problem: find z∗ ∈ C satisfied with

〈Az∗, z − z∗〉 + g (z) − g (z∗) ≥ 0, ∀z ∈ C, (1.9)

where A is monotone mapping, g is a proper convex lower semicontinuous function. He proposed the
following version of the golden ratio algorithm: zn =

(φ−1)zn+zn−1
φ

,

zn+1 = proxλg (zn − λAzn) ,
(1.10)

where φ is golden ratio, i.e. φ =
√

5+1
2 . In algorithm (1.10), zn is actually a convex combination of all

the previously generated iterates. It is straightforward to ascertain that when g = ιC, (1.9) is equivalent
to (1.1). Then, the algorithm (1.10) may be written equivalently as: zn =

(φ−1)zn+zn−1
φ

,

zn+1 = PC (zn − λAzn) .
(1.11)

Numerous inertial algorithms have been published to address the issue of pseudo-monotone
variational inequalities. Moreover, the golden ratio algorithms and their convergence have been
researched for solving mixed variational inequalities problem when A is monotone. However, there are
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still few results about golden ratio for solving variational inequalities problem (1.1) when A is pseudo-
monotone. The algorithm presented by Malitsky is very novel, and it provides us with some inspiration.
Under more general circumstances, we hope to solve the variational inequalities problem (1.1) using
the convex combination structure in this algorithm.

In this research, we combine the projection contraction method in [11] and golden ratio technique to
present a new extrapolation projection contraction algorithm for the pseudo-monotone VI(A,C) (1.1).
To speed up the convergence of the new extrapolation projection contraction algorithm, we also present
an alternating extrapolation algorithm. We can greatly expand the selection range of step size in the
combination structure, and expanding the range of step size has a significant effect on the results of
numerical experiments. Although the golden ratio is not used in our algorithm in the end in [13],
considering that this paper is inspired by Malitsky’s golden ratio algorithm, the algorithms proposed in
this paper is still recorded as projection contraction algorithms based on the golden ratio. In this paper,
we primarily make the following improvements:

• We propose a projection contraction algorithm and an alternating extrapolation projection
contraction algorithm based on the golden ratio. Weak convergence of two algorithms are
established when A is pseudo-monotone, sequentially weakly continuous and L-Lipschitz
continuous.
• We get R-linear convergence results of two algorithms when A is strongly pseudo-monotone.
• Our algorithms all use the new self-adaptive step-sizes which is not monotonically decreasing,

like (1.7).
• In our algorithms, A is a pseudo-monotone mapping which is weaker than [13, 17, 18].

Additionally, it is not necessary to restrict the extrapolation parameter ψ in
(
1,
√

5+1
2

]
as in [19,20],

it can be to extend the value to (1,+∞).

The structure of the article is as follows:
Section 2: Related knowledge involved in the paper. Section 3: We give a projection contraction

algorithm based on the golden ratio and the proofs of weak and R-linear convergence of the algorithm.
Section 4: We also give an alternating extrapolation projection contraction algorithm based on the
golden ratio, prove weak and R-linear convergence of the algorithm. Section 5: We give two numerical
examples to verify the effectiveness of the algorithms.

2. Preliminaries

Let {zn} be a sequence in H. We denote zn ⇀ z as {zn} weakly converges to z, while denote zn → z
as {zn} strongly converges to z.

Definition 2.1. [21] A : H → H is known as:
(a) η-strongly pseudo-monotone if

〈Av, u − v〉 ≥ 0⇒ 〈Au, u − v〉 ≥ η ‖u − v‖2 , ∀u, v ∈ H,

where η > 0;
(b) pseudo-monotone if

〈Av, u − v〉 ≥ 0⇒ 〈Au, u − v〉 ≥ 0, ∀u, v ∈ H;

AIMS Mathematics Volume 8, Issue 10, 23291–23312.



23295

(c) L-Lipschitz continuous if there exists a constant L > 0 such that

‖Au − Av‖ ≤ L ‖u − v‖ , ∀u, v ∈ H;

(d) sequentially weakly continuous if for each sequence {un} :

un ⇀ u =⇒ Aun ⇀ Au.

Definition 2.2. [22] PC is called the metric projection onto C, if for any point u ∈ H, there exists a
unique point PCu ∈ C such that ‖u − PCu‖ ≤ ‖u − v‖ , ∀u ∈ C.

Definition 2.3. [23] Suppose a sequence {zn} in H converges in norm to z∗ ∈ H. We say that {zn}

converges to z∗ R-linearly if limn→∞ ‖zn − z∗‖
1
n < 1.

Lemma 2.1. [21], [22] PC has the following properties:
(i) 〈u − v, PCu − PCv〉 ≥ ‖PCu − PCv‖2 , ∀u, v ∈ H;
(ii) PCu ∈ C and 〈v − PCu, PCu − u〉 ≥ 0, ∀v ∈ C.

Lemma 2.2. [21] This following equation holds in H :

‖%u + (1 − %) v‖2 = % ‖u‖2 + (1 − %) ‖v‖2 − % (1 − %) ‖u − v‖2 , ∀% ∈ R, ∀u, v ∈ H. (2.1)

Lemma 2.3. [24] Suppose A is pseudo-monotone in VI(A,C) (1.1) and S is the solution set of
VI(A,C) (1.1). Then S is closed, convex and

S = {z ∈ C : 〈Aw,w − z〉 ≥ 0,∀w ∈ C} .

Lemma 2.4. [25] Let {zn} be a sequence in H such that the following two conditions hold:
(i) for any z ∈ C , limn→∞ ‖zn − z‖ exists;
(ii) ωw (zn) ⊂ S .
Then {zn} converges weakly to a point in C.

Lemma 2.5. [19] Let {an} and {bn} be non-negative real sequences which meet

an+1 ≤ an − bn, ∀n > N,

where N is some non-negative integer. Then limn→∞ bn = 0 and limn→∞ an exists.

Lemma 2.6. [26] Let {λn} be non-negative number sequence such that

λn+1 ≤ ξnλn + τn, ∀n ∈ N,

where {ξn} and {τn} meet

{ξn} ⊂ [1,+∞) ,
∞∑

n=1

(ξn − 1) < +∞, τn > 0 and
∞∑

n=1

τn < +∞.

Then limn→∞ λn exists.
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3. Projection contraction algorithm based on the golden ratio

We provide a PCM algorithm with a new extrapolation step and the corresponding convergence
analyses in this section.

Assumption 3.1. In this paper, the following suppositions are true:
(a) A: H → H is pseudo-monotone, sequentially weakly continuous and L-Lipschitz continuous.
(b) The solution set S is nonempty.
(c) {ξn} ⊂ [1,+∞) ,

∑∞
n=1 (ξn − 1) < +∞, τn > 0 and

∑∞
n=1 τn < +∞.

Algorithm 3.1. Projection contraction algorithm based on the golden ratio.

Step 0: Take the iterative parameters µ ∈ (0, 1), ψ ∈ (1,+∞), γ ∈ (0, 2), and ξ1, τ1, λ1 > 0. Let u1 ∈ H,
v0 ∈ H be given starting points. Known sequences {ξn} , {τn}. Set n := 1.
Step 1: Compute

vn =
ψ − 1
ψ

un +
1
ψ

vn−1. (3.1)

Step 2: Compute

un = PC (vn − λnAvn) , (3.2)

where

λn+1 =

min
{
µ‖vn−un‖

‖Avn−Aun‖
, ξnλn + τn

}
, Avn , Aun,

ξnλn + τn, otherwise.
(3.3)

If vn = un, STOP. Otherwise, go to Step 3.
Step 3: Compute

d (vn, un) = (vn − un) − λn (Avn − Aun) , (3.4)

ϕn = 〈vn − un, d (vn, un)〉 ,

un+1 = vn − γβnd (vn, un) , (3.5)

where

βn =

 ϕn

‖d(vn,un)‖2
, ‖d (vn, un)‖ , 0,

0, ‖d (vn, un)‖ = 0.
(3.6)

Step 4: Set n← n + 1, and go to Step 1.
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Remark 3.1. Observe in Algorithm 3.1 that if Avn , Aun, then

µ ‖vn − un‖

‖Avn − Aun‖
≥
µ

L
‖vn − un‖

‖vn − un‖
=
µ

L
.

Therefore, λn ≥ min
{
µ

L , λ1

}
> 0. By (3.3), we have λn+1 ≤ ξnλn + τn. From Lemma 2.6 we obtain

limn→∞ λn = λ when {ξn} ⊂ [1,+∞) ,
∑∞

n=1 (ξn − 1) < +∞, and
∑∞

n=1 τn < +∞.

Remark 3.2. In our algorithms, it is not necessary to restrict the range of ψ to
(
1,
√

5+1
2

]
or (1, 2], ψ

only needs to be greater than 1, which greatly relaxes the range of parameter to be chosen.

Lemma 3.1. Assume {un} is the sequence generated by Algorithm 3.1 under the conditions of
Assumption 3.1. Then {un} is bounded and limn→∞ ‖un − u∗‖ exists, where u∗ ∈ S .

Proof. It is available from the iterative formate

‖un+1 − u∗‖2 = ‖vn − u∗ − γβnd (vn, un)‖2

= ‖vn − u∗‖2 − 2γβn 〈vn − u∗, d (vn, un)〉 + γ2β2
n ‖d (vn, un)‖2 .

(3.7)

According to (3.2) and Lemma 2.1(i),

〈un − u∗, vn − un − λnAvn〉

= 〈PC (vn − λnAvn) − PCu∗, vn − λnAvn − u∗ + u∗ − un〉

= 〈PC (vn − λnAvn) − PCu∗, vn − λnAvn − u∗〉

+ 〈PC (vn − λnAvn) − PCu∗, u∗ − un〉

≥ ‖PC (vn − λnAvn) − PCu∗‖2 + 〈un − u∗, u∗ − un〉

= ‖un − u∗‖2 − ‖un − u∗‖2

=0.

(3.8)

Since un ∈ C and u∗ ∈ S , and Definition 2.1 (b), we have 〈Aun, un − u∗〉 ≥ 0, thus,

λn 〈Aun, un − u∗〉 ≥ 0. (3.9)

Making use of (3.8) and (3.9), we gain

〈un − u∗, d (vn, un)〉 = 〈un − u∗, vn − un − λnAvn + λnAun〉 ≥ 0,

so,
〈vn − u∗, d (vn, un)〉 ≥ ϕn. (3.10)

Putting (3.10) in (3.7), we get

‖un+1 − u∗‖2 ≤ ‖vn − u∗‖2 − γ (2 − γ) βnϕn. (3.11)

By (3.5) and (3.6), we gain

βnϕn = ‖βnd (vn, un)‖2 =
1
γ2 ‖vn − un+1‖

2 . (3.12)
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Putting (3.12) in (3.11),

‖un+1 − u∗‖2 ≤ ‖vn − u∗‖2 −
2 − γ
γ
‖vn − un+1‖

2 . (3.13)

From (3.1) and Lemma 2.2,

‖un − u∗‖2 =
ψ

ψ − 1
‖vn − u∗‖2 −

1
ψ − 1

‖vn−1 − u∗‖2 +
ψ

(ψ − 1)2 ‖vn − vn−1‖
2

=
ψ

ψ − 1
‖vn − u∗‖2 −

1
ψ − 1

‖vn−1 − u∗‖2 +
1
ψ
‖un − vn−1‖

2 .

(3.14)

Combing (3.13) and (3.14),

‖un+1 − u∗‖2 − ‖un − u∗‖2 ≤ −
1

ψ − 1
‖vn − u∗‖2 +

1
ψ − 1

‖vn−1 − u∗‖2

−
1
ψ
‖un − vn−1‖

2
−

2 − γ
γ
‖vn − un+1‖

2 ,

(3.15)

so we can obtain
an+1 ≤ an − bn,

where

an = ‖un − u∗‖2 +
1

ψ − 1
‖vn−1 − u∗‖2 ,

bn =
2 − γ
γ
‖vn − un+1‖

2 +
1
ψ
‖un − vn−1‖

2 .

From the above proof, we have obtained an ≥ 0 and bn ≥ 0. According to Lemma 2.5, we can get
limn→∞ bn = 0 and limn→∞ an exists. Thus, we can get further limn→∞ ‖vn − un+1‖

2 = 0 .
Inferring from the definition of vn, we get

an+1 = ‖un+1 − u∗‖2 +
1

ψ − 1
‖vn − u∗‖2

=
ψ

ψ − 1
‖vn+1 − u∗‖2 +

ψ

(ψ − 1)2 ‖vn+1 − vn‖
2

−
1

ψ − 1
‖vn − u∗‖2 +

1
ψ − 1

‖vn − u∗‖2

=
ψ

ψ − 1
‖vn+1 − u∗‖2 +

1
ψ
‖un+1 − vn‖

2 .

(3.16)

We already know that

lim
n→∞
‖vn − un+1‖

2 = 0 and lim
n→∞

an exists, (3.17)

we can easily get limn→∞ ‖vn+1 − u∗‖2 exists. From this it can be concluded that limn→∞ ‖un+1 − u∗‖2

exists and {un} , {vn} are bounded. �
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Lemma 3.2. Suppose {un} and {vn} are generated by Algorithm 3.1. Then under Assumption 3.1,
limn→∞ ‖vn − un‖ = 0.

Proof. Noting
ϕn = ‖vn − un‖

2
− λn 〈vn − un, Avn − Aun〉

≥ ‖vn − un‖
2
− λn ‖vn − un‖ ‖Avn − Aun‖

≥

(
1 −

λnµ

λn+1

)
‖vn − un‖

2 .
(3.18)

Available from (3.4),
‖d (vn, un)‖ ≤ ‖vn − un‖ + λn ‖Avn − Aun‖

≤

(
1 +

λn

λn+1
µ

)
‖vn − un‖ .

(3.19)

Choosing a fixed number ρ in (µ, 1). Since limn→∞ λn = λ, we have limn→∞
λn
λn+1

µ = µ < ρ. Then
∃ n0 such that λn

λn+1
µ < ρ, ∀n ≥ n0. Therefore, ∀n ≥ n0, we have

‖d (vn, un)‖ < (1 + ρ) ‖vn − un‖ ,

and
ϕn > (1 − ρ) ‖vn − un‖

2 .

Thus,

βn =
ϕn

‖d (vn, un)‖2
>

(1 − ρ) ‖vn − un‖
2

(1 + ρ)2
‖vn − un‖

2 =
1 − ρ

(1 + ρ)2 , (3.20)

and so, ∀n ≥ n0, we can get

‖vn − un‖
2 <

1
1 − ρ

ϕn =
1

(1 − ρ) βnγ2 ‖vn − un+1‖
2 <

(1 + ρ)2

(1 − ρ)2 γ2
‖vn − un+1‖

2 . (3.21)

From (3.21), we get limn→∞ ‖vn − un‖ = 0. �

Lemma 3.3. Assume that {un} is generated by Algorithm 3.1, then ωw (un) ⊂ S .

Proof. Since {un} is bounded, ωw (un) , ∅. Arbitrarily choose q ∈ ωw (un), then there exists a
subsequence

{
unk

}
⊂ {un} such that unk ⇀ q. Then unk−1 ⇀ q, vnk−1 ⇀ q. From Lemma 2.1(ii)

and (3.2) we have
〈vn − λnAvn − un, un − u〉 ≥ 0, ∀u ∈ C,

thus,

〈Avn, u − un〉 ≥
1
λn
〈vn − un, u − un〉 , ∀u ∈ C. (3.22)

From (3.22) we can obtain

〈Avn, u − vn〉 ≥ 〈Avn, un − vn〉 +
1
λn
〈vn − un, u − un〉 , ∀u ∈ C.

So
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〈
Avnk−1, u − vnk−1

〉
≥

〈
Avnk−1, unk−1 − vnk−1

〉
+

1
λnk−1

〈
vnk−1 − unk−1, u − unk−1

〉
, ∀u ∈ C. (3.23)

Fixing u ∈ C and passing k → ∞ in (3.23), noting
∥∥∥vnk − unk

∥∥∥ → 0,
{
unk

}
and

{
Avnk

}
are bounded, we

obtain

lim
k→∞

〈
Avnk−1, u − vnk−1

〉
≥ 0. (3.24)

Choosing a decreasing sequence {εk} such that εk > 0 and limk→∞ εk = 0. For each εk,

AvNk , 0 and
〈
Avn j−1, u − vn j−1

〉
+ εk ≥ 0, ∀ j ≥ Nk, (3.25)

where Nk is smallest non-negative integer that satisfies (3.25). As {εk} is decreasing, {Nk} is increasing.
For simplicity, it is useful to write Nk as nNk . Setting

ϑNk−1 =
AvNk−1∥∥∥AvNk−1

∥∥∥2 ,

one gets
〈
AvNk−1, ϑNk−1

〉
=

〈
AvNk−1,

AvNk−1

‖AvNk−1‖
2

〉
= 1. Then, by (3.25) for each k,

〈
AvNk−1, u + εkϑNk−1 − vNk−1

〉
=

〈
AvNk−1, u − vNk−1

〉
+ εk

〈
AvNk−1, ϑNk−1

〉
≥0.

(3.26)

From Definition 2.1(b), we have〈
A

(
u + εkϑNk−1

)
, u + εkϑNk−1 − vNk−1

〉
≥ 0. (3.27)

Since vnk−1 ⇀ q as k → ∞ and Definition 2.1(d), we obtain that Avnk−1 ⇀ Aq. Suppose Aq , 0 (if
Aq = 0, q ∈ S ). Following that, employing the norm’s sequentially weakly lower semicontinuity, we
gain

0 < ‖Aq‖ ≤ lim
k→∞

∥∥∥Avnk−1

∥∥∥ .
Because {Nk} ⊂ {nk}, and limk→∞ εk = 0,

0 ≤ lim
k→∞

∥∥∥εkϑNk−1

∥∥∥ = lim
k→∞

εk
1∥∥∥AvNk−1

∥∥∥
 ≤ limk→∞ εk

limk→∞

∥∥∥AvNk−1

∥∥∥ ≤ 0
‖Aq‖

= 0,

and this means limk→∞

∥∥∥εkϑNk−1

∥∥∥ = 0. Inputting k → ∞ into (3.27), we get

〈Au, u − q〉 ≥ 0, ∀u ∈ C.

From Lemma 2.3, q ∈ S , then ωw (un) ⊂ S . �
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Theorem 3.1. Assume {un} is the sequence generated by Algorithm 3.1 under the conditions of
Assumption 3.1. There exists u? ∈ S such that un ⇀ u?.

Proof. From Lemmas 3.1 and 3.3, we get limn→∞ ‖un − u∗‖ exists and ωw (un) ⊂ S . From Lemma 2.4,
un ⇀ u? ∈ S . �

Theorem 3.2. Suppose {un} is generated by Algorithm 3.1 under the condition of A is η-strongly
pseudo-monotone with η > 0. Then {un} converges R-linearly to the unique solution u∗ of VI(A,C) (1.1).

Proof. Since un ∈ C, from Definition 2.1(a), we have

〈Aun, un − u∗〉 ≥ η ‖un − u∗‖2 .

Multiply λn on both sides of above inequality, we get

λn 〈Aun, un − u∗〉 ≥ λnη ‖un − u∗‖2 . (3.28)

(3.8) plus (3.28), we obtain

〈un − u∗, d (vn, un)〉 = 〈un − u∗, vn − un − λnAvn + λnAun〉

≥λnη ‖un − u∗‖2 ,
(3.29)

so
〈vn − u∗, d (vn, un)〉 ≥ ϕn + λnη ‖un − u∗‖2 . (3.30)

Putting (3.30) into (3.7), we obtain

‖un+1 − u∗‖2 ≤ ‖vn − u∗‖2 − γ (2 − γ) βnϕn − 2γβnλnη ‖un − u∗‖2 . (3.31)

Using (3.18) in (3.31), we have

‖un+1 − u∗‖2 ≤ ‖vn − u∗‖2 − γ (2 − γ) βn

(
1 −

λn

λn+1
µ

)
‖vn − un‖

2
− 2γβnλnη ‖un − u∗‖2 , (3.32)

where

− γ (2 − γ) βn

(
1 −

λn

λn+1
µ

)
‖vn − un‖

2
− 2γβnλnη ‖un − u∗‖2

≤ − γβn min
{

(2 − γ)
(
1 −

λn

λn+1
µ

)
, 2λnη

} (
‖vn − un‖

2
+ ‖un − u∗‖2

)
≤ − γβn min

{
1
2

(2 − γ)
(
1 −

λn

λn+1
µ

)
, λnη

}
‖vn − u∗‖2

< − γ
1 − ρ

(1 + ρ)2 min
{

1
2

(2 − γ) (1 − ρ) ,
1
2
λη

}
‖vn − u∗‖2 , ∀n ≥ n

′

0.

(3.33)

The last inequality is true because there exists n
′

0 such that βn > 1−ρ
(1+ρ)2 , λn > λ

2 and
(
1 − λn

λn+1
µ
)
>

1 − ρ, ∀n ≥ n
′

0. Putting (3.33) in (3.32), we get

‖un+1 − u∗‖2 <
(
1 − γ

1 − ρ
(1 + ρ)2 min

{
1
2

(2 − γ) (1 − ρ) ,
1
2
λη

})
‖vn − u∗‖2 . (3.34)
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Since βn >
1−ρ

(1+ρ)2 and
(
1 − λn

λn+1
µ
)
> 1 − ρ, we obtain

0 < 1 − γ
1 − ρ

(1 + ρ)2 min
{

1
2

(2 − γ) (1 − ρ) ,
1
2
λη

}
< 1.

Let δ2 = 1 − γ 1−ρ
(1+ρ)2 min

{
1
2 (2 − γ) (1 − ρ) , 1

2λη
}
, we have 0 < δ2 < 1 and

‖un+1 − u∗‖2 < δ2 ‖vn − u∗‖2 , ∀n ≥ n
′

0. (3.35)

Putting (3.14) into (3.35), after collation, we get

ψ

ψ − 1
‖vn+1 − u∗‖2 <

(
δ2 +

1
ψ − 1

)
‖vn − u∗‖2 , ∀n ≥ n

′

0. (3.36)

Since 0 < δ2 < 1, δ2 + 1
ψ−1 < 1 + 1

ψ−1 =
ψ

ψ−1 . And we can get 0 <
δ2+ 1

ψ−1
ψ
ψ−1

< 1. Therefore,

‖vn+1 − u∗‖2 < r2 ‖vn − u∗‖2 , ∀n ≥ n
′

0,

where r =

√
δ2+ 1

ψ−1
ψ
ψ−1

. By induction, we get

‖vn+1 − u∗‖2 < r2
(
n−n

′

0+1
) ∥∥∥∥vn′0

− u∗
∥∥∥∥2
, ∀n ≥ n

′

0.

By (3.35),

‖un+1 − u∗‖2 < δ2r2
(
n−n

′

0

) ∥∥∥∥vn′0
− u∗

∥∥∥∥2
, ∀n ≥ n

′

0.

And we have

‖un+1 − u∗‖
1
n < r

n−n
′

0
n

(
δ
∥∥∥∥vn′0
− u∗

∥∥∥∥) 1
n
, ∀n ≥ n

′

0.

So
lim
n→∞
‖un+1 − u∗‖

1
n ≤ r < 1.

Therefore, {un} converges R-linearly to the unique solution u∗ . �

4. Alternating extrapolation projection contraction algorithm based on the golden ratio

In this part, we offer an algorithm for settling the problem of variational inequalities based on the
golden ratio and provide the proofs of weak and R-linear convergence.

Algorithm 4.1. Alternating extrapolation projection contraction algorithm based on the golden ratio.

Step 0: Take the iterative parameters µ ∈ (0, 1), ψ ∈ (1,+∞), γ ∈ (0, 2) and ξ1, τ1, λ1 > 0. Let u1 ∈ H,
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v0 ∈ H be given starting points. Known sequences {ξn} , {τn}. Set n := 1.
Step 1: Compute

vn =

ψ−1
ψ

un + 1
ψ

vn−1, n = odd,

un, n = even.
(4.1)

Step 2: Compute

un = PC (vn − λnAvn) , (4.2)

where

λn+1 =

min
{
µ‖vn−un‖

‖Avn−Aun‖
, ξnλn + τn

}
, Avn , Aun,

ξnλn + τn, otherwise.
(4.3)

If vn = un, STOP. Otherwise, go to Step 3.
Step 3: Compute

d (vn, un) = (vn − un) − λn (Avn − Aun) , (4.4)

un+1 = vn − γβnd (vn, un) , (4.5)

ϕn = 〈vn − un, d (vn, un)〉

where

βn =

 ϕn

‖d(vn,un)‖2
, ‖d (vn, un)‖ , 0,

0, ‖d (vn, un)‖ = 0.
(4.6)

Step 4: Set n← n + 1, and go to Step 1.

Lemma 4.1. Assume {un} is the sequence generated by Algorithm 4.1 under the conditions of
Assumption 3.1. Then {u2n} is bounded and limn→∞ ‖u2n − u∗‖ exists, where u∗ ∈ S .

Proof. Following the proof line (3.7)–(3.13) of Lemma 3.1 and ‖v2n − u∗‖2 = ‖u2n − u∗‖2, we obtain

‖u2n+1 − u∗‖2 ≤ ‖u2n − u∗‖2 −
2 − γ
γ
‖v2n − u2n+1‖

2 . (4.7)

From (3.13) we have

‖u2n+2 − u∗‖2 ≤ ‖v2n+1 − u∗‖2 −
2 − γ
γ
‖v2n+1 − u2n+2‖

2 . (4.8)

By the definition of vn,

‖v2n+1 − u∗‖2 =
ψ − 1
ψ
‖u2n+1 − u∗‖2 +

1
ψ
‖v2n − u∗‖2 −

ψ − 1
ψ2 ‖v2n − u2n+1‖

2 . (4.9)
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Combing (4.9) and (4.8), we obtain

‖u2n+2 − u∗‖2 − ‖u2n − u∗‖2 ≤
ψ − 1
ψ

(
‖u2n+1 − u∗‖2 − ‖u2n − u∗‖2

)
−

2 − γ
γ
‖v2n+1 − u2n+2‖

2
−
ψ − 1
ψ2 ‖v2n − u2n+1‖

2 .

(4.10)

From (4.7) we have

‖u2n+1 − u∗‖2 − ‖u2n − u∗‖2 ≤ −
2 − γ
γ
‖v2n − u2n+1‖

2 . (4.11)

Combining (4.10) and (4.11), we get

‖u2n+2 − u∗‖2 − ‖u2n − u∗‖2

≤ −
ψ − 1
ψ
·

(
2 − γ
γ

+
1
ψ

)
‖v2n − u2n+1‖

2
−

2 − γ
γ
‖v2n+1 − u2n+2‖

2

≤0.

(4.12)

Therefore ‖u2n+2 − u∗‖ ≤ ‖u2n − u∗‖. This proves that {u2n} is bounded and limn→∞ ‖u2n − u∗‖ exists. �

Lemma 4.2. Under Assumption 3.1, suppose {u2n} and {u2n} are generated by Algorithm 4.1. Then
limn→∞ ‖u2n − u2n‖ = 0.

Proof. From (4.12) and u2n = v2n, we get that {‖u2n − u∗‖} is bounded and

lim
n→∞
‖u2n − u2n+1‖ = 0.

From (3.18) and (3.19), we have

ϕ2n ≥

(
1 −

λ2n

λ2n+1
µ

)
‖v2n − u2n‖

2 , (4.13)

and

‖d (v2n, u2n)‖ ≤
(
1 +

λ2n

λ2n+1
µ

)
‖v2n − u2n‖ . (4.14)

Combining (4.13) and (4.14), we can obtain

‖u2n+1 − v2n‖ = γβ2n ‖d (v2n, u2n)‖ = γ
ϕ2n

‖d (v2n, u2n)‖

≥ γ

1 − λ2nµ

λ2n+1

1 +
λ2nµ

λ2n+1

 ‖v2n − u2n‖

> γ
1 − ρ
1 + ρ

‖v2n − u2n‖ , ∀n ≥ n0.

(4.15)

Using u2n = v2n and limn→∞ ‖u2n − u2n+1‖ = 0 in (4.15), we get

lim
n→∞
‖u2n − u2n‖ = 0.

�
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Lemma 4.3. Assume that {u2n} is generated by Algorithm 4.1, then ωw (u2n) ⊂ S .

Proof. ∀p ∈ ωw (u2n), then exists a subsequence
{
u2nk

}
⊂ {u2n}, such that u2nk ⇀ p. By Lemma 2.1(ii)

and (4.2) we have 〈
u2nk − λ2nk Au2nk − u2nk , u2nk − u

〉
≥ 0, ∀u ∈ C,

thus, 〈
Au2nk , u − u2nk

〉
≥

1
λnk

〈
u2nk − u2nk , u − u2nk

〉
,∀u ∈ C,

and
1
λ2nk

〈
u2nk − u2nk , u − u2nk

〉
+

〈
Au2nk , u2nk − u2nk

〉
≤

〈
Au2nk , u − u2nk

〉
,∀u ∈ C. (4.16)

Similar to Lemma 3.3, the following proof steps are omitted as they are redundant. Thus, we come to
the conclusion,

〈Au, u − p〉 ≥ 0, ∀u ∈ C.

Using Lemma 2.3, we get p ∈ S . �

Theorem 4.1. Assume {un} is the sequence generated by Algorithm 4.1 under the conditions of
Assumption 3.1. There exists q ∈ S such that un ⇀ q.

Proof. {u2n} is bounded implies that {u2n} has weakly convergent subsequences. Then, we can choose
a subsequence of {u2n}, denoted by

{
u2nk

}
such that u2nk ⇀ q ∈ H. We obtain limn→∞ ‖u2n − q‖ exists

and q ∈ S from Lemma 4.1 and 4.3. The proof of the whole sequence u2n ⇀ q ∈ S which is the same
as Lemma 4.4 in [15]. Hence, un ⇀ q ∈ S . �

Theorem 4.2. Suppose {un} is generated by Algorithm 4.1 under the condition of A is η-strongly
pseudo-monotone with η > 0. Then {un} converges R-linearly to the unique solution u∗ of VI(A,C) (1.1).

Proof. From (3.35), ∀n ≥ n
′

0, we have

‖u2n+1 − u∗‖2 < δ2 ‖v2n − u∗‖2 = δ2 ‖u2n − u∗‖2 , (4.17)

and

‖u2n+2 − u∗‖2 < δ2 ‖v2n+1 − u∗‖2 , (4.18)

where δ2 = 1 − γ 1−ρ
(1+ρ)2 min

{
1
2 (2 − γ) (1 − ρ) , 1

2λη
}

and 0 < δ2 < 1. Combining (4.9) and (4.18),

‖u2n+2 − u∗‖2 < δ2
(
ψ − 1
ψ
‖u2n+1 − u∗‖2 +

1
ψ
‖u2n − u∗‖2 −

ψ − 1
ψ2 ‖v2n − u2n+1‖

2
)
. (4.19)

Putting (4.17) in (4.19), we have

‖u2n+2 − u∗‖2

< δ2
(
ψ − 1
ψ

δ2 ‖u2n − u∗‖2 +
1
ψ
‖u2n − u∗‖2 −

ψ − 1
ψ2 ‖v2n − u2n+1‖

2
)

≤ δ2
(
ψ − 1
ψ

δ2 +
1
ψ

)
‖u2n − u∗‖2

< δ2 ‖u2n − u∗‖2 , ∀n ≥ n
′

0.

(4.20)

So
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‖u2n+2 − u∗‖2 < δ2 ‖u2n − u∗‖2 , ∀n ≥ n
′

0. (4.21)

By induction, we have

‖u2n+2 − u∗‖2 < δ2
(
n−n

′

0+1
) ∥∥∥∥u2n′0

− u∗
∥∥∥∥2
, ∀n ≥ n

′

0.

Thus,

‖u2n+3 − u∗‖2 < δ2 ‖u2n+2 − u∗‖2

< ‖u2n+2 − u∗‖2

< δ2
(
n−n

′

0+1
) ∥∥∥∥u2n′0

− u∗
∥∥∥∥2
, ∀n ≥ n

′

0.

(4.22)

Therefore, {un} converges R-linearly to the unique solution u∗ . �

5. Numerical examples

The following sections provide some computational experiments and comparisons between our
algorithms considered in Sections 3 and 4 and other algorithms. All codes were written in MATLAB
R2016b and performed on a PC Desktop AMD Ryzen R7-5600U CPU @ 3.00 GHz, RAM 16.00 GB.

We make a comparison of our Algorithm 3.1, Algorithm 4.1, Algorithm 2 in [15] and Algorithm 1
in [27], Time in the table indicates CPU Time. In this section, we set maximum number of iterations
nmax = 6 × 105, ξn = 1 + 1

n2 and τn = 1
n2 .

Example 5.1. Define A : Rm → Rm by

Au = (M + β) (Nu + q) ,

where M = e−uT Qu, N is a positive semi-definite matrix, Q is a positive definite matrix, q ∈ Rm and β >
0. In addition to being easy to obtain, A is pseudo-monotone, differentiable and Lipschitz continuous.
Take C = {u ∈ Rm | Bu ≤ b}, where B is a k∗×m matrix and b ∈ Rk∗

+ with k∗ = 10. Select the initial point
u1 = (1, 1, . . . , 1)T for all algorithms. Initial points of Algorithm 3.1 and Algorithm 4.1, v0 is generated
randomly in Rm. We take ψ =

√
5+1
2 , µ = 0.6 in Algorithm 3.1 and Algorithm 4.1. We take θn =

2−γ
1.01γ

in Algorithm 2 in [15] and θ = 0.45 (1 − µ) in Algorithm 1 in [27]. Thus, we take different values for
λ1 and γ respectively to compare with the algorithms in the other two papers. In this example, we take
‖un − vn‖ < 10−3 as the stopping criterion.

In Table 1, we give a comparison of our Algorithms 3.1 and 4.1 with Algorithm 1 in [27] and
Algorithm 2 in [15] in different dimensions for γ = 1.5, λ1 = 0.05 and a comparison Figure 1 for
m = 100. It is illustrated that our two algorithms have some superiority.
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Table 1. Example 5.1 with γ = 1.5, λ1 = 0.05 and various values of m.

Problem size Alg 3.1 Alg 4.1 Alg 2 in [15] Alg 1 in [27]
k∗ m Iter Time Iter Time Iter Time Iter Time

10

100 1821 0.3262 1162 0.2071 1979 0.3926 7644 1.4647
150 1568 0.3271 1050 0.2163 4716 0.9535 29390 6.3288
200 1645 0.4181 1164 0.3074 6754 1.6716 —— ——
300 2034 0.7110 1192 0.4525 18566 6.0136 —— ——
500 2641 2.2280 1584 1.4692 55310 27.8013 —— ——

1000 3885 9.3913 2332 5.8732 —— —— —— ——

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-3

10-2

10-1

100

101

102

103

104

105

 Alg 3.1.

 Alg 4.1.

 Alg 2 in [15].

 Alg 1 in [27].

Figure 1. Relationship between error value and iteration times in Example 5.1 with k∗ =

10,m = 100.

In Tables 2 and 3, we give a comparison of Algorithm 3.1 and Algorithm 4.1 for the same number
of dimensions with different γ, respectively. We find that the larger γ is for both algorithms in the same
dimension, the fewer the iterations and the shorter the CPU Time, where γ ∈ (0, 2).

Table 2. Algorithm 3.1 with different γ.

γ
m = 200 m = 400 m = 800 m = 1000

Iter Time Iter Time Iter Time Iter Time
0.25 9996 2.4136 14529 1.5986 20320 27.2981 23441 42.2450
0.5 4746 1.1729 7244 3.3542 10136 14.8189 11069 21.5681
1 2438 0.6266 3402 1.7116 5049 8.4571 5736 12.3817
1.25 1939 0.6079 2866 1.4242 4126 7.2440 4515 10.2743
1.5 1546 0.4253 2315 1.1200 3386 6.0285 3878 9.1699
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Table 3. Algorithm 4.1 with different γ.

γ
m = 200 m = 400 m = 800 m = 1000

Iter Time Iter Time Iter Time Iter Time
0.25 7212 1.7554 10193 4.6670 14085 19.7867 17188 32.4055
0.5 3063 6.7968 4836 2.3662 7362 11.7332 8108 16.3521
1 1626 0.4460 2292 1.1557 3170 5.8066 3324 8.0294
1.25 1429 0.7354 1468 0.8067 2602 5.0285 3212 7.8888
1.5 964 0.2697 1300 0.7061 2104 4.1989 2586 6.4205

Example 5.2. [28] Define a mapping A by

Au =
(
MT M + N + P

)
u.

The matrices N and P are randomly generated skew-symmetric matrix and positive diagonal matrix,
respectively. Assume C := {u ∈ Rm | Mu ≤ p}, where matrix M ∈ Rk×m and vector p ∈ Rk are randomly
generated. Thus, all entries in p are non-negative. Here VI(A,C) (1.1) has a unique solution u∗ = 0.
Set ψ =

√
5+1
2 , µ = 1

√
2

in Algorithm 3.1, 4.1. We choose θn =
2−γ

1.01γ in Algorithm 2 in [15] and
θ = 0.45 (1 − µ) in Algorithm 1 in [27]. Additionally, we take different values for λ1 and γ , respectively,
to compare with the algorithms in the other two papers. We use the stopping criterion ‖un − yn‖ ≤ 10−3.

In Table 4, we give a comparison of our Algorithm 3.1 and Algorithm 4.1 with Algorithm 1 in [27]
and Algorithm 2 in [15] in different dimensions for γ = 1.5, λ1 = 0.05 and a comparison Figure 2 for
k = 30,m = 60.

In Figures 3 and 4 we compared the impact of Algorithm 3.1 and Algorithm 4.1 with varying ψ.

Table 4. Example 5.2 with γ = 1.5, λ1 = 0.05 and various values of k,m.

Problem size Alg 3.1 Alg 4.1 Alg 2 in [15] Alg 1 in [27]
k m Iter Time Iter Time Iter Time Iter Time

30
60 1146 0.2566 437 0.0990 2227 0.5476 7656 12.8395

100 1429 0.3478 510 0.1237 6731 2.2071 23695 277.4316
120 1680 0.4009 586 0.1407 7585 2.4785 27968 245.5148

50
50 1359 0.4956 501 0.1841 1166 0.5706 4987 15.0018

100 1434 0.5570 476 0.1862 5817 3.1011 22307 300.3848
150 1439 0.6184 420 0.1832 14681 8.5531 52346 1.8247e+03

100
100 1399 1.0800 498 0.3947 4115 4.7235 16011 514.9273
200 1445 1.3125 405 0.3740 19535 28.4272 —— ——

500
500 1561 0.7445 448 0.2162 25091 17.1813 —— ——

1000 887 8.8188 255 2.5293 —— —— —— ——

1000
1000 957 18.0159 270 5.0675 —— —— —— ——
2000 647 22.4660 206 7.0048 —— —— —— ——
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Figure 2. Relationship between error value and iteration times in Example 5.2 with γ =

1.5, λ1 = 0.05, k = 30,m = 60.
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Figure 3. Algorithm 3.1 with varying ψ.

0 100 200 300 400 500 600 700
10

-3

10
-2

10
-1

10
0

10
1

10
2

=1.2

=1.4

=1.618

=5

=50

Figure 4. Algorithm 4.1 with varying ψ.
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Remark 5.1. From Figures 1 and 2, we can see that the projection contraction algorithms based
on golden ratio have numerical advantages over inertial extrapolation. Alternating extrapolation
projection contraction algorithm is better than projection contraction algorithm based on golden ratio.
Thus, it can be seen from Figures 3 and 4 that our algorithms with larger ψ converges faster.

6. Conclusions

We present a projection contraction algorithm and an alternating extrapolation projection
contraction algorithm based on the golden ratio for solving pseudo-monotone variational inequalities
problem in real Hilbert spaces. We give proofs of weak convergence of the two algorithms when
the operator is pseudo-monotone. Thus, we obtain R-linear convergence when A is strongly pseudo-
monotone mapping. We have extended the range of the ψ from

(
1,
√

5+1
2

]
to (1,+∞), and the proofs of

both algorithms are given in the absence of Lipschitz constant. We give numerical examples and show
the superiority of our algorithms. Then, we discover that our algorithms suffer less impact under the
same unfavorable conditions and has a relatively stable rate of convergence.
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