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Abstract: To better describe the spread of a disease, we extend a discrete time stochastic SIR-type
epidemic model of Tuckwell and Williams. We assume the dependence on time of the number of daily
encounters and include a parameter to represent a possible quarantine of the infectious individuals. We
provide an analytic description of this Markovian model and investigate its dynamics. Both a diffusion
approximation and the basic reproduction number are derived. Through several simulations, we show
how the evolution of a disease is affected by the distribution of the number of daily encounters and its
dependence on time. Finally, we show how the appropriate choice of this parameter allows a suitable
application of our model to two real diseases.
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1. Introduction

The interest of mathematical models to describe the spread of a disease has a long history. It dates
back to the eighteenth-century study of Bernoulli on smallpox inoculation [1]. Both deterministic and
stochastic models have been considered and many factors have been taken into account: infectious
agents, mode of transmission, latent periods, temporary or partial immunity, quarantine periods, etc.
(see, for example, [2–7]). The main advantage of the deterministic approach lies in its more
manageable (even if not necessarily simple) analysis. However, the most natural way to describe the
spread of a disease is stochastic. This is due to several facts. On one hand, some phenomena are
genuinely stochastic or present random features. On the other hand, the infective agent is introduced
into the population only through a few hosts. Deterministic models cannot capture this component,
given that they apply only when a small fraction (not a small number) of the large population is

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231181


23219

infected. To solve this contrast, demographic stochasticity needs to be taken into account (see [4] for
an exhaustive explanation).

An important role in mathematical epidemiology is played by the class of models that divide the
population into different categories and study the transitions of state between them. One of the most
classical are the SIR models, where the letters stand for Susceptible, Infectious and Removed,
respectively. The first SIR stochastic model was proposed by McKendrick [8] as a continuous-time
version of the deterministic model of Kermack and McKendrick [9], although more attention was
given to the chain-binomial model of Reed and Frost (later published by Abbey [10]). From that
moment on, many other texts and models have been developed.

Stochastic models can be divided into three major categories: discrete time models, continuous
time Markov chain models and diffusion models (see [11]). The literature that deals with these three
categories is extensive. To name a few, Tuckwell and Williams [12] consider a simple discrete time
Markovian model in which the total population is constant and individuals meet a random number
of other individuals at each time step. Ferrante et al. [13] generalize this model by adding two new
classes. They assume that the number of encounters at each time step is constant for all individuals
and time. Their results are more suitable for diseases with an initial latency period and the presence of
asymptomatic individuals. On the other hand, Gray et al. [14] directly propose a system of equations
to model the dynamics of the population. Discrete time models are mathematically less complex than
those employed in the other two categories. However, they grant a simplified vision of the evolution
of a disease which highlights its main characteristics. They also provide a good guide for constructing
more complex models. Besides, they do not generally present specific constraints or assumptions that
could be in contrast with empirical evidence as do, for example, continuous time Markov chain models.

In the present paper, we consider the SIR-type model proposed by Tuckwell and Williams [12].
We expand their results by weakening the homogeneity in time, that is, assuming the dependence on
time in some parameters and by including factors that have not been taken into account. We deal with
a discrete time, discrete state space stochastic model built on a generation basis. Time unit is of
one-day length. The population is assumed to be closed, homogeneous and homogeneously mixing
and it is divided into the three classes defined above. We assume that every day any susceptible
individual meets a certain number of different individuals. If one of them is infective, the disease is
transmitted with a given probability. While in [12] the number of daily encounters is
time-homogeneous, in our case it can change at any time. Moreover, for the main computations and
almost all simulations they fix this quantity for simplicity while we maintain it random all over the
paper. With simulations and applications to real diseases, we will show that this randomness and
dependence on time play an important role and can generate different scenarios. After being infected,
an individual remains infectious for a fixed number of consecutive epochs. After this period, he or she
recovers and becomes immune. We also add a parameter to the model to consider the case of a
possible quarantine for infectious individuals.

We describe this type of model analytically using the methodologies of [12] and [13]. We derive
an explicit structure for the underlying discrete time Markov chain and deduce the probability that a
susceptible will become infected at the following epoch. This is the content of Section 2. Section 3 is
dedicated to describing the dynamics of the model. Two possible situations are taken into account:
when the duration of the disease is constant and when infectious individuals remain infectious
throughout their lives. For both cases, we describe the distribution of new infected and derive a
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diffusion approximation and the basic reproduction number R0. This is the expected number of
secondary cases produced by an infectious individual during its infectious period in a virgin
population. This value is used to measure the potential for transmission of a disease. Section 4
contains some simulations of the SIR-type model we have described. After fixing some parameters,
we compare the evolution of the disease for different distributions of the number of daily contacts. We
see how the different behaviors and the dependence on time of this parameter affect the course of the
disease. Section 5 is devoted to the application of our model to real diseases. We consider the cases of
influenza and meningococcal infection. The appropriate choice of the distribution of the number of
daily encounters, both random and time-dependent, ensures that our model adjusts remarkably well to
real data.

Throughout the paper, we use the term infective to refer to an individual who has contracted the
disease and is infectious (he or she belongs to class I) while we connote with infected an individual
who is either infectious or removed, i.e., no longer susceptible (he or she belongs to class I or R).

2. Description of the model

This section is dedicated to describing the basic properties of the SIR model we consider. It is an
extension of the one proposed by Tuckwell and Williams [12]. The main difference regards the number
of daily contacts. While Tuckwell and Williams assume that this quantity is time-homogeneous, in our
case it can change at any time step allowing us to differentiate the number of contacts, for example,
between weekdays and weekends, between different seasons, etc. Moreover, they assume it is a random
variable but they fix it to be a constant in the main computations. On the contrary, we maintain the
random character of this parameter throughout the paper. We also add a parameter to the model to
consider the case that the infective individuals adopt some kind of quarantine. This can range from
a perfect quarantine (there are no contacts) to no quarantine at all (the infective individuals have the
same contacts as a susceptible one).

We assume:

(1) Total population size: It is fixed at n. The population is closed.

(2) Time: Time is discrete. In epidemics, the natural unit for the duration of an epoch is one day,
although in some applications the time step is bigger (see, for example, [15]).

(3) Definition of a sick individual: Given any individual i, with i = 1, . . . , n, we define a stochastic
process Y i = {Y i(t), t = 0, 1, 2, . . . } such that

Y i(t) =
{

1 if the individual i is infective (and infectious) at time t
0 otherwise.

Then, the total number of infective and hence infectious individuals at time t is

Y(t) =
n∑

i=1

Y i(t).

(4) Daily encounters: Over (t, t + 1] each individual i meets a random number N i(t) of other
individuals. For all i and t, the variables N i(t) are mutually independent and independent of the
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state of the population. Furthermore, for all i and t, N i(t) can take only a finite number of values
nk, each with probability pk(t). The values are fixed, that is, they depend neither on individuals
nor on time while their probability varies with respect to time but not to individuals. This is, for
k = 1, . . . ,m,

P(N i(t) = nk) = pk(t) ∀i, t

with
∑m

k=1 pk(t) = 1 for all t. Observe that the set of all possible values of N i(t) that we define
M = {n1, . . . , nm} is an ordered subset of N≥0. As we consider models where, for a fixed t, the
distribution of the number of daily encounters is the same for all individuals, throughout the paper
we will use the simplified notation N(t) instead of N i(t) when appropriate.

(5) Duration of the disease: Any individual remains infectious for r consecutive epochs where r is a
positive integer. After this period, the individual recovers and becomes immune. The case without
recovery, that is when r = ∞, is also considered.

(6) Contagion probability: If an individual who has never been diseased up to and including time t
meets an individual in (t, t+1] who is diseased at time t, then independently of the results of other
encounters, this encounter results in transmission of the disease with probability p. Thus, if this
individual becomes infected, it will be counted as such at epoch t + 1.

(7) Encounter probability: The population is homogeneously distributed. This means that, given
Y(t) = y, the probability that a randomly chosen individual is infectious at time t is given by y/n.
We will multiply this probability by a constant λ ∈ [0, 1] to characterize a possible quarantine of
the infectious individuals. If λ = 0 the infectious individuals do a rigorous quarantine and for
values of λ close to 1 they will do a mild or non-existent quarantine.

As mentioned before, the variables N i(t) are independent for all i and t. Assuming that for a fixed
t they are also identically distributed, the model can be seen as an (r + 1)-dimensional Markov chain.
Observe that only if N i(t) are identically distributed with respect to time, this model is a homogeneous
Markov chain.

Let

• Yℓ(t) be the number of individuals who are infective at time t and have been infective for exactly
ℓ time units, with ℓ = 0, 1, . . . , r − 1;
• X(t) be the number of susceptible individuals at time t;
• Z(t) be the number of individuals who were previously infective and are recovered at time t.

We assume that all of the individuals who are infective at t = 0 have just become infected so that
Y(0) = Y0(0) and Yℓ(0) = 0 for ℓ = 1, . . . , r − 1. Furthermore, there are no recovered individuals at
t = 0, so that Z(0) = 0 and the population is made up only of susceptible and just infected individuals.
So, Y0(0) + X(0) = n.

Regardless of the initial conditions, the process

M(t) = (X(t),Y0(t),Y1(t), . . . ,Yr−1(t)) t = 0, 1, 2, . . .

is a Markov chain with state space

S (n, r) =

(x, y0, . . . , yr−1) ∈ Nr+1 s.t x +
r−1∑
ℓ=0

yℓ ≤ n

 .
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The cardinality of S (n, r) is
(

n+r+1
n

)
. Observe that the values of Z(t) are determined if all the components

of M(t) are known.
The total number of infectives at time t is given by

Y(t) =
r−1∑
ℓ=0

Yℓ(t),

so the set (X(t),Y(t),Z(t)) gives the traditional SIR description.
In addition to the process Y i = {Y i(t), t = 0, 1, 2, . . . }, we can define in a similar manner the process

Xi = {Xi(t), t = 0, 1, 2, . . . }, for i = 1, . . . , n, which indicates whether individual i is susceptible or not
and the variable Zi(t) = 1 − Xi(t) − Y i(t) which indicates if the individual i has recovered from the
disease and is no longer infectious. For all t, we get

X(t) =
n∑

i=1

Xi(t), Y(t) =
n∑

i=1

Y i(t) and Z(t) =
n∑

i=1

Zi(t).

Furthermore, for i = 1, . . . , n, we can consider the processes Y i
ℓ = {Y

i
ℓ(t)}t≥0 for ℓ = 0, . . . , r − 1

where

Y i
ℓ(t) =

{
1 if the individual i at time t is infective for ℓ days
0 otherwise.

Hence,

Y i(t) =
r−1∑
ℓ=0

Y i
ℓ(t) and Yℓ(t) =

n∑
i=1

Y i
ℓ(t).

Then, we can consider another non-homogeneous Markov chain

M̃(t) =
(
Xi(t),Y i

0(t),Y i
1(t), . . . ,Y i

r−1(t), i = 1, . . . , n
)

t = 0, 1, 2, . . .

with state space

S̃ (n, r) =
{
(x1, y1

0, . . . , y
1
r−1, . . . , x

n, yn
0, . . . , y

n
r−1) ∈ {0, 1}n(r+1) s.t

αi = xi +

r−1∑
ℓ=0

yi
ℓ ≤ 1 for i = 1, . . . , n and

n∑
i=1

αi ≤ n
}
.

The cardinality of S̃ (n, r) is equal to (r + 2)n. Even if the cardinality is bigger than the one of S (n, r),
this Markovian model is more simple for computation purposes.

2.1. Transition probabilities

For a fixed individual i, consider the process

M̃i(t) =
(
Xi(t),Y i

0(t),Y i
1(t), . . . ,Y i

r−1(t)
)

t = 0, 1, 2, . . .

If one of the variables Y i
0(t),Y i

1(t), . . . ,Y i
r−1(t) is equal to 1 then the process at times bigger than t is

certain since the transition in this case is sure. The only interesting case is when the individual is
susceptible at time t, that is, Xi(t) = 1.
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Now we are interested in calculating the probability that an individual i susceptible at t becomes
infected for the first time at t + 1. This probability depends on the total number Y(t) = y of diseased
individuals together with the probability p of transmission per contact and the parameter λ ∈ [0, 1]
which characterizes a possible quarantine. It is calculated taking into account all possible values of
N i(t) and its probabilities. Recall that the variables N i(t) are identically distributed for all individuals
but not with respect to time, so we will use the notion N(t) instead. Assuming n is much greater than
N(t), so that the binomial approximation may be used, the probability of meeting exactly j infectives
if N(t) = nk individuals are met is

pi
j(y, nk; n) ≈

(
nk

j

) (
λy

n − 1

) j (
1 −

λy
n − 1

)nk− j

, (2.1)

when y < n − 1, while pi
nk

(y, nk; n) = 1 and pi
j(y, nk; n) = 0 for j = 0, . . . , nk − 1 when y = n − 1. The

probability p j of becoming infected if j infectives are met is

p j = 1 − (1 − p) j. (2.2)

Then, using (2.1) as an equality the probability that an individual i susceptible at t becomes infected
for the first time at t + 1 is

p(t, y) = P(Y i
0(t + 1) = 1|Xi(t) = 1,Y(t) = y)

=

m∑
k=1

P(Y i
0(t + 1) = 1|Xi(t) = 1,Y(t) = y,N(t) = nk) P(N(t) = nk)

=

m∑
k=1

nk∑
j=0

pi
j(y, nk; n) p j pk(t)

=

m∑
k=1

nk∑
j=0

(
nk

j

) (
λy

n − 1

) j (
1 −

λy
n − 1

)nk− j

[1 − (1 − p) j] pk(t)

=

m∑
k=1

pk(t)
nk∑
j=0

(
nk

j

) (
λy

n − 1

) j (
1 −

λy
n − 1

)nk− j

+

m∑
k=1

pk(t)
nk∑
j=0

(
nk

j

) (
(1 − p)λy

n − 1

) j (
1 −

λy
n − 1

)nk− j

= 1 −
m∑

k=1

(
1 −

pλy
n − 1

)nk

pk(t). (2.3)

when y < n − 1, while p(t, n − 1) = 1 −
∑m

k=1(1 − p)nk pk(t).
Note that, as commonly used, this model contains a simplification regarding the encounters between

individuals: the meeting relationship is not symmetric because if the group randomly chosen to meet
individual i contains individual j, the group chosen to meet individual j does not necessarily contain
individual i.

3. Calculus on the model

After presenting our model, we are interested in describing its dynamics. We study the distribution
of new infective individuals and the basic reproduction number. Then, we prove that our model can
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approximate a diffusion process. We consider two cases. The first is a general one where any individual
remains infectious for r < ∞ consecutive epochs. Here r is a fixed positive constant. We refer to this
model as the one with recovery. The second is the particular case without recovery that is when r = ∞.

3.1. The model with recovery (r < ∞)

Recall that the processes X(t), Y(t) and Z(t) represent the number of susceptible, infective and
(previously infected and) recovered individuals at time t, respectively. As their sum is fixed and
corresponds to the size of the population, to study the number of new infective individuals it is
sufficient to know just two of these quantities. We define V(t) as the number of non susceptible
individuals at time t, that is V(t) = Y(t) + Z(t). It is useful to observe that the processes Y(t) and Z(t)
can be expressed in terms of V(t):

Y(t) = V(t) − V(t − r) and Z(t) = V(t − r).

The number of new infectives at time t+1 is given by V(t+1)−V(t). So, the total number of infectives
at time t + 1 is given by the number of new infectives and the number of infectives at t who have not
yet recovered at t + 1.

Then, following the previous computations we have

P(V(t + 1) = w + y + z|Y(t) = y,Z(t) = z)

= P(V(t + 1) = w + y + z|V(t) − V(t − r) = y,V(t − r) = z)

=

(
n − y − z

w

)
p(t, y)w(1 − p(t, y))n−y−z−w.

Therefore, the distribution of the increment in the number of infectives follows a binomial law:

V(t + 1) − V(t)|Y(t) = y,Z(t) = z ∼ Binom(n − y − z, p(t, y)).

When y < n − 1, its mean and variance are

E[V(t + 1) − V(t)|Y(t) = y,Z(t) = z] = (n − y − z)

1 − m∑
k=1

(
1 −

pλy
n − 1

)nk

pk(t)


and

Var[V(t + 1) − V(t)|Y(t) = y,Z(t) = z]

= (n − y − z)

1 − m∑
k=1

(
1 −

pλy
n − 1

)nk

pk(t)

  m∑
k=1

(
1 −

pλy
n − 1

)nk

pk(t)

 .
In the extreme case when y = n − 1, z can take only two possible values. If z = 1, it means that there
are no more susceptible individuals in the population and the number of new infectives is constantly
zero. If z = 0, all individuals are infective except one. Then, the distribution of the increment in the
number of infectives corresponds to the infection of the unique susceptible and follows a Bernoulli law
with parameter p(t, n − 1). Its means and variance are easily deduced.
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3.1.1. The basic reproduction number R0

The basic reproduction number R0 is the expected number of secondary cases produced by an
infective individual during its period of infectiousness in a population where all individuals are
susceptible to infection. R0 excludes new cases produced by the secondary cases.

From a theoretical point of view, it plays a vital role in the analysis of infectious disease models.
Given a population in a stable demographic state with no history of a given infection, it provides insight
as to whether the introduction of the infectious agent will cause an outbreak. In this sense, the basic
reproduction number is used to measure the transmission potential of a disease as an epidemic occurs
in a susceptible population only if R0 > 1 (see [4] for additional details).

Our idea consists of estimating the basic reproduction number by observing the role of the infective
individual and determining how many people he or she infects at any time step. A different approach
has been used, for example, in [13] where the estimation is based on the probability of a susceptible
individual being infected by the tagged one. In other cases, it can be estimated computing other related
metrics such as the effective reproductive number (see, for example, [16]). We first consider the case
without quarantine and then deduce the basic reproduction number when a quarantine for infectious
individuals has been established.

In accordance with the definition of the basic reproduction number, we assume that at time t = 0
the number of susceptible individuals is X(0) = n− 1 and that the number of infected ones is Y(0) = 1.
Clearly, Z(0) = 0.

Suppose first that there is no quarantine, that is λ = 1. We denote by I(t) the number of individuals
infected by our tagged individual during only the t-th period and by S (t) the number of susceptible
individuals met by one person at time t. We assume that a susceptible individual, met and infected by
another (for example, the tagged one) at time t, is considered infective since time t+1. Since our tagged
individual remains infectious for r consecutive days (from t = 0 to t = r − 1), the basic reproduction
number is given by

R0 =

r∑
t=1

E[I(t)].

For all t, I(t) depends on the number S (t − 1) of susceptible individuals met by the tagged one at time
t − 1 and the probability of transmission p.

Since at time t = 0 all individuals except the tagged one are susceptible, S (0) = N(0) and the
distribution of I(1) is quite simple to determine:

I(1)|N(0) = nk ∼ Binom(nk, p).

Consequently,
E[I(1)] = E [E[I(1)|N(0)]] = pE[N(0)].

For all t ∈ {1, . . . , r − 1}, the variable S (t) may not coincide with N(t) and the distribution of I(t+ 1)
is given by

I(t + 1)|S (t) = l ∼ Binom(l, p). (3.1)

Moreover, for all t ∈ {1, . . . , r − 1} S (t) depends on the number of individuals met by a single person
and on the number of infective in the total population. Observe that during this period the number of
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removed individuals is always zero since our tagged one will be the first removed individual at time
t = r. S (t) follows a hypergeometric distribution:

S (t)|N(t) = nk,Y(t) = y ∼ HGeom(n − 1, n − y, nk).

Observe that we have the following parameters: n − 1 is the size of the population without counting
the tagged individual; n − y represents the number of susceptible individuals in the population; and nk

is the number of daily contacts for one individual. As n is supposed to be much greater than N(t), we
use the binomial approximation

S (t)|N(t) = nk,Y(t) = y ≈ Binom(nk, p(y)), (3.2)

where
p(y) = 1 −

y − 1
n − 1

(3.3)

is the proportion of susceptible individuals in the population (without counting the tagged individual).
Observe that the total number of infectives at a time step is given by the total number of infectives

of the previous generation and the new infectives they have produced. That leads to:

E[Y(t)] = E [E[Y(t)|Y(t − 1), S (t − 1)]]
= E[Y(t − 1) + pS (t − 1)Y(t − 1)]
= E[(1 + pS (t − 1))Y(t − 1)].

With inductive arguments, we obtain

E[Y(t)] = E

 t−1∏
s=0

(1 + pS (s))

 . (3.4)

We can find another expression for the last term that is more manageable for our purpose. Before
giving it explicitly, we present a basic example to better understand the underlying idea. With the
notation employed in previous sections, using that, for t ∈ {1, . . . , r − 1}, Y(t) =

∑r−1
ℓ=0 Yℓ(t) =

∑t
ℓ=0 Yℓ(t)

since Yℓ(t) = 0 for ℓ > t and also that Yt(t) = 1 refers to the tagged individual, for t = 3 we have

E[Y(3)] = E [Y3(3) + Y2(3) + Y1(3) + Y0(3)]
= E

[
1 + pS (0) + pS (1)(1 + pS (0)) + pS (2) (1 + pS (0) + pS (1)(1 + pS (0)))

]
= E

[
1 + pS (0) + pS (1) + pS (2) + p2S (0)S (1) + p2S (0)S (2) + p2S (1)S (2)

+p3S (0)S (1)S (2)
]

that can be shortly expressed as

E[Y(t)] = E


∑

js∈{0,1}
s=0,1,2

p j0+ j1+ j2
2∏

s=0

S (s) js

 .
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Induction on the general case leads to the following expression equivalent to (3.4):

E[Y(t)] = E


∑

js∈{0,1}
s=0,...,t−1

p j0+···+ jt−1

t−1∏
s=0

S (s) js

 . (3.5)

If we define ψ(t) =
∏t

s=0 (1 + pS (s)), the induction is based on the decomposition

ψ(t) = ψ(t − 1) (1 + pS (t))

and the fact that the last term can be written as

(1 + pS (t)) =
∑

jt∈{0,1}

p jtS (s) jt .

Equations (3.3) and (3.5) lead to

E[p(Y(t))] = 1 + O
(

1
n − 1

)
. (3.6)

Then, from (3.1), (3.2) and (3.6) for all t ∈ {1, . . . , r − 1} we have

E[I(t + 1)] = E [E[I(t + 1)|S (t)]] = pE[S (t)]
= pE [E[S (t)|N(t),Y(t)]]
= pE[N(t) · p(Y(t))]

= pE[N(t)] + O
(

1
n − 1

)
.

In the last step, we use the assumption that the number of daily contacts does not depend on the state
of the population which implies that N(t) is independent of Y(t).

Finally, we get

R0 =

r∑
t=1

E[I(t)] = p
r−1∑
t=0

E[N(t)] + O
(

1
n − 1

)
.

If we assume that there is a quarantine, recall that the probability that a randomly chosen individual
is infectious is multiplied by a parameter λ ∈ [0, 1]. Thinking about the role of this parameter, we see
that it also affects the contagiousness of an infective individual which is also multiplied by the same
factor. This means that the basic reproduction number is given by

R0 = λ

r∑
t=1

E[I(t)].

The same calculations used for the case without quarantine lead to the following expression for R0:

R0 = λp
r−1∑
t=0

E[N(t)] + O
(

1
n − 1

)
. (3.7)
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As the number of susceptibles met by the tagged individual is always less or equal to the number of
his or her encounters, we can deduce an upper bound for the expected value of R0:

R0 ≤ λp
r−1∑
t=0

E[N(t)].

From (3.7) it follows that, since R0 ≈ 1 for λp
∑r−1

t=0 E[N(t)] = 1, this is a threshold for the epidemic.
This means that it grows for larger values and dies soon for smaller ones.

Finally, note that R0 is closely related to the number of daily encounters that occur during the first
r days of the spread of the disease. Since this parameter depends on time, its value could change
significantly if the disease arises in a different period as will be shown in Section 4.1.1.

3.1.2. A diffusion approximation

Following the ideas of Tuckwell and Williams [12], the study of the mean and variance of the one-
step increments of V indicates that for a large population size n and a small probability transition p
such that npE[N([nt])] is of moderate size for all t, we can approximate a rescaled version of V by a
diffusion process.

More accurately, if we speed up time and rescale state we can define a process

V̂n(t) =
V([nt])

n
for all t ≥ 0,

where [·] denotes the greatest integer part. V̂n(t) can be interpreted as the fraction of the population
that has been infected by the time [nt] in the original time scale of V . Then, for n large and p small
such that θ(t) = npE[N([nt])] is of moderate size for all t, we see that with ∆t = 1

n and t = 0, 1
n ,

2
n , . . .

E
[
V̂n(t + ∆t) − V̂n(t)

∣∣∣∣V̂n(t) − V̂n
(
t −

r
n

)
= ŷ, V̂n

(
t −

r
n

)
= ẑ

]
=

1
n
E

[
V([nt] + 1) − V([nt])

∣∣∣∣V([nt]) − V([nt] − r) = nŷ,V([nt] − r) = nẑ
]

=
1
n

(n − nŷ − nẑ)

1 − m∑
k=1

(
1 −

λnpŷ
n − 1

)nk

pk([nt])


≈ (1 − ŷ − ẑ)

λnpŷ
n − 1

E[N([nt])]

≈ λθ(t)ŷ(1 − ŷ − ẑ)∆t

and

Var
[
V̂n(t + ∆t) − V̂n(t)

∣∣∣∣V̂n(t) − V̂n
(
t −

r
n

)
= ŷ, V̂n

(
t −

r
n

)
= ẑ

]
=

1
n2 Var

[
V([nt] + 1) − V([nt])

∣∣∣∣V([nt]) − V([nt] − r) = nŷ,V([nt] − r) = nẑ
]

=
1
n2 (n − nŷ − nẑ)

1 − m∑
k=1

(
1 −

λnpŷ
n − 1

)nk

pk([nt])

  m∑
k=1

(
1 −

λnpŷ
n − 1

)nk

pk([nt])
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≈
1
n

(1 − ŷ − ẑ)
[
λnpŷ
n − 1

E[N([nt])]
] [

1 −
λnpŷ
n − 1

E[N([nt])]
]

≈
1
n

(1 − ŷ − ẑ)
λnpŷ
n − 1

E[N([nt])]

≈
θ(t)λ

n
ŷ(1 − ŷ − ẑ)∆t.

In both calculation we use the approximation 1 − (1 − x)a ≈ ax for small x. In the calculation of the
variance we also use the approximation x(1 − x) ≈ x for small x.

Moreover, we recall that E[N([nt])] depends on the values n1, n2, . . . , nm and its probabilities
pk(t), k = 1, . . . ,m. In fact, the time dependence on E[N([nt])] rely on pk(t) ∈ [0, 1], k = 1, . . . ,m. So,
we can assume for all n and t that E[N([nt])] is of order of a constant N, so

θ(t) = npE[N([nt])] ≈ npN := θ.

With the previous results and approximation methods for continuous time Markov chains using
diffusion processes (similar results to [13] and [12]), we can approximate V̂n by a diffusion process V̂
in [0, 1] that satisfies the stochastic delay differential equation (SDDE)

dV̂(t) = λθ
(
V̂(t) − V̂(t − τ)

)
(1 − V̂(t))dt +

[
λθ

n

(
V̂(t) − V̂(t − τ)

)
(1 − V̂(t))

] 1
2

dW(t), (3.8)

where τ = r
n and W = {W(t), t ≥ 0} is a standard Brownian motion. This equation has a unique solution

for a given initial condition V̂0 which is a non-decreasing continuous function V̂0 : [−τ, 0] → [0, 1]
(see [17] for more references in SDDE).

Moreover, if we can assume that the variability is small then the noise term in (3.8) has little effect.
So, it seems natural to conjecture that the mean of V̂(t) can be approximated by m̂(t) where m̂ satisfies
the deterministic equation

dm̂(t) = λθ
(
m̂(t) − m̂(t − τ)

) (
1 − m̂(t)

)
dt.

We can interpret the solution of the equation m̂(t) as the proportion of the number of infective and
recovered individuals. The general solution of this equation cannot be obtained using the classic
methods of delay equations. However, it is easy to check that all constants c ∈ [0, 1] are solutions.
Also, this equation presents two fixed points. One is m̂(t) = 1, when the whole population is already
infective or recovered. The other is m̂(t) = m̂(t − τ), meaning that we do not have new infected in an
interval of length τ. Returning to the initial process without rescaling, it infers that for a period of
length r the number of infective and recovered remains constant. That implies there will be no more
infective individuals and the distribution of the population in the three classes will be invariant.

3.2. The model without recovery (r = ∞)

Consider now the case in which the infectious individuals remain infectious throughout the course
of the epidemic. Such a situation can arise when a disease causing agent has a long life, as with
tuberculosis in deer [18], or when life-prolonging drug therapies have been found, as with HIV in
humans [19]. As recovered individuals are not presented in this case, the model reduces to one of SI
type rather than SIR.
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Here, only two classes of individuals are present: the susceptibles and the infectives. Their amount
at time t is given by the variables X(t) and Y(t), respectively.

The distribution of new infective individuals only depends on the number of infectives of the
previous generation. Assuming that at time t there are Y(t) = y infectives implies that there are n − y
susceptibles since the population size is n and there are no recovered individuals. Recall that the
distribution of daily encounters at time t, given by the variables N(t), is the same for all individuals.
Moreover, N(t) are independent for all i and t. In this case, λ parameter will be fixed λ = 1 (no
quarantine).

To study the distribution of new infectives, we follow the same ideas of the case with recovery
with the difference that here it is not necessary to define a new variable that represents the number of
non-susceptible individuals, as this is given by Y(t). Given Y(t) = y, the number of new infectives
at t + 1 follows a binomial distribution whose parameters are the number of susceptibles at t and the
probability that an individual susceptible at t becomes infected for the first time at t + 1. This is

Y(t + 1) − Y(t)|Y(t) = y ∼ Binom(n − y, p(t, y)),

where

p(t, y) = 1 −
m∑

k=1

(
1 −

py
n − 1

)nk

pk(t)

is given by (2.3). This implies that the distribution of the increment in the number of infectives is given
by

P(Y(t + 1) = y + w|Y(t) = y)

=

(
n − y

w

) 1 − m∑
k=1

(
1 −

py
n − 1

)nk

pk(t)

w  m∑
k=1

(
1 −

py
n − 1

)nk

pk(t)

n−y−w

(3.9)

for w = 0, . . . , n − y. Its mean is

E[Y(t + 1) − Y(t)|Y(t) = y] = (n − y)

1 − m∑
k=1

(
1 −

py
n − 1

)nk

pk(t)


and its variance is

Var[Y(t + 1) − Y(t)|Y(t) = y]

= (n − y)

1 − m∑
k=1

(
1 −

py
n − 1

)nk

pk(t)

  m∑
k=1

(
1 −

py
n − 1

)nk

pk(t)

 .
3.2.1. The basic reproduction number R0

In this section we calculate the value of the basic reproduction number in the case without recovery
which we denote by R(∞)

0 . The computation for the case with recovery can be adapted to this model.
Here, our tagged individual is infectious all his or her life but we can suppose that he or she lives

only for a certain amount T of days after being infected. Thus, the calculation of the basic reproduction
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number is the same as that of the case with recovery, changing the number of terms from r to T :

R(∞)
0 =

T∑
t=1

E[I(t)] = p
T−1∑
t=0

E[N(t)] + O
(

1
n − 1

)
.

Recall that I(t) denotes the number of individuals infected by our tagged individual during only the t-th
period and observe that in this case no quarantine is established for infective individuals.

The considerations about an upper bound for R(∞)
0 and a threshold for the epidemic can be done also

in the case without recovery. On one hand, as the number of susceptibles met by the tagged one is
always less or equal to the number of his or her encounters, an upper bound for R(∞)

0 is:

R(∞)
0 ≤ p

T−1∑
t=1

E[N(t)].

On the other hand, since R(∞)
0 ≈ 1 for p

∑T−1
t=1 E[N(t)] = 1, this is a threshold for the epidemic.

3.2.2. A diffusion approximation

Following the ideas of the case with recovery, the study of the mean and variance of the one-step
increments of Y indicates that for a large population size n and a small probability transition p such
that npE[N([nt])] is of moderate size for all t fixed, we can approximate a rescaled version of Y by a
diffusion process.

More accurately, if we speed up time and rescale state we can define a process

Ŷn(t) =
Y([nt])

n
for all t ≥ 0

where [·] denotes the greatest integer part. Then, we can interpret Ŷn(t) as the fraction of the population
that has been infected by the time [nt] in the original time scale of Y . Then, for n large and p small
such that θ(t) = npE[N([nt])] is of moderate size for all t we see that with ∆t = 1

n and t = 0, 1
n ,

2
n , . . .

E[Ŷn(t + ∆t) − Ŷn(t)|Ŷn(t) = ŷ] =
1
n

(n − nŷ)

1 − m∑
k=1

(
1 −

npŷ
n − 1

)nk

pk(t)


≈

1
n

(n − nŷ)
npŷ

n − 1
E[N([nt])]

≈ pŷ(1 − ŷ)E[N([nt])] = θ(t)ŷ(1 − ŷ)∆t

using the approximation 1 − (1 − x)a ≈ ax for small x. With the same procedure, we have

Var[Ŷn(t + ∆t) − Ŷn(t)|Ŷn(t) = ŷ] =
1
n2 Var

[
Y([nt] + 1) − Y([nt])|Y([nt]) = nŷ

]
=

1
n2 (n − nŷ)

1 − m∑
k=1

(
1 −

npŷ
n − 1

)nk

pk(t)

  m∑
k=1

(
1 −

npŷ
n − 1

)nk

pk(t)


≈

1
n

(1 − ŷ)
[
1 −

npŷ
n − 1

E[N([nt])]
]

npŷ
n − 1

E[N([nt])]
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≈
1
n

p(1 − ŷ)ŷE[N([nt])] =
θ(t)
n

ŷ(1 − ŷ)∆t.

Using as before the approximation 1 − (1 − x)a ≈ ax for small x and p(1 − p) ≈ p for small p. As in
the case with recovery (r < ∞), following the same steps we can assume

θ(t) = npE[N([nt])] ≈ npN := θ

for a constant N.
With this results and approximation methods for continuous time Markov chains using diffusion

processes we can approximate Ŷn by a diffusion process Ŷ in [0, 1] that satisfies the stochastic
differential equation

dŶ(t) = θŶ(t)(1 − Ŷ(t))dt +

√
θ

n
Ŷ(t)(1 − Ŷ(t))dW(t) (3.10)

where W = {W(t), t ≥ 0} is a standard Brownian motion. The approximation of diffusion processes by
Markovian chains is well explained in [20] (Chapter 10).

If the variability is assumed to be small then the noise term of the stochastic differential
equation (3.10) will have little effect. In that case, we can presume that the mean of Ŷ(t) can be
approximated by m̂(t) where m̂ satisfies the deterministic equation

dm̂(t) = θm̂(t)(1 − m̂(t))dt

with explicit solution

m̂(t) =
1

1 + 1−m̂0
m̂0

e−θt
, t ≥ 0

where m̂0 = E[Ŷn(0)] = 1
nE[Y(0)].

This suggests that for t = 0, 1, 2, . . . (with attendant scaling up of error terms),

E[Y(t)] = nE
[
Ŷn

( t
n

)]
≈ nm̂

( t
n

)
=

n
1 + n−y0

y0
e−pNt

where y0 = E[Y(0)].

4. Simulations

The aim of this chapter is to simulate the SIR epidemic model we have presented in the previous
sections, comparing the evolution of the disease for different distributions of the number of daily
contacts N(t). Particularly, we study the cases when N(t) follows two distributions: binomial and
truncated Poisson. We will compare the results for different values of their parameters.

Since we are interested in showing the different evolution of the SIR epidemic model as the
number of daily contacts changes, we fix the other parameters. We consider a population of
n = 10000 individuals with a unique initial infective individual: Y(0) = 1. The probability of
transmission derived from an encounter is p = 0.1 and the duration of the disease is r = 5. We assume
the quarantine is nonexistent, that is, λ = 1.
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For each case, we present the average of the duration of the disease (Total time), the total proportion
of the infected population when the disease ends (Population infected) and the number of individuals
infected by the first infective (R̃0). Also, R∗0 = λp

∑r−1
t=0 E(N(t)) is computed. The theoric R0 will be R∗0

with an error of O
(

1
n−1

)
.

The simulations are made using R programming environment. All of them are over 10, 000 trials
and run for a maximum of 365 days.

4.1. Binomial case

Here, the number of daily contacts N(t) has a binomial distribution with probability depending on
time. This is N(t) ∼ Binom(N, p(t)). With this distribution, the set of all possible values of N(t) is
M = {0, . . . ,N}.

We consider three cases. In all of them, the function p(t) is periodic with yearly, monthly and
weekly periods, respectively. In the first case, we fix a value for N and compare the spread of the
disease for four different functions of p(t). In the other two cases, we choose a function for p(t) and
observe how the disease evolves when the maximum number of daily contacts changes.

4.1.1. Yearly period

It is a natural assumption that the number of daily contacts varies all over the year and changes
according to the season. We suppose that the mean of daily encounters arrives at its maximum in
summer, decreases in fall until arriving at its minimum in winter and then increases in spring and
summer again. Moreover, we assume that p(t) has a sinusoidal shape where the peak coincides with
summer and the valley with winter and we analyze the spread of the disease depending on the epoch of
the year it starts. The nomenclature we use refers to this epoch. The following plot suggests the idea:

50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

Spring

Summer

Fall

Winter

The four functions we consider are:

Spring: p(t) = 0.3 · sin
(

2πt
365

)
+ 0.5

Summer: p(t) = 0.3 · cos
(

2πt
365

)
+ 0.5

Fall: p(t) = −0.3 · sin
(

2πt
365

)
+ 0.5
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Winter: p(t) = −0.3 · cos
(

2πt
365

)
+ 0.5

All of them oscillate between 0.2 and 0.8. We fix the maximum number of daily contacts N at 10.

Figure 1 shows the evolution of the mean number of infectives per day. The graphic has been
truncated at 110 days, as the number of cases of the following days is almost irrelevant. We have a fast
spread of the disease in the Summer case which coincides with the time when the number of encounters
is higher. By reducing this number the disease presents a lower mean number of infectives per day but
it lasts longer. Observe that in Spring and Fall p(t) has the same initial value p(0) = 0.5, but the model
evolves differently depending on whether this probability increases or decreases.

Figure 1. SIR epidemic model depending on the season the disease starts. Evolution of the
mean number of infectives. p(t) is year-periodic and varies for each case while N is fixed at
N = 10.

All these facts are underlined in Figure 2 which represents the histogram of the duration of the
disease (Left) and the histogram of the total number of infected in the population when the disease
ends (Right). Moreover, it is interesting to notice that, while in Spring and Summer almost the entire
population gets infected in most trials, in Winter the epidemic develops only in a limited number of
cases.
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Figure 2. SIR epidemic model depending on the season the disease starts. p(t) is year-
periodic and varies for each case while N is fixed at N = 10. Top: Evolution of the
mean number of infectives. Left: Histogram of the duration of the disease in days. Right:
Histogram of the total number of infected in the population when the disease ends.

The first two rows of Table 1 help to better understand Figure 2 (Left and Right). The course of the
disease is on average longer in Fall but it has a big variation and it is on average shorter in Winter with
an even bigger dispersion. This is evident in Figure 2 (Left) where in Winter we notice two different
behaviors: in most of the trials the disease lasts for a short time and does not exceed 50 days but in
the other cases it lasts for more than 100 days. As remarked before, almost the entire population is
infected in Spring and Summer but this proportion decreases drastically in Fall and Winter.

Table 1. SIR epidemic model depending on the season the disease starts. p(t) is year-
periodic and varies for each case while N is fixed at N = 10. Mean (standard deviation) of
three variables: duration of the disease in days, total proportion of infecteds when the disease
ends and number of individuals infected by the first infective (R̃0). R∗0 is computed for all the
cases.

Spring Summer Fall Winter

Total time 43.54 (12.77) 35.33 (5.05) 60.83 (21.92) 29.50 (42.08)

Population infected (%) 86% (28%) 96% (14%) 61% (23%) 14% (31%)

R̃0 2.53 (1.26) 3.97 (1.43) 2.44 (1.25) 1.00 (0.90)

R∗0 2.55 4.00 2.45 1.00

Table 1 also contains information regarding the number of individuals infected by the first infective
(R̃0). If compared with R∗0 (last row) very similar values are observed. Recall that R∗0 is an
approximation of the theoretical value R0. In the first three cases, R̃0 exceeds the threshold value 1
implying that the disease turns into an epidemic. In the last case, the mean of R̃0 coincides with the
threshold itself but its variability makes it unclear if an epidemic occurs on average or not. Moreover,
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observe that R̃0 is very similar in Spring and Fall.
Finally, notice that the dispersion is smaller in Summer and bigger in Winter when we refer to the

duration of the disease and the total proportion of infected but it is reversed when we consider R̃0.

4.1.2. Monthly period

We assume that the number of daily contacts changes periodically over the course of the month.
This behavior could be due to economic reasons. For example, it might catch the tendency to go out
more when a salary is perceived. The periodicity is reflected in p(t), that is the sinusoidal function

p(t) = 0.3 · sin
(
2πt
30

)
+ 0.5.

This probability oscillates between 0.2 and 0.8. We simulate and then compare the SIR epidemic model
for three different values of the maximum number of daily contacts: N = 7, N = 10 and N = 12.

Figure 3 (Left) shows the evolution of the mean number of infectives per day in the three cases. The
graphic has been truncated at 100 days. We see that the evolution of the disease behaves differently
with respect to the maximum number of daily encounters. Particularly, the number and position of
the peaks vary. When N = 7, there are three peaks, the central one big enough and the others very
small. When the maximum number of daily contacts is set to N = 10, two similar peaks are displayed.
Finally, when this parameter is increased to N = 12 a tall peak is followed by a small one.

It might be interesting to investigate how the mean number of infectives presents two peaks in the
case N = 10. Figure 3 (Right) shows the evolution of the number of infectives per day for some selected
simulations. Observe that the trials behave quite differently: in some cases there are two (similar or
not) peaks and in others only one. However, it is also important to point out that all peaks occur at
similar times as those of the mean.

Figure 3. SIR epidemic model with p(t) monthly-periodic. Left: Evolution of the mean
number of infectives for three different values of N. Right: Evolution of the number of
infectives in some simulations for N = 10.

It appears that on average the disease lasts longer when the number of daily contacts is smaller.
This is noted in Figure 4 (Left) and Table 2. In addition, here we observe a bigger variation for smaller
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values of N. For example, the standard deviation of the case N = 7 is more than double that of the case
N = 10. This is also due to the fact that the disease does not spread in more simulations of the case
N = 7 than of the others, as pointed out in Figure 4 (Left).

Figure 4 (Right) shows the distribution of the total number of infected over all simulations. When
the number of contacts increases, this quantity is on average bigger but its variation decreases, as
indicated in Table 2. Note that the cases in which the total population is infected are very few.

Figure 4. SIR epidemic model with p(t) monthly-periodic. Comparison for N = 7, N = 10
and N = 12 (same colors of Figure 3). Left: Histogram of the duration of the disease in days.
Right: Histogram of the total number of infected in the population when the disease ends.

Table 2. SIR epidemic model with p(t) monthly-periodic and three different values of N.
Mean (standard deviation) of three variables: duration of the disease in days, total proportion
of infected when the disease ends and number of individuals infected by the first infective
(R̃0). R∗0 is computed for all the cases.

N = 7 N = 10 N = 12

Total time 67.14 (27.62) 58.40 (13.41) 49.18 (11.84)

Population infected (%) 63% (26%) 81% (19%) 85% (14%)

R̃0 2.17 (1.20) 3.07 (1.33) 3.70 (1.40)

R∗0 2.16 3.08 3.70

Finally, Table 2 reveals that the mean number of individuals infected by the first infective increases
as the maximum number of daily encounters does. Its variation follows the same tendency although
the differences are quite small.

4.1.3. Weekly period

Now, we assume that the number of daily contacts changes periodically with a week period. For
example, this could mark the different behavior of the population at the weekend with respect to the
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weekdays. The periodicity is reflected in p(t), that is the sinusoidal function

p(t) = 0.3 · cos
(
2πt
7

)
+ 0.5.

This probability oscillates between 0.2 and 0.8. As in the monthly-periodic study, we simulate and then
compare the SIR epidemic model for three different values of the maximum number of daily contacts:
N = 7, N = 10 and N = 12.

Figure 5 (Left) plots the evolution of the mean number of infectives in the three cases. The graphic
has been truncated at 100 days. One could observe that the results are very different depending on the
values of N. When N = 7, the mean number of infectives oscillates many times presenting several
peaks but none of them is particularly high. Some selected simulations are displayed in Figure 5
(Right). They seem to reflect the same tendency as the mean. When N = 10 and N = 12, only one
peak is displayed but the curves are not similar to those of a normal distribution as they were for the
yearly and monthly periodic studies. Furthermore, the different shapes the two of them presented make
their behavior quite distinct.

Figure 5. SIR epidemic model with p(t) weekly-periodic. Left: Evolution of the mean
number of infectives for three different values of N. Right: Evolution of the number of
infectives in some simulations for N = 7.

The histograms in Figure 6 (Left and Right) also highlight the differences that the change in the
number of daily contacts generates. We observe two features also reported in the monthly-periodic
study. On one hand, the disease lasts longer on average when the number of daily contacts is smaller.
On the other hand, the magnitude of the spread, intended as the part of the total population infected,
decreases. Furthermore, note that when N = 7 the number of trials in which the disease does not
spread is much higher than in the other two cases. This increases the variability of the results, as can
be observed in Table 3.
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Figure 6. SIR epidemic model with p(t) weekly-periodic. Comparison for N = 7, N = 10
and N = 12 (same colors of Figure 5). Left: Histogram of the duration of the disease in days.
Right: Histogram of the total number of infected in the population when the disease ends.

Table 3. SIR epidemic model with p(t) weekly-periodic and three different values of N.
Mean (standard deviation) of three variables: duration of the disease in days, total proportion
of infecteds when the disease ends and number of individuals infected by the first infective
(R̃0). R∗0 is computed for all the cases.

N = 7 N = 10 N = 12

Total time 63.01 (40.58) 50.71 (17.87) 44.45 (11.70)

Population infected (%) 45% (32%) 76% (29%) 86% (25%)

R̃0 1.67 (1.13) 2.39 (1.28) 2.85 (1.36)

R∗0 1.67 2.38 2.86

The dispersion of the mean number of individuals infected by the first infective is also very high in
all cases (see Table 3). Particularly, when N = 7 and N = 10 it is difficult to know if the spread of the
disease will result in an epidemic or not.

4.2. Truncated Poisson case

Now, we assume that the number of daily contacts N(t) follows a truncated Poisson distribution.
This is the distribution of a Poisson random variable conditional on the fact that it takes values only in
an interval. In our case, we fix a maximum number of daily contacts. We set this upper bound at 15
encounters.

We consider three different functions for the parameter λ depending on t:

λ1(t) =
10

1 + log (t + 1)
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λ2(t) =
50

5 + 2
√

t

λ3(t) = −5 sin
(
2πt
15
+ k

)
+ 7 with k = arcsin

(
−

3
5

)

where k is an adjustment constant so that all functions start at 10 when t = 0. Over the course of a
year (365 days), λ1(t) takes values between 1.45 and 10, λ2(t) between 1.16 and 10 and λ3(t) between 2
and 12 (all these values are rounded to two decimals). We can see in Figure 7 (Right) the behavior of
the three functions we have considered.

Figure 7 (Left) shows the evolution of the mean number of infectives per day. We notice important
differences between the first two cases although the two parameters λ1(t) and λ2(t) present a similar
evolution in time. The third case goes fast to zero despite the periodic behavior of the parameter λ3(t).

Figure 7. SIR epidemic model with number of contacts distributed as a truncated Poisson
(upper bound 15). Left: Evolution of the mean number of infective. Right: Different λi(t)
considered.

From Figure 8 (Left) and Table 4 we can see that for the case λ1(t) there is a lot of dispersion of
the total duration of the disease which takes values from 0 to 125 days. For the other two cases, the
dispersion is much smaller and the duration of the case λ1(t) is the smallest one. Concerning the total
number of infected, the biggest dispersion is presented by the case λ3(t) since there are almost 1,000
simulations that end without infecteds and much more with almost the entire population infected. The
case λ1(t) is the one that presents a less infected population and also the one with less dispersion. In
all three cases, R̃0 exceeds the threshold value 1 so the disease turns into an epidemic. Moreover, its
values are similar to the expected ones given by R∗0.
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Figure 8. SIR epidemic model with number of contacts distributed as a truncated Poisson
(upper bound 15). The colors refer to those used in Figure 7. Left: Histogram of the duration
of the disease in days. Right: Histogram of the total number of infected in the population
when the disease ends.

Table 4. SIR epidemic model with p(t) weekly-periodic and three different values of N.
Mean (standard deviation) of three variables: duration of the disease in days, total proportion
of infecteds when the disease ends and number of individuals infected by the first infective
(R̃0). R∗0 is computed for all the cases.

λ1(t) λ2(t) λ3(t)

Total time 91.71 (39.92) 68.57 (16.87) 42.45 (11.85)

Population infected (%) 9% (7%) 59% (14%) 86% (28%)

R̃0 2.83 (1.36) 3.45 (1.42) 3.05 (1.36)

R∗0 2.83 3.46 3.05

5. Application to real diseases

In this chapter, we investigate how the SIR model we have proposed in the previous sections can
approximate the spread of a real disease. For this purpose, we consider two diseases: influenza and
meningococcal infection. The real data we study are part of the data frame InfluMen contained in the
package surveillance of R programming, focused on modeling and monitoring epidemic phenomena.
The data frame contains the cases observed in Germany between 2001 and 2006. We intentionally
analyze only one year for each disease (2001 for influenza and 2006 for meningococcal infection), as
the methods we employ can be applied to other periods. In the case of influenza, the development
of the disease follows a similar pattern each year. The curve presents the same shape, so an adjusted
model can be obtained by slightly varying the parameters. In the case of meningococcal disease, the
behavior of the number of infectives is quite rough. The model has to be adjusted more carefully, but
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equally good results can be achieved with a suitable choice of the number of daily encounters.

5.1. Influenza

We consider the cases of influenza registered in Germany in 2001. We compare this data with our
SIR model. In that year, the German population was 82.35 million, so we fix n accordingly. The
duration of the disease is estimated between 3 and 7 days, thus we choose r = 5. The probability of
transmission is fixed at p = 0.062. Since we do not know the level of quarantine, we set λ = 1. We
assume that the number of daily encounters follows a truncated Poisson distribution with a parameter
λ(t) that is a slight variation of the function λ2(t) used in Section 4.2:

λ(t) =
20

1 +
√

t
.

We run our simulation for a year (365 days). The results obtained are contained in Figure 9.

Figure 9. Comparison of real data and SIR model. Real data refers to the cases of influenza
registered in Germany in 2001. Left: Evolution of the mean number of infectives of the SIR
model. Right: Plot of three single simulations.

In Figure 9 (Left) real data are compared to the mean number of infectives per day. In Figure 9
(Right) three single simulations are plotted. In both cases, our model adjusts remarkably well to real
data.

Using the parameters set for the model, we obtain the approximation of the basic reproduction
number R∗0 = λp

∑r−1
t=0 E(N(t)) = 2.8. This value suggests that an outbreak could occur. However,

remember that it is computed only considering the number of daily encounters during the first r days
which means that the subsequent development of the disease may be different than expected.

5.2. Meningococcal disease

Meningococcal disease refers to any illness caused by bacteria called Neisseria meningitidis.
About 10% of people have these bacteria without being ill. Sometimes the bacteria invade the body
and cause certain illnesses known as meningococcal disease. Meningococcal bacteria are spread by
respiratory and throat secretions. Generally, it takes close or prolonged contact to spread them.
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Fortunately, they are not as contagious as the germs that cause the common cold or flu. This disease is
often severe and can be deadly.

We consider the cases of meningococcal disease registered in Germany in 2006. These data are
compared with our SIR model. In 2006, the German population was 82.38 million so n is fixed to
this quantity. The duration of meningococcal infection is very variable. Even if it is typically 3 to 4
days, it can last a range of 1 to 10 days. Under these assumptions, we find it opportune to set r = 5.
As the probability of transmission is quite low, we set p = 0.02. Since we do not know the level
of quarantine, we set λ = 1. In this case, we assume that the number of daily encounters follows
a binomial distribution with parameters N and p(t). N is fixed to 12 and p(t) is a step function that
varies from 0.55 to 1. We run our simulation for a year (365 days). The results obtained are shown in
Figure 10.

Figure 10. Comparison of real data and SIR model. The real data refers to the cases
of meningococcal disease registered in Germany in 2006. As regards the SIR model, the
evolution of the mean number of infective is shown.

The figure compares real data with the mean number of infectives per day simulated using our SIR
model. In the early days, the simulation does not adjust much to the real data. This can be explained
because contrary to our model not all infected at time t = 0 belong to the class Y0(0). Apart from that,
our model adjusts rather well to real data. This result could not have been achieved without taking into
account the dependence on time of the number of daily encounters.

As for the influenza, we can estimate the basic reproduction number by computing its approximation
R∗0 = λp

∑r−1
t=0 E(N(t)) = 0.96. However, its value is closely related to the number of daily encounters in

the first r days which corresponds to the time when our simulation does not fit the real data accurately,
as explained above.
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6. Discussion and conclusions

In this paper, we study a stochastic SIR-type epidemic model that is an extension of the one
proposed by Tuckwell and Williams. We assume that the number of daily encounters of each
individual depends on time and we add a parameter to control a possible quarantine of the infectious
individuals. Two cases are taken into consideration: when the duration of the disease is constant and
when infectious individuals remain infectious throughout their lives. In both situations, we describe
analytically the underlying model and its dynamics, deriving a diffusion process and the basic
reproduction number.

Several simulations are made to show how differently the disease evolves with respect to the
distribution of the number of daily encounters. We consider two laws for this parameter: binomial and
truncated Poisson. They will both be used in the application of our model to real diseases. We show
how not only the variation of distribution but also the change of their parameters could generate a
great variability of results. In particular, the evolution of the mean number of infectives can present
different shapes and peaks. Also, the total duration of the disease (intended as the total time before the
disease ends) and the total proportion of population infected behave differently. Moreover, we check
that in all simulations the mean number of individuals infected by the first infective R̃0 adjusts to R∗0,
which is an approximation of the basic reproduction number.

The importance of time dependence stands out when we apply our model to real diseases. We
consider two cases: influenza and meningococcal infection. In both situations, the flexibility given by
the time dependence allows our model to adjust exceptionally well to real data.

These results can be the springboard for constructing more complex models to investigate diseases
that cannot be adequately described by only the three classes S, I and R. For example, diseases with an
initial latency period or the presence of asymptomatic individuals. In these cases, it could be interesting
to explore how different distributions and the dependence on time of some parameters such as the
number of daily encounters can affect the evolution of the disease.

Another future work could be to consider other parameters as random quantities. In a real-life
situation, the duration of the disease r is generally not fixed and can vary from one individual to
another. Therefore, an interesting case would be to study a model that deals with this parameter as a
random variable and investigate how the disease behaves when its distribution varies.
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avantages de l’Inoculation pour la prévenir, Hist. Acad. R. Sci. Paris, 1760, 1–45.

2. N. T. Bailey, The mathematical theory of infectious diseases and its applications, London: Charles
Griffin & Company Limited, 1975.

3. R. M. Anderson, R. M. May, Infectious diseases of humans. Dynamics and control, Oxford: Oxford
University Press, 1991. https://doi.org/10.1002/hep.1840150131

4. O. Diekmann, H. Heesterbeek, T. Britton, Mathematical tools for understanding infectious disease
dynamics, Princeton: Princeton University Press, 2013.

5. Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl.
Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003

6. X. Bardina, M. Ferrante, C. Rovira, A stochastic epidemic model of COVID-19 disease, AIMS
Math., 5 (2020), 7661–7677. https://doi.org/10.3934/math.2020490

7. F. Flandoli, E. La Fauci, M. Riva, Individual-based Markov model of virus diffusion: Comparison
with COVID-19 incubation period, serial interval and regional time series, Math. Mod. Meth. Appl.
Sci., 31 (2021), 907–939. https://doi.org/10.1142/S0218202521500226

8. A. McKendrick, Application of mathematics to medical problems, Proc. Edinburgh Math. Soc.,
14 (1926), 98–130. https://doi.org/10.1017/S0013091500034428

9. W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy.
Soc. Lond., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

10. H. Abbey, An examination of the Reed-Frost theory of epidemics, Hum. Biol., 24 (1952), 201–233.

11. L. J. S. Allen, An introduction to stochastic epidemic models, In: Mathematical Epidemiology,
Berlin, Heidelberg: Springer-Verlag, 2008, 81–130. https://doi.org/10.1007/978-3-540-78911-6

12. H. C. Tuckwell, R. J. Williams, Some properties of a simple stochastic epidemic model of SIR
type, Math. Biosci., 208 (2007), 76–97. https://doi.org/10.1016/j.mbs.2006.09.018

13. M. Ferrante, E. Ferraris, C. Rovira, On a stochastic epidemic SEIHR model and its diffusion
approximation, Test, 25 (2016), 482–502. https://doi.org/10.1007/s11749-015-0465-z

14. A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic
model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X

15. T. Tsutsui, N. Minamib, M. Koiwai, T. Hamaokaa, I. Yamanea, K. Shimura, A stochastic-modeling
evaluation of the foot-and-mouth-disease survey conducted after the outbreak in Miyazaki, Japan
in 2000, Prev. Vet. Med., 61 (2003), 45–58. https://doi.org/10.1016/s0167-5877(03)00160-0

16. S. Z. Huang, A new SEIR epidemic model with applications to the theory of eradication
and control of diseases, and to the calculation of R0, Math. Biosci., 215 (2008), 84–104.
https://doi.org/10.1016/j.mbs.2008.06.005

AIMS Mathematics Volume 8, Issue 10, 23218–23246.

http://dx.doi.org/https://doi.org/10.1002/hep.1840150131
http://dx.doi.org/https://doi.org/10.1016/j.amc.2017.02.003
http://dx.doi.org/https://doi.org/10.3934/math.2020490
http://dx.doi.org/https://doi.org/10.1142/S0218202521500226
http://dx.doi.org/https://doi.org/10.1017/S0013091500034428
http://dx.doi.org/https://doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/https://doi.org/10.1007/978-3-540-78911-6
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2006.09.018
http://dx.doi.org/https://doi.org/10.1007/s11749-015-0465-z
http://dx.doi.org/https://doi.org/10.1137/10081856X
http://dx.doi.org/https://doi.org/10.1016/s0167-5877(03)00160-0
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2008.06.005


23246

17. S. E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and
applications, In: Stochastic Analysis and related topics VI, Boston: Birkhaüser, 1998.
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