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1. Introduction

Let D := {ζ ∈ C : |ζ | < 1} be the open unit disk in the complex plane. A harmonic mapping with
domain D is a complex-valued function u such that

∆u := 4
∂2u

∂ζ∂ζ
≡ 0.

In this paper, we denote H(D) as the space consisting of analytic functions on the unit disk,Har(D)
as the space consisting of harmonic mappings.

The harmonic mapping u always a representation of the form h + v, where h and v are analytic
functions. Up to an additive constant, this representation is unique. Therefore, u ∈ Har(D) if and only
if u = h + v, where h, v ∈ H(D) and v(0) = 0.

For a general reference on the theory of harmonic functions, see [8]. Harmonic mappings appear
regularly and play a fundamental role in math, physics and engineering; see e.g., [5], [6], [7], [15],
and [22].
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The composition operator Cϕ induced by analytic or conjugate analytic self-maps of D is defined as
the operator

Cϕu = u ◦ ϕ, ∀ u ∈ Har(D).

Obviously, such an operator preserves harmonicity.
Recall that, for any two normed linear spaces X and Y , the linear operator T : X −→ Y is said to

be bounded if there exists C > 0 such that ‖Tu‖Y ≤ C‖u‖X,∀u ∈ X. Furthermore, a linear operator
T : X −→ Y is said to be compact if it maps every bounded set in X to a relatively compact set in Y
(i.e., a set whose closure is compact).

The operator theory has been characterized for spaces of analytic functions in different settings and
a significant number of related papers have appeared in the literature (see, for example, [9], [11], [14],
and [18]). However, a similar investigation of the harmonic setting remains limited.

In [1], we have examined numerous characterizations of the weighted Bloch spaces and closed
separable subspaces of harmonic mappings. We then presented the relationships between the weighted
harmonic Bloch space and its Carleson measure. In [2], Aljuaid and Colonna studied the weighted
Bloch space as the Banach space for harmonic mappings on an open unit disk. They showed that the
mappings in weighted Bloch space can be characterized in terms of a Lipschitz condition relative to
the metric and can also be thought of as the harmonic growth space. Besides, in [4] they studied the
harmonic Zygmund spaces and their closed separable subspace called the little harmonic Zygmund
space. In [13], Colonna introduced and studied Bloch harmonic mappings on D as Lipschitz maps
from the hyperbolic disk into C. In [20], Lusky investigated weighted spaces of harmonic functions
on D and, in [21], isomorphism classes of weighted spaces of holomorphic and harmonic functions
with a radial weight on C and on D. In [23], Yoneda studied harmonic Bloch spaces and harmonic
Besov spaces. Characterizations of the isometries between weighted spaces of harmonic functions
were provided by Boyd and Rueda in [10]. In [17], Jordá and Zarco studied Banach spaces of harmonic
functions and composition operators between weighted Banach spaces of pluriharmonic functions.
Isomorphisms on weighted Banach spaces of harmonic and holomorphic functions were treated in [16].

Lately, studies on operator theory acting on spaces of harmonic mappings on the unit disk have been
conducted. In [3], the composition operators were studied on the Banach spaces of harmonic mappings
on D, including the weighted Bloch spaces, the growth spaces, the Zygmund space, the analytic Besov
spaces, and the space BMOA. Shao et al. in [12] studied composition operators in the space of bounded
harmonic functions D and then provided criteria for determining the essential norm of the difference
between two composition operators. In [19], Laitila and Tylli characterized the weak compactness of
the composition operators on vector-valued harmonic Hardy spaces and on the spaces of vector-valued
Cauchy transforms for reflexive Banach spaces.

Unlike what happens in the class of analytical functions which is closed under the customary
composition, the usual composition product of two harmonic functions is not in general a harmonic
function. This fact causes some problems which are studied for a long time in the space of analytical
functions that do not make sense or are difficult to translate and treat on the set of complex harmonic
functions with the tools of the complex variable. We give two typical examples: the theory of linear
composition operators whose symbols are complex harmonic functions and the corresponding theory
of iterations for complex harmonic functions.

In this work, we are concerned with the operator-theoretic properties of composition operators
between distinct spaces of harmonic mappings in order to overcome these difficulties. Specifically,
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we investigate the composition operators from the space of bounded harmonic mappings H∞ into the
harmonic Zygmund spaceZH.

The reason behind our study of the properties of composition operators between distinct spaces of
harmonic mappings is the wide range of applications for different harmonic mappings, especially in
operator theory.

We start with several preliminaries used to derive the main results of this work. Then, we focus
on the boundedness and compactness of the composition operators from H∞ space into the harmonic
Zygmund spaceZH. We conclude by approximating the essential norm.

The space of bounded harmonic mappings H∞. First, we denote H∞ = H∞(D) as space
consisting of all bounded harmonic mappings u on D equipped with the norm

‖u‖∞ = sup
ζ∈D

|u(ζ)|.

The harmonic Bloch space containing of all u ∈ Har(D) is defined such that

βu := sup
ζ∈D

(1 − |ζ |2)
(∣∣∣∣∣∂u(ζ)

∂ζ

∣∣∣∣∣+∣∣∣∣∣∂u(ζ)

∂ζ

∣∣∣∣∣)< ∞. (1.1)

If u is a harmonic Bloch mapping represented as u = h + v̄, with h, v ∈ H(D), the Bloch seminorm
βu can be characterized as

βu = sup
ζ∈D

(1 − |ζ |2)(|h′(ζ)| + |v′(ζ)|) < ∞. (1.2)

The quantity
‖u‖BH := |u(0)| + βu,

yields a Banach space structure on BH, see [2].
The harmonic Zygmund space containing of all u ∈ Har(D) such that ∂u

∂ζ
+ ∂u

∂ζ
∈ BH. Define

‖u‖ZH := |u(0)| +
∣∣∣∣∣∂u
∂ζ

(0)
∣∣∣∣∣+∣∣∣∣∣∂u

∂ζ
(0)

∣∣∣∣∣+ sup
ζ∈D

(1 − |ζ |2)
(∣∣∣∣∣∂2u
∂ζ2 (ζ)

∣∣∣∣∣+∣∣∣∣∣∂2u

∂ζ
2 (ζ)

∣∣∣∣∣),
is a norm onZH andZH is a Banach space, see [4].

Remark 1.1. When u ∈ H(D), the mapping ∂u
∂ζ

reduces to u′ and ∂u
∂ζ

= ∂2u
∂ζ

2 = 0. Thus, the collection of

analytic functions in the spaceZH is the classical Zygmund spaceZ and both norms are identical.

Throughout this paper, we use the notation A � B, which implies that there is a constant C > 0
such that A ≤ CB. Therefore, when B � A � B, we use the notation A ≈ B, meaning that A and B are
equivalent. Moreover, if A ≈ B then B < ∞ ⇐⇒ A < ∞.

2. Boundedness

Given n ∈ N, and u ∈ Har(D) be represented as u = h + v̄, with h, v ∈ H(D). Let us define

βn
H(u) = sup

ζ∈D

(1 − |ζ |2)n(|h(n)(ζ)| + |v(n)(ζ)|), (2.1)
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and
βn

H,0(u) = lim
|ζ |→1

(1 − |ζ |2)n(|h(n)(ζ)| + |v(n)(ζ)|). (2.2)

The following lemma as a result of Theorem 19 provided in [2] will help characterize the
boundedness of the composition operators.

Lemma 2.1. For u ∈ Har(D) represented as u = h + v̄, with h, v ∈ H(D).

(1) If u ∈ H∞ then for any n ∈ N, βn
H(u) � ‖u‖∞.

(2) u ∈ BH ⇐⇒ βn
H(u) < ∞.

(3) u ∈ BH,0 ⇐⇒ βn
H,0(u) = 0.

Let b ∈ D be a fixed and let 1 ≤ k ≤ 3. Then, for any ζ ∈ D, we consider a set of functions hb,k as
follows:

hb,k(ζ) =

(1 − |b|2

1 − bζ

)k

+

(1 − |b|2

1 − bζ

)k

. (2.3)

For every k ∈ N, it can be demonstrated that hb,k ∈ H
∞ and supb∈D ‖hb,k‖H∞ � 1. Moreover,

it is evident that lim|b|→1 hb,k = 0 uniformly on compact subsets D ⊂ D. Recall the power series
representations of hb,k are given as

hb,k(ζ) = (1 − |b|2)k
∞∑

j=k−1

(
j

k − 1

){
(bζ) j−k+1 + (bζ) j−k+1

}
. (2.4)

For all n ∈ N and 1 ≤ k ≤ 3, by direct calculation we know that

∂nhb,k

∂ζn (ζ) =
(n + k − 1)!

(k − 1)!

[b
n(

1 − |b|2
)k

(1 − bζ)k+n

]
;

∂nhb,k

∂ζ
n (ζ) =

(n + k − 1)!
(k − 1)!

[bn(1 − |b|2)k

(1 − bζ)k+n

]
.

Thus, we obtain

∂nhb,k

∂ζn (b) =
(n + k − 1)!

(k − 1)!
b

n(
1 − |b|2

)n ;

∂nhb,k

∂ζ
n (b) =

(n + k − 1)!
(k − 1)!

bn(
1 − |b|2

)n . (2.5)

Now, we are prepared to show and prove our fundamental theorem in this section.

Theorem 2.1. Let ϕ ∈ S (D). Then, Cϕ : H∞ → ZH is bounded if and only if

sup
j≥0
‖ϕ j + ϕ j

‖ZH < ∞. (2.6)

Proof. Let the sequence p j(w) = w j + w j for w ∈ D and when j ≥ 0 is an integer. Since the sequence
{p j} is bounded in the harmonicH∞ space with ‖p j‖∞ ≤ 1, if Cϕ : H∞ → ZH is bounded then for each
j ≥ 0 we have

‖ϕ j + ϕ j
‖ZH = ‖Cϕp j‖ZH � ‖Cϕ‖∞.
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Therefore,

sup
j≥0
‖ϕ j + ϕ j

‖ZH < ∞.

Conversely, suppose that (2.6) holds and set

L = sup
j≥0
‖ϕ j + ϕ j

‖ZH < ∞.

Since the sequence p j(w) = w j + w j, Cϕp0 = (ϕ)0 + (ϕ)0 = 2 ∈ ZH and ‖2‖ZH = ‖Cϕp0‖ZH ≤ L.
Note that for any ζ ∈ D and u ∈ Har(D) represented as u = h + v̄, with h, v ∈ H(D), |(Cϕu)(0)| =

|u(ϕ(0))| ≤ ‖u‖∞. Therefore, because |ϕ(0)| < 1 we note that∣∣∣∣∣∂(Cϕu)
∂ζ

(0)
∣∣∣∣∣+∣∣∣∣∣∂(Cϕu)

∂ζ
(0)

∣∣∣∣∣ =

∣∣∣∣∣∂u(ϕ(0))
∂ζ

ϕ′(0)
∣∣∣∣∣+∣∣∣∣∣∂u(ϕ(0))

∂ζ
ϕ′(0)

∣∣∣∣∣
= |h′(ϕ(0))ϕ′(0)| + |v′(ϕ(0))ϕ′(0)|

�
|ϕ′(0)|

(1 − |ϕ(0)|2)
‖u‖∞ < ∞.

On the other hand, for any ζ ∈ D and u ∈ Har(D),∣∣∣∣∣∂2(Cϕu)
∂ζ2 (ζ)

∣∣∣∣∣ =

∣∣∣∣∣∂2u(ϕ(ζ))
∂ζ2 [ϕ′(ζ)]2 +

∂u(ϕ(ζ))
∂ζ

ϕ′′(ζ)
∣∣∣∣∣

≤ |ϕ′(ζ)|2
∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ2

∣∣∣∣∣+|ϕ′′(ζ)|
∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣;∣∣∣∣∣∂2(Cϕu)

∂ζ
2 (ζ)

∣∣∣∣∣ =

∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ
2 [ϕ′(ζ)]2 +

∂u(ϕ(ζ))

∂ζ
ϕ′′(ζ)

∣∣∣∣∣
≤ |ϕ′(ζ)|2

∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ
2

∣∣∣∣∣+|ϕ′′(ζ)|
∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣.
By adding the above expressions and multiplying by (1 − |ζ |2) we obtain

(1 − |ζ |2)
(∣∣∣∣∣∂2(Cϕu)

∂ζ2 (ζ)
∣∣∣∣∣+∣∣∣∣∣∂2(Cϕu)

∂ζ
2 (ζ)

∣∣∣∣∣) ≤ (1 − |ζ |2)|ϕ′(ζ)|2
(∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ
2

∣∣∣∣∣)
+ (1 − |ζ |2)|ϕ′′(ζ)|

(∣∣∣∣∣∂u(ϕ(ζ))
∂ζ

∣∣∣∣∣+∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣).
Since u ∈ Har(D) can be represented as u = h + v̄, with h, v ∈ H(D), by Lemma 2.1, we obtain

(1 − |ζ |2)
(∣∣∣∣∣∂2(Cϕu)

∂ζ2 (ζ)
∣∣∣∣∣+∣∣∣∣∣∂2(Cϕu)

∂ζ
2 (ζ)

∣∣∣∣∣) ≤ (1 − |ζ |2)|ϕ′(ζ)|2
(
|h′′(ϕ(ζ))| + |v′′(ϕ(ζ))|

)
+ (1 − |ζ |2)|ϕ′′(ζ)|

(
|h′(ϕ(ζ)) + |v′(ϕ(ζ))|

)
AIMS Mathematics Volume 8, Issue 10, 23087–23107.
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�
(1 − |ζ |2)|ϕ′(ζ)|2

(1 − |ϕ(ζ)|2)2 β2
H(u) +

(1 − |ζ |2)|ϕ′′(ζ)|
1 − |ϕ(ζ)|2

βH(u)

� (L1 + L2)‖u‖∞,

where L1 =
(1−|ζ |2)|ϕ′(ζ)|2

(1−|ϕ(ζ)|2)2 and L2 =
(1−|ζ |2)|ϕ′′(ζ)|

1−|ϕ(ζ)|2 . To prove the boundedness, it suffices to show that the
quantity L1 + L2 is finite. Since Cϕp1 = ϕ + ϕ, for ζ ∈ D, we have

∂2(Cϕp1)
∂ζ2 (ζ) =

∂2(Cϕp1)

∂ζ
2 (ζ) = ϕ′′(ζ) + ϕ′′(ζ).

Then,

sup
ζ∈D

(1 − |ζ |2)|ϕ′′(ζ)| ≤
1
4
‖Cϕp1‖ZH ≤

L
4
. (2.7)

Moreover, since p j(w) = w j + w j with j ≥ 0 is an integer, we have Cϕp2 = (ϕ)2 + (ϕ)2,

∂2[Cϕp2(ζ)]
∂ζ2 = 2(ϕ′(ζ))2 + 2(ϕ′(ζ))2 + 2ϕ(ζ)ϕ′′(ζ) + 2ϕ(ζ)ϕ′′(ζ),

∂2[Cϕp2(ζ)]

∂ζ
2 = 2(ϕ′(ζ))2 + 2(ϕ′(ζ))2 + 2ϕ(ζ)ϕ′′(ζ) + 2ϕ(ζ)ϕ′′(ζ).

Since |ϕ(ζ)| ≤ 1 for ζ ∈ D, we have

|ϕ′(ζ)|2 ≤
1
8

{∣∣∣∣∣∂2[Cϕp2(ζ)]
∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[Cϕp2(ζ)]

∂ζ
2

∣∣∣∣∣}+|ϕ′′(ζ)|.

Thus,

sup
ζ∈D

(1 − |ζ |2)|ϕ′(ζ)|2 ≤
1
8

sup
ζ∈D

(1 − |ζ |2)
(∣∣∣∣∣∂2[Cϕp2(ζ)]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[Cϕp2(ζ)]

∂ζ
2

∣∣∣∣∣)
+ sup

ζ∈D

(1 − |ζ |2)|ϕ′′(ζ)|

≤
1
8
‖Cϕp2‖ZH +

1
4
‖Cϕp1‖ZH ≤

3L
8
. (2.8)

On the other hand, by the linearity of the test function (2.4) for k = 1, 2, 3 and ζ ∈ D, we have

‖Cϕhϕ(ζ),k‖ZH ≤ (1 − |ϕ(ζ)|2)k
∞∑

j=k−1

(
j

k − 1

)
|ϕ(ζ)| j−k+1‖Cϕp j−k+1‖ZH ≤ 2kL. (2.9)

From (2.5), for k = 1, 2, 3 and ζ ∈ D, we obtain

∂2[Cϕhϕ(ζ),k(ζ)]
∂ζ2 = k(k + 1)

(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)2

[ϕ′(ζ)]2 + k
(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)
ϕ′′(ζ),

AIMS Mathematics Volume 8, Issue 10, 23087–23107.
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∂2[Cϕhϕ(ζ),k(ζ)]

∂ζ
2 = k(k + 1)

(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)2

[ϕ′(ζ)]2 + k
(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)
ϕ′′(ζ).

Thus, for k = 1, 2, 3, we let

Qϕ(ζ),k =
∂2[Cϕhϕ(ζ),k(ζ)]

∂ζ2 +
∂2[Cϕhϕ(ζ),k(ζ)]

∂ζ
2

= k(k + 1)
(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)2(
[ϕ′(ζ)]2 + [ϕ′(ζ)]2

)
+k

(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)(
ϕ′′(ζ) + ϕ′′(ζ)

)
. (2.10)

Using (2.10) by subtracting, we get

Qϕ(ζ),1 − 2Qϕ(ζ),2 + Qϕ(ζ),3 = 2
(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)2(
(ϕ′(ζ))2 + (ϕ′(ζ))2

)
. (2.11)

On the other hand, using (2.9) and (2.11) we obtain

(1 − |ζ |2)|ϕ(ζ)|2|ϕ′(ζ)|2(
1 − |ϕ(ζ)|2

)2 ≤
1

18
sup
ζ∈D

(1 − |ζ |2)
(
|Qϕ(ζ),1| + 2|Qϕ(ζ),2| + |Qϕ(ζ),3|

)
≤

1
18

(
‖Cϕhϕ(ζ),1‖ZH + 2‖Cϕhϕ(ζ),2‖ZH + ‖Cϕhϕ(ζ),3‖ZH

)
≤ L. (2.12)

Now, we let 0 < s < 1. Then, if |ϕ(ζ)| > s in (2.12) we have

(1 − |ζ |2)|ϕ′(ζ)|2(
1 − |ϕ(ζ)|2

)2 ≤
L
s2 . (2.13)

Conversely, if we let |ϕ(ζ)| ≤ s in (2.8), we have

(1 − |ζ |2)|ϕ′(ζ)|2(
1 − |ϕ(ζ)|2

)2 ≤
3L

8(1 − s2)
. (2.14)

From (2.13) and (2.14) it follows that the quantity L2 is finite.

For the second time, we go back to (2.9) by subtracting we get

2Qϕ(ζ),2 − Qϕ(ζ),3 =

(
ϕ(ζ) + ϕ(ζ)
1 − |ϕ(ζ)|2

)(
ϕ′′(ζ) + ϕ′′(ζ)

)
, (2.15)

which implies that

(1 − |ζ |2)|ϕ(ζ)||ϕ′′(ζ)|
1 − |ϕ(ζ)|2

≤
1
4

sup
ζ∈D

(1 − |ζ |2){2|Qϕ(ζ),2| + |Qϕ(ζ),3|}

AIMS Mathematics Volume 8, Issue 10, 23087–23107.
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≤
1
4

(
2‖Cϕhϕ(ζ),2‖ZH + ‖Cϕhϕ(ζ),3‖ZH

)
≤ 4L. (2.16)

If we instead let 0 < s < 1, then if |ϕ(ζ)| > s in (2.16), we deduce

(1 − |ζ |2)s|ϕ′′(ζ)|
1 − |ϕ(ζ)|2

≤
(1 − |ζ |2)|ϕ(ζ)||ϕ′′(ζ)|

1 − |ϕ(ζ)|2
≤ 4L.

Thus,

(1 − |ζ |2)|ϕ′′(ζ)|
1 − |ϕ(ζ)|2

≤
4L
s
. (2.17)

If we instead let |ϕ(ζ)| ≤ s in (2.7), we have

(1 − |ζ |2)|ϕ′′(ζ)|
1 − |ϕ(ζ)|2

≤
L

4(1 − |ϕ(ζ)|2)
≤

L
4(1 − s2)

. (2.18)

Therefore, the quantity L1 is finite and so is the quantity L1 + L2. The proof of Theorem 2.1 is
complete.

3. Compactness

In this section, we focus on discussing the composition operators’ compactness. We make use of
the following lemma:

Lemma 3.1. The bounded operator T : H∞ → ZH is compact if and only if ‖Tum‖ZH → 0 as m→ ∞,
for any bounded sequence {um}m∈N inH∞ converges to zero uniformly on compact subsets D ⊂ D.

Proof. We focus on demonstrating the sufficiency. Suppose that T : H∞ → ZH is not compact. Then,
there is a bounded sequence um in H∞ such that {Tum} has no convergent subsequence. However, we
know that every bounded sequence in H∞ has a subsequence that converges uniformly on compact
subsets D ⊂ D. Therefore, um has a subsequence u such that um(w)→ u(w) for w ∈ D, and because

sup
w∈D
|um(w)| ≤ |u(w)| ≤ C ∀ m = 1, 2, 3, . . . .

Therefore, u ∈ H∞. The sequence (um − u) is bounded in H∞ and converges to zero uniformly on
compact subsets D ⊂ D. If we assume ‖T (um − u)‖ZH → 0 as n→ ∞, then the subsequence Tum of Tu
converges inZH, which is a contradiction.

The following result indicates that the compactness of the composition operators can be
characterized in terms of the sequence ‖Cϕp j‖ZH , where p j(w) = w j + w j.

Theorem 3.1. Let ϕ ∈ S (D) and assume that the operator Cϕ : H∞ → ZH is bounded. Then,
Cϕ : H∞ → ZH is compact if and only if

lim
j→∞
‖ϕ j + ϕ j

‖ZH = 0. (3.1)

AIMS Mathematics Volume 8, Issue 10, 23087–23107.
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Proof. As in the proof of Theorem 2.1, we let the sequence p j(w) = w j + w j, where w ∈ D and j ≥ 0
is an integer. Since the sequence {p j} is bounded in the harmonic space H∞ and converges to zero
uniformly on compact subsets D ⊂ D, if Cϕ : H∞ → ZH is compact then it is a bounded operator and
(3.1) holds.

Conversely, assume the operator Cϕ : H∞ → ZH is bounded and lim
j→∞
‖ϕ j + ϕ j

‖ZH = 0.

Now, we define a sequence {h j} in the harmonic spaceH∞ with L∞ = sup j∈N ‖h j‖∞ < ∞ and h j → 0
uniformly on compact subsets D ⊂ D, as j→ ∞.

To prove the compactness of Cϕ : H∞ → ZH, it suffices to show that lim
j→∞
‖h j‖ZH = 0.

Next, we suppose ‖Cϕp j‖ZH ≤ L (L is an upper bound for ‖Cϕp j‖ZH ). Then, for ε > 0 there is N ∈ N
such that

‖ϕ j + ϕ j
‖ZH = ‖Cϕp j‖ZH < ε, ∀ j ≥ N.

By using the test function (2.4), for k = 1, 2, 3 and ζ ∈ D, we have

‖Cϕhϕ(ζ),k‖ZH ≤ (1 − |ϕ(ζ)|2)k
{[k+N−2∑

j=k−1

+

∞∑
j=k+N−1

]( j
k − 1

)
|ϕ(ζ)| j−k+1‖Cϕp j−k+1‖ZH

}
< (1 − |ϕ(ζ)|2)k

(
k + N − 1

N − 1

)
L + 2kε.

On the other hand, for any ζ ∈ D let 0 < s < 1 be sufficiently close to 1 such that |ϕ(ζ)| > s. Thus,

‖Cϕhϕ(ζ),k‖ZH < 2k+1ε, for k = 1, 2, 3.

Since ε is arbitrary, for k = 1, 2, 3, it follows that

lim
|ϕ(ζ)|→1

‖Cϕhϕ(ζ),k‖ZH = 0. (3.2)

Going back to the proof of Theorem 2.1, from (2.12) and (2.16), we know

(1 − |ζ |2)|ϕ′(ζ)|2(
1 − |ϕ(ζ)|2

)2 ≤
‖Cϕhϕ(ζ),1‖ZH + 2‖Cϕhϕ(ζ),2‖ZH + ‖Cϕhϕ(ζ),3‖ZH

18|ϕ(ζ)|2
,

(1 − |ζ |2)|ϕ′′(ζ)|
1 − |ϕ(ζ)|2

≤
2‖Cϕhϕ(ζ),2‖ZH + ‖Cϕhϕ(ζ),3‖ZH

4|ϕ(ζ)|
. (3.3)

Using (3.3), we have

lim
|ϕ(ζ)|→1

(1 − |ζ |2)|ϕ′(ζ)|2(
1 − |ϕ(ζ)|2

)2 = 0, lim
|ϕ(ζ)|→1

(1 − |ζ |2)|ϕ′′(ζ)|
1 − |ϕ(ζ)|2

= 0.

Thus, for any 0 < s < 1 sufficiently close to 1 if |ϕ(ζ)| > s. Then,

(1 − |ζ |2)|ϕ′(ζ)|2(
1 − |ϕ(ζ)|2

)2 < ε, and
(1 − |ζ |2)|ϕ′′(ζ)|

1 − |ϕ(ζ)|2
< ε. (3.4)
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By Lemma 2.1, if hm ∈ H
∞, then βn

H(hm) � ‖hm‖∞, for any m ∈ N. Thus, using (3.4), for |ϕ(w)| > s
we have

(1 − |ζ |2)
(∣∣∣∣∣∂2(Cϕhm)

∂ζ2 (ζ)
∣∣∣∣∣+∣∣∣∣∣∂2(Cϕhm)

∂ζ
2 (ζ)

∣∣∣∣∣)
≤ (1 − |ζ |2)|ϕ′(ζ)|2

(∣∣∣∣∣∂2hm(ϕ(ζ))
∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2hm(ϕ(ζ))

∂ζ
2

∣∣∣∣∣)
+ (1 − |ζ |2)|ϕ′′(ζ)|

(∣∣∣∣∣∂hm(ϕ(ζ))
∂ζ

∣∣∣∣∣+∣∣∣∣∣∂hm(ϕ(ζ))

∂ζ

∣∣∣∣∣)
� ‖hm‖∞

( (1 − |ζ |2)|ϕ′(ζ)|2

(1 − |ϕ(ζ)|2)2 +
(1 − |ζ |2)|ϕ′′(ζ)|

(1 − |ϕ(ζ)|2)

)
� εL∞. (3.5)

Once again going back to the proof of Theorem 2.1, from (2.7) and (2.8), we know

sup
ζ∈D

(1 − |ζ |2)|ϕ′′(ζ)| ≤
L
4

and sup
ζ∈D

(1 − |ζ |2)|ϕ′(ζ)|2 ≤
3L
8
. (3.6)

We know by Cauchy’s estimates that, the sequences
{∂hm
∂ζ

}
,
{∂hm

∂ζ

}
,
{∂2hm
∂ζ2

}
and

{∂2hm

∂ζ
2

}
are convergent to

zero on D. Thus, using (3.6), for any 0 < s < 1 if |ϕ(ζ)| ≤ s, we obtain

(1 − |ζ |2)
(∣∣∣∣∣∂2(Cϕhm)

∂ζ2 (ζ)
∣∣∣∣∣+∣∣∣∣∣∂2(Cϕhm)

∂ζ
2 (ζ)

∣∣∣∣∣)
≤

3L
8

(∣∣∣∣∣∂2hm(ϕ(ζ))
∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2hm(ϕ(ζ))

∂ζ
2

∣∣∣∣∣)+L
4

(∣∣∣∣∣∂hm(ϕ(ζ))
∂ζ

∣∣∣∣∣+∣∣∣∣∣∂hm(ϕ(ζ))

∂ζ

∣∣∣∣∣), (3.7)

which implies that

lim
m→∞

(1 − |ζ |2)
(∣∣∣∣∣∂2(Cϕhm)

∂ζ2 (ζ)
∣∣∣∣∣+∣∣∣∣∣∂2(Cϕhm)

∂ζ
2 (ζ)

∣∣∣∣∣)
≤ lim

m→∞

∣∣∣∣∣∂2hm(ϕ(ζ))
∂ζ2

∣∣∣∣∣+ lim
m→∞

∣∣∣∣∣∂2hm(ϕ(ζ))

∂ζ
2

∣∣∣∣∣+ lim
m→∞

∣∣∣∣∣∂hm(ϕ(ζ))
∂ζ

∣∣∣∣∣+ lim
m→∞

∣∣∣∣∣∂hm(ϕ(ζ))

∂ζ

∣∣∣∣∣= 0. (3.8)

Therefore, limm→∞ |Cϕhm(0)| = 0 and limm→∞

∣∣∣∂[Cϕhm](0)
∂ζ

∣∣∣= 0 . Thus, we obtain

lim
m→∞
‖Cϕhm‖ZH = 0. (3.9)

By Lemma 3.1, we verify that Cϕ : H∞ → ZH is compact. The proof of the main theorem of this
section is complete.

Our next goal of this paper is to provide an approximation of the essential norm.
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4. Essential norm

In this section, we characterize the essential norms of the composition operators from H∞ to ZH.
We know that the essential norm ‖T‖e of an operator T is its distance from the compact operators in the
operator norm. Consider X and Y to be Banach spaces and let T : X → Y be a bounded linear operator.
Then, the essential norm of T between X and Y is given by

‖T‖e,X→Y = inf{‖T − T‖X→Y |T : X → Y is compact}.

Let b ∈ D be fixed and let 1 ≤ k ≤ 3 in (2.3). Then, for any ζ ∈ D we obtain

hb,k(ζ) =

(1 − |b|2

1 − bζ

)k

+

(1 − |b|2

1 − bζ

)k

.

Now, we define B1 = lim sup
|ϕ(w)|→1

(1−|w|2)|ϕ′′(w)|
(1−|ϕ(w)|2) and B2 = lim sup

|ϕ(w)|→1

(1−|w|2)|ϕ′(w)|2

(1−|ϕ(w)|2)2 .

Theorem 4.1. Let ϕ ∈ S (D) and consider Cϕ : H∞ → ZH is bounded. Then,

‖Cϕ‖e,H∞→ZH ≈ max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k(ζ)‖ZH

}
≈ max{B1, B2}.

Proof. First, we prove that

max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
� ‖Cϕ‖e,H∞→ZH .

Fix b ∈ D since for all 1 ≤ k ≤ 3, hb,k ∈ H
∞ and hb,k converges uniformly to 0 on compact subsets

D ⊂ D. Then, for a compact operator T : H∞ → ZH we have

lim
|b|→1
‖T hb,k‖ZH = 0, ∀ k = 1, 2, 3.

Thus,

‖Cϕ − T‖H∞→ZH � lim sup
|b|→1

‖(Cϕ − T )hb,k‖ZH

≥ lim sup
|b|→1

‖Cϕhb,k‖ZH − lim sup
|b|→1

‖T hb,k‖ZH .

Hence, we obtain

‖Cϕ‖e,H∞→ZH = inf
T
‖Cϕ − T‖ � max

1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
.

Next, to prove that ‖Cϕ‖e,H∞→ZH � max{B1, B2}we define the sequence {wi} such that lim
i→∞
|ϕ(wi)| = 1

for wi ∈ D and i ≥ 0 is an integer.
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Moreover, we define

Gi,1(ζ) = hϕ(wi),1(ζ) −
5
3

hϕ(wi),2(ζ) +
2
3

hϕ(wi),3(ζ),

Gi,2(ζ) = hϕ(wi),1(ζ) − 2hϕ(wi),2(ζ) + hϕ(wi),3(ζ).

For all ζ ∈ D, it can be proven that Gi,1,Gi,2 ∈ H
∞ and lim

|ϕ(wi)|→1
Gi,1 = lim

|ϕ(wi)|→1
Gi,2 = 0 uniformly on

compact subsets D ⊂ D. By direct calculation, we see that Gi,1(ϕ(wi)) = Gi,2(ϕ(wi)) = 0.
By (2.5) we know that

∂hϕ(wi),1

∂ζ
(ϕ(wi)) =

ϕ(wi)(
1 − |ϕ(wi)|2

) ;
∂hϕ(wi),1

∂ζ
(ϕ(wi)) =

ϕ(wi)(
1 − |ϕ(wi)|2

) ,
∂hϕ(wi),2

∂ζ
(ϕ(wi)) =

2ϕ(wi)(
1 − |ϕ(wi)|2

) ;
∂hϕ(wi),2

∂ζ
(ϕ(wi)) =

2ϕ(wi)(
1 − |ϕ(wi)|2

) ,
∂hϕ(wi),3

∂ζ
(ϕ(wi)) =

3ϕ(wi)(
1 − |ϕ(wi)|2

) ;
∂hϕ(wi),3

∂ζ
(ϕ(wi)) =

3ϕ(wi)(
1 − |ϕ(wi)|2

) .
Moreover,

∂2hϕ(wi),1

∂ζ2 (ϕ(wi)) =
2(ϕ(wi))2(

1 − |ϕ(wi)|2
)2 ;

∂2hϕ(wi),1

∂ζ
2 (ϕ(wi)) =

2(ϕ(wi))2(
1 − |ϕ(wi)|2

)2 ,

∂2hϕ(wi),2

∂ζ2 (ϕ(wi)) =
6(ϕ(wi))2(

1 − |ϕ(wi)|2
)2 ;

∂2hϕ(wi),2

∂ζ
2 (ϕ(wi)) =

6(ϕ(wi))2(
1 − |ϕ(wi)|2

)2 ,

∂2hϕ(wi),3

∂ζ2 (ϕ(wi)) =
12(ϕ(wi))2(

1 − |ϕ(wi)|2
)2 ;

∂2hϕ(wi),3

∂ζ
2 (ϕ(wi)) =

12(ϕ(wi))2(
1 − |ϕ(wi)|2

)2 .

Thus, ∣∣∣∣∣∂(Gi,1)
∂ζ

(ϕ(wi))
∣∣∣∣∣ =

∣∣∣∣∣∂[hϕ(wi),1(ζ)]
∂ζ

−
5
3
∂[hϕ(wi),2(ζ)]

∂ζ
+

2
3
∂[hϕ(wi),3(ζ)]

∂ζ

∣∣∣∣∣
=

1
3

|ϕ(wi)|
(1 − |ϕ(wi)|2)

,

∂2(Gi,1)
∂ζ2 (ϕ(wi)) =

∂2hϕ(wi),1

∂ζ2 (ϕ(wi)) −
5
3
∂2hϕ(wi),2

∂ζ2 (ϕ(wi)) +
2
3
∂2hϕ(wi),3

∂ζ2 (ϕ(wi)) = 0.

Moreover, we obtain

∂(Gi,2)
∂ζ

(ϕ(wi)) =
∂2hϕ(wi),1

∂ζ2 (ϕ(wi)) − 2
∂2hϕ(wi),2

∂ζ2 (ϕ(wi)) +
∂2hϕ(wi),1

∂ζ2 (ϕ(wi)) = 0,∣∣∣∣∣∂2(Gi,2)
∂ζ2 (ϕ(wi))

∣∣∣∣∣ =

∣∣∣∣∣∂2hϕ(wi),1

∂ζ2 (ϕ(wi)) − 2
∂2hϕ(wi),2

∂ζ2 (ϕ(wi)) +
∂2hϕ(wi),3

∂ζ2 (ϕ(wi))
∣∣∣∣∣

=
2|ϕ(wi)|2

(1 − |ϕ(wi)|2)2 .
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Similarly, ∣∣∣∣∣∂(Gi,1)

∂ζ
(ϕ(wi))

∣∣∣∣∣ =
1
3

|ϕ(wi)|
(1 − |ϕ(wi)|2)

,
∂2(Gi,1)

∂ζ
2 (ϕ(wi)) = 0,∣∣∣∣∣∂2(Gi,2)

∂ζ
2 (ϕ(wi))

∣∣∣∣∣ =
2|ϕ(wi)|2

(1 − |ϕ(wi)|2)2 ,
∂(Gi,2)

∂ζ
(ϕ(wi)) = 0.

Since T : H∞ → ZH is a compact operator, by Lemma 3.1 we have

‖Cϕ − T‖H∞→ZH � lim sup
i→∞

‖CϕGi,1‖ZH − lim sup
i→∞

‖TGi,1‖ZH

= lim sup
i→∞

(1 − |wi|
2)
{∣∣∣∣∣∂2(CϕGi,1(ζ))

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2(CϕGi,1(ζ))

∂ζ
2

∣∣∣∣∣}
= lim sup

i→∞
(1 − |wi|

2)|ϕ′(wi)|2
{∣∣∣∣∣∂2(Gi,1)

∂ζ2 (ϕ(wi))
∣∣∣∣∣+∣∣∣∣∣∂2(Gi,1)

∂ζ
2 (ϕ(wi))

∣∣∣∣∣}
+ lim sup

i→∞
(1 − |wi|

2)|ϕ′′(wi)|
{∣∣∣∣∣∂(Gi,1)

∂ζ
(ϕ(wi))

∣∣∣∣∣+∣∣∣∣∣∂(Gi,1)

∂ζ
(ϕ(wi))

∣∣∣∣∣}
� lim sup

i→∞
(1 − |wi|

2)
|ϕ(wi)||ϕ′′(wi)|
(1 − |ϕ(wi)|2)

.

Thus,

‖Cϕ‖e,H∞→ZH = inf
T
‖Cϕ − T‖

� lim sup
i→∞

(1 − |wi|
2)
|ϕ(wi)||ϕ′′(wi)|
(1 − |ϕ(wi)|2)

= lim sup
|ϕ(w)|→1

(1 − |w|2)|ϕ′′(w)|
(1 − |ϕ(w)|2)

= B1.

In the same way, we have

‖Cϕ − T‖H∞→ZH � lim sup
i→∞

‖CϕGi,2‖ZH − lim sup
i→∞

‖TGi,2‖ZH

= lim sup
i→∞

(1 − |wi|
2)
{∣∣∣∣∣∂2(CϕGi,2(ζ))

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2(CϕGi,2(ζ))

∂ζ
2

∣∣∣∣∣}
= lim sup

i→∞
(1 − |wi|

2)|ϕ′(wi)|2
{∣∣∣∣∣∂2(Gi,2)

∂ζ2 (ϕ(wi))
∣∣∣∣∣+∣∣∣∣∣∂2(Gi,2)

∂ζ
2 (ϕ(wi))

∣∣∣∣∣}
+ lim sup

i→∞
(1 − |wi|

2)|ϕ′′(wi)|
{∣∣∣∣∣∂(Gi,2)

∂ζ
(ϕ(wi))

∣∣∣∣∣+∣∣∣∣∣∂(Gi,2)

∂ζ
(ϕ(wi))

∣∣∣∣∣}
� lim sup

i→∞
(1 − |wi|

2)
|ϕ(wi)|2|ϕ′(wi)|2

(1 − |ϕ(wi)|2)2 .
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Thus,

‖Cϕ‖e,H∞→ZH = inf
T
‖Cϕ − T‖

� lim sup
i→∞

(1 − |wi|
2)
|ϕ(wi)|2|ϕ′(wi)|2

(1 − |ϕ(wi)|2)2

= lim sup
|ϕ(w)|→1

(1 − |w|2)|ϕ′(w)|2

(1 − |ϕ(w)|2)2 = B2.

Hence, we obtain

‖Cϕ‖e,H∞→ZH = inf
T
‖Cϕ − T‖ � max{B1, B2}.

Next, we prove that

‖Cϕ‖e,H∞→ZH � max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
.

For any 0 ≤ δ < 1, let the operator Tδ : Har(D)→ Har(D) such that

(Tδu)(w) = uδ(w) = u(δw), u ∈ Har(D).

Without a doubt, uδ → u uniform on compact subsets of the unit disk as δ → 1. Moreover, Tδ is a
compact operator onH∞ and ‖Tδ‖H∞→H∞ ≤ 1. For {δi} ⊂ (0, 1) a sequence such that δi → 1 as i→ ∞.
Thus, for all positive integers i, we obtain CϕTδi : H∞ → ZH is a compact operator.

However, the definition of the essential norm indicates that

‖Cϕ‖e,H∞→ZH ≤ lim
i→∞

sup ‖Cϕ −CϕTδi‖H∞→ZH . (4.1)

Thus, we only need to demonstrate that

lim sup
i→∞

‖(Cϕ −CϕTδi‖H∞→ZH � max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
.

Let u ∈ H∞ such that ‖u‖∞ ≤ 1. Then,

‖(Cϕ −CϕTδi)u‖ZH = |u(ϕ(0)) − u(δiϕ(0))|

+|ϕ′(0)|
{∣∣∣∣∣∂(u − uδi)

∂ζ
(ϕ(0))

∣∣∣∣∣+∣∣∣∣∣∂(u − uδi)

∂ζ
(ϕ(0))

∣∣∣∣∣}
+ sup

ζ∈D

(1 − |ζ |2)
{∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ
2

∣∣∣∣∣}. (4.2)

Thus, we have that

lim
i→∞
|u(ϕ(0)) − u(δiϕ(0))| = lim

i→∞

∣∣∣∣∣∂(u − uδi)
∂ζ

(ϕ(0))
∣∣∣∣∣|ϕ′(0)|

= lim
i→∞

∣∣∣∣∣∂(u − uδi)

∂ζ
(ϕ(0))

∣∣∣∣∣|ϕ′(0)| = 0. (4.3)
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Moreover, we consider

lim sup
i→∞

(1 − |ζ |2)
{∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ
2

∣∣∣∣∣}
≤ lim sup

i→∞
sup
|ϕ(ζ)|≤δN

(1 − |ζ |2)
{∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ
2

∣∣∣∣∣}
+ lim sup

i→∞
sup
|ϕ(ζ)|>δN

(1 − |ζ |2)
{∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[(u − uδi) ◦ ϕ(ζ)]

∂ζ
2

∣∣∣∣∣}
= Iϕ,i + Jϕ,i. (4.4)

Now, let N ∈ N be large enough and δi ≥
1
2 , for all i ≥ N. Then,

Iϕ,i ≤ lim sup
i→∞

sup
|ϕ(ζ)|≤δN

(1 − |ζ |2)|ϕ′′(ζ)|
{∣∣∣∣∣∂[(u − uδi)(ϕ(ζ))]

∂ζ

∣∣∣∣∣+∣∣∣∣∣∂[(u − uδi)(ϕ(ζ))]

∂ζ

∣∣∣∣∣}
+ lim sup

i→∞
sup
|ϕ(ζ)|≤δN

(1 − |ζ |2)|ϕ′(ζ)|2
{∣∣∣∣∣∂2[(u − uδi)(ϕ(ζ))]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[(u − uδi)(ϕ(ζ))]

∂ζ
2

∣∣∣∣∣}.
Since Cϕ : H∞ → ZH is bounded, from Theorem 2.1 we see that

sup
ζ∈D

(1 − |ζ |2)|ϕ′′(ζ)| < ∞, sup
ζ∈D

(1 − |ζ |2)|ϕ′(ζ)|2 < ∞.

Moreover, since the following limits are uniform on compact subsets D ⊂ D,

lim
i→∞

δi
∂uδi

∂ζ
=
∂u
∂ζ
, lim

i→∞
δi
∂uδi

∂ζ
=
∂u

∂ζ
,

lim
i→∞

(δi)2∂
2uδi

∂ζ2 =
∂2u
∂ζ2 , lim

i→∞
(δi)2∂

2uδi

∂ζ
2 =

∂2u

∂ζ
2 .

Then, we have

lim sup
i→∞

sup
|w|≤δN

{∣∣∣∣∣∂u(w)
∂ζ

−
∂uδi(w)
∂ζ

∣∣∣∣∣+∣∣∣∣∣∂u(w)

∂ζ
−
∂uδi(w)

∂ζ

∣∣∣∣∣}= 0,

lim sup
i→∞

sup
|w|≤δN

{∣∣∣∣∣∂2u(w)
∂ζ2 −

∂2uδi(w)
∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2u(w)

∂ζ
2 −

∂2uδi(w)

∂ζ
2

∣∣∣∣∣}= 0.

Hence, by the above equations we have

Iϕ,i = 0. (4.5)
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Next, considering |ϕ(ζ)| > δN , we obtain

Jϕ,i ≤ lim sup
i→∞

sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′′(ζ)|
{∣∣∣∣∣∂[(u − uδi)(ϕ(ζ))]

∂ζ

∣∣∣∣∣+∣∣∣∣∣∂[(u − uδi)(ϕ(ζ))]

∂ζ

∣∣∣∣∣}
+ lim sup

i→∞
sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′(ζ)|2
{∣∣∣∣∣∂2[(u − uδi)(ϕ(ζ))]

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2[(u − uδi)(ϕ(ζ))]

∂ζ
2

∣∣∣∣∣}
≤ lim sup

i→∞
sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′′(ζ)|
{∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣+∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣}
+ lim sup

i→∞
sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′′(ζ)|δi

{∣∣∣∣∣∂u(δiϕ(ζ))
∂ζ

∣∣∣∣∣+∣∣∣∣∣∂u(δiϕ(ζ))

∂ζ

∣∣∣∣∣}
+ lim sup

i→∞
sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′(ζ)|2
{∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ
2

∣∣∣∣∣}
+ lim sup

i→∞
sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′(ζ)|2(δi)2
{∣∣∣∣∣∂2u(δiϕ(ζ))

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2u(δiϕ(ζ))]

∂ζ
2

∣∣∣∣∣}
= lim sup

i→∞

4∑
j=1

R j.

Now we estimate the quantities R j, where j = 1, 2, 3. We define

Gb,1(ζ) = hb,1(ζ) −
5
3

hb,2(ζ) +
2
3

hb,3(ζ),

Gb,2(ζ) = hb,1(ζ) − 2hb,2(ζ) + hb,3(ζ).

By Lemma 2.1, since βH(u) � ‖u‖∞ for all u ∈ H∞. Because ‖u‖∞ ≤ 1, we have

R1 = sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′′(ζ)|
{∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣+∣∣∣∣∣∂u(ϕ(ζ))

∂ζ

∣∣∣∣∣},
�

1
δN
‖u‖∞ sup

|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′′(ζ)|
|ϕ(ζ)|

3(1 − |ϕ(ζ)|2)
� sup

|b|>δN

‖CϕGb,1‖ZH

� sup
|b|>δN

‖Cϕhb,1‖ZH +
5
3

sup
|b|>δN

‖Cϕhb,2‖ZH +
2
3

sup
|b|>δN

‖Cϕhb,3‖ZH . (4.6)

Consequently,

lim sup
i→∞

R1 �

3∑
k=1

lim sup
|b|→1

‖Cϕhb,k‖ZH . (4.7)

Similarly, we see that

lim sup
i→∞

R2 �

3∑
k=1

lim sup
|b|→1

‖Cϕhb,k‖ZH . (4.8)
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By direct calculation, β2
H(u) � ‖u‖∞, for all u ∈ H∞. Because ‖u‖∞ ≤ 1,

R3 = sup
|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′(ζ)|2
{∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ2

∣∣∣∣∣+∣∣∣∣∣∂2u(ϕ(ζ))

∂ζ
2

∣∣∣∣∣},
� ‖u‖∞ sup

|ϕ(ζ)|>δN

(1 − |ζ |2)|ϕ′(ζ)|2
2|ϕ(ζ)|2

3(1 − |ϕ(ζ)|2)2

� sup
|b|>δN

‖CϕGb,2‖ZH

� sup
|b|>δN

‖Cϕhb,1‖ZH + 2 sup
|b|>δN

‖Cϕhb,2‖ZH + sup
|b|>δN

‖Cϕhb,3‖ZH . (4.9)

Thus, we obtain

lim sup
i→∞

R3 �

3∑
k=1

lim sup
|b|→1

‖Cϕhb,k‖ZH . (4.10)

Similarly, we see that

lim sup
i→∞

R4 �

3∑
k=1

lim sup
|b|→1

‖Cϕhb,k‖ZH . (4.11)

By the inequalities (4.7)-(4.11), we obtain

Jϕ,i � max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
. (4.12)

Hence, by applying (4.5) and (4.12) we determine that

lim sup
i→∞

‖(Cϕ −CϕTδi‖H∞→ZH � max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
.

Finally, we prove that

‖Cϕ‖e,H∞→ZH � max{B1, B2}.

According to the definition of the essential norm, we only need to prove that

lim sup
i→∞

‖Cϕ −CϕTδi‖H∞→ZH � max{B1, B2}.

From (4.6), we see that

lim sup
i→∞

R1 � lim sup
|ϕ(ζ)|→1

(1 − |ζ |2)|ϕ′′(ζ)|
|ϕ(ζ)|

(1 − |ϕ(ζ)|2)
= B2. (4.13)

Similarly,

lim sup
i→∞

R2 � B2. (4.14)
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Moreover, for (4.9), we see that

lim sup
i→∞

R3 � lim sup
|ϕ(ζ)|→1

(1 − |ζ |2)|ϕ′(ζ)|2
2|ϕ(ζ)|2

3(1 − |ϕ(ζ)|2)2 = B1. (4.15)

Similarly,

lim sup
i→∞

R4 � B1. (4.16)

Hence, by the inequalities (4.13)-(4.16) we obtain

‖Cϕ‖e,H∞→ZH � max{B1, B2}.

The proof is complete.

Theorem 4.2. Let ϕ ∈ S (D) such that Cϕ : H∞ → ZH is bounded. Then,

‖Cϕ‖e,H∞→ZH ≈ lim sup
j→∞

‖ϕ j + ϕ j
‖ZH .

Proof. First, we prove that

‖Cϕ‖e,H∞→ZH � lim sup
j→∞

‖ϕ j + ϕ j
‖ZH .

Set the sequence p j(w) = w j + w j, for w ∈ D and when j ≥ 0 is an integer. Then, ‖p j‖∞ = 1 and p j

converges uniformly to 0 on compact subsets D ⊂ D. Therefore, by Lemma 3.1 we see that

lim
j→∞
‖T p j‖ZH = 0.

Hence,

‖Cϕ − T‖H∞→ZH � lim sup
j→∞

‖(Cϕ − T )p j‖ZH � lim sup
j→∞

‖Cϕp j‖ZH .

Therefore,

‖Cϕ‖e,H∞→ZH � lim sup
j→∞

‖Cϕp j‖ZH = lim sup
j→∞

‖ϕ j + ϕ j
‖ZH . (4.17)

Next, we prove that
‖Cϕ‖e,H∞→ZH � lim sup

j→∞
‖ϕ j + ϕ j

‖ZH .

Since Cϕ : H∞ → ZH is bounded, by Theorem 2.1

L := sup
j≥0
‖ϕ j + ϕ j

‖ZH < ∞.

Now, consider the test function hb,k with b ∈ D in (2.4), for k = 1, 2, 3. By linearity of Cϕ, for any
fixed positive integer n ≥ 2, we have
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‖Cϕhb,1‖ZH ≤ (1 − |b|2)
∞∑
j=0

|b| j‖Cϕp j‖ZH

= (1 − |b|2)
[{ n−1∑

j=0

+

∞∑
j=n

}
|b| j‖Cϕp j‖ZH

]
≤ nL(1 − |b|2) + 2 sup

j≥n
‖ϕ j + ϕ j

‖ZH .

Letting |b| → 1 in the above inequality leads to

lim sup
|b|→1

‖Cϕhb,1‖ZH ≤ 2 sup
j≥n
‖ϕ j + ϕ j

‖ZH

� lim sup
j→∞

‖ϕ j + ϕ j
‖ZH .

Similarly, we can prove that

lim sup
|b|→1

‖Cϕhb,2‖ZH � lim sup
j→∞

‖ϕ j + ϕ j
‖ZH ,

lim sup
|b|→1

‖Cϕhb,3‖ZH � lim sup
j→∞

‖ϕ j + ϕ j
‖ZH .

Hence,

max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
� lim sup

j→∞
‖ϕ j + ϕ j

‖ZH .

By Theorem 4.1, we obtain

‖Cϕ‖e,H∞→ZH � max
1≤k≤3

{
lim sup
|b|→1

‖Cϕhb,k‖ZH

}
� sup

j→∞
‖ϕ j + ϕ j

‖ZH . (4.18)

By (4.17) and (4.18), we have achieved the desired result.

5. Conclusions

In this work, an interesting result in harmonic mappings about the operator-theoretic properties of
composition operators between H∞ space and harmonic Zygmund space ZH has been obtained. It is
well known that the existing similar results in spaces of analytic functions have been applied many
times to the composition operators between H∞ and Zygmund space Z. We hope that this study can
attract people’s attention to the operator theory on harmonic mappings.
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