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Abstract: Recently, there has been increased interest in emotion recognition. It is widely utilised in 

many industries, including healthcare, education and human-computer interaction (HCI). Different 

emotions are frequently recognised using characteristics of human emotion. Multimodal emotion 

identification based on the fusion of several features is currently the subject of increasing amounts of 

research. In order to obtain a superior classification performance, this work offers a deep learning 

model for multimodal emotion identification based on the fusion of electroencephalogram (EEG) 

signals and facial expressions. First, the face features from the facial expressions are extracted using a 

pre-trained convolution neural network (CNN). In this article, we employ CNNs to acquire spatial 

features from the original EEG signals. These CNNs use both regional and global convolution kernels 

to learn the characteristics of the left and right hemisphere channels as well as all EEG channels. 

Exponential canonical correlation analysis (ECCA) is used to combine highly correlated data from 

facial video frames and EEG after extraction. The 1-D CNN classifier uses these combined features to 

identify emotions. In order to assess the effectiveness of the suggested model, this research ran tests 

on the DEAP dataset. It is found that Multi_Modal_1D-CNN achieves 98.9% of accuracy, 93.2% of 

precision, 89.3% of recall, 94.23% of F1-score and 7sec of processing time. 

Keywords: electroencephalogram (EEG); emotion recognition; CNN; feature fusion; pre-processing; 

canonical correlation 
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1. Introduction  

Daily lives depend heavily on emotion detection which enables software applications to respond 

in ways that consider the user’s emotional states [1]. The use of emotion recognition can be seen in 

many different fields including communication skills, health monitoring and the monitoring and 

prediction of fatigue condition. Different levels of modalities are influenced by emotion recognition. 

The most common ways that emotions are displayed externally are through the visual, verbal, gestural, 

biological, electroencephalogram (EEG) and temperature of the body [2,3]. Due to the ease with which 

their datasets may be created, voice and visual are utilised most frequently in emotion recognition [4].  

Recent research has focused on emotion recognition in unimodal modalities like text, audio and 

images. Even though unimodal emotion identification has achieved several ground-breaking advances 

over the years, it still has certain issues [5]. Poor accuracy results from the usage of unimodality which 

is unable to accurately express a particular emotion that the user is experiencing at the time. Therefore, 

it will be more thorough and detailed to use multimodal qualities to characterize a certain emotion. 

Emotion recognition accuracy is improved by multimodality [6,7]. However, as most models call for 

the use of stored information for offsite implementation, the results indicate some difficulties in 

integrating video, audio and EEG emotion recognition at the same time. There are three types of affect 

modelling: category, dimensional and component. Six fundamental emotions including joy, sadness, 

fear, anger, disgust and surprise are categorized into separate categories using categorized models 

which are simple to explain. Hierarchical models have been widely used in impact research due to their 

low complexity. The elucidation of additional complicated and difficult feelings is possible with 

volumetric models which portray emotion as a point in multidimensional space with the dimension’s 

valence, induction and control [8].  

Researchers have mainly relied on the streamlined two-dimensional concept of valence and 

arousal that was suggested in [9] where arousal varies in terms of feelings from calm to thrilled and 

valence-type fluctuates between uncomfortable to appealing [10]. Yet, such a multidimensional 

environment may present an important obstacle to effortless emotion recognition systems. A pair of 

fundamental emotions can be combined to create complicated feelings according to the component 

model of emotions which also arranges emotions in a hierarchical form. The eight fundamental bipolar 

emotions in Plutchik’s [11] most well-known component model is based on evolutionary theory. Facial 

expression, body language, vocal tonality, gesticulation and a variety of physiological signals including 

heart rate, perspiration production, pupil size and brain activity to name a few can all be used to convey 

affect.  

Numerous researchers have looked at the issue of identifying emotions from facial expressions in 

movies and still photos. Deep learning methodology advancements have generated a great deal of 

interest in using these techniques for facial emotion recognition (FER) [12,13], the majority of which 

are based on supervised learning. The techniques are unsuitable for online applications because they 

do not permit progressive, adaptive learning on new data. The reader is referred to [14] and the 

references therein for a fantastic review of the use of deep learning and superficial methods of learning 

to FER. Given this, the following are the outcomes of this work: 

• By deleting unnecessary waves from EEG data and pixels in video clips, we suggested an 

effective and compact multimodal emotion identification model that utilises 2 methods i.e., facial 

footage and EEG data. 

• A selection of footage that correlate to four distinct valance-arousal emotional spaces 
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happiness, neutrality, sorrow and fear serve as the basis for the stimulants. A neural network classifier 

uses 4 fundamental emotion levels to identify face expressions. 

• Employing convolution neural networks (CNNs) with both global and local convolution 

kernels, we retrieve spatial features of left and right cerebral avenues as well as all EEG channels using 

the initial EEG signals. To combine closely related data gathered from EEG and face video recordings, 

researchers apply exponential canonical correlation analysis (ECCA). 

• The 1D-CNN model was created primarily to simplify the complexity while transforming its 

characteristics into more understandable terms for analysis of correlations. Numerous tests were run 

on one public dataset to validate the suggested strategy. 

The rest of this paper is ordered as follows: Section 2 mentions a few existing research works. 

Section 3 shows the proposed approach and methodologies. Section 4 exhibits the experimental 

outcomes and discussion. Finally, Section 5 includes the conclusion and speculation on future work. 

2. Related works 

In general, most work on electroencephalogram-based face emotion recognition using multimodal 

features deep learning method are similar to our work. In [15], the authors suggested a multi-modal 

technique that uses face video data and EEG recording to depict the reaction to emotional cues. The 

experimental finding demonstrates 97.5% accuracy in recognising facial emotions and classifying 

them into excitation (class 0) and expressiveness (class 1), exceeding state-of-the-art for the DEAP 

dataset. In order to enhance the model’s generalizability for many themes, the authors in [16] offered 

a unique attention mechanism-based multi-scale feature fusion network (AM-MSFFN) that takes high-

level features into account at various scales.  

To extract sequential temporal and geographical information from EEG signals, we first use a 

spatial-temporal convolutional block. The signify-value approach was used in [17] to identify 

individual differences and derive each participant’s categorization threshold using 

electroencephalogram and periphery physiologic information. An approach for learning shared cross-

domain latent representations of the multi-modal data was proposed in [18] as the multi-modal domain 

adaptive variational autoencoder (MMDA-VAE).  

The differential entropy (DE) features based on EEG data were extracted in [19] and then 

transformed into EEG topographic maps (ETM). The multichannel fusion approach was then utilised 

to combine the ETM and facial expressions. For the categorization of subject-dependent emotions, the 

deep learning classifier CBAM_ResNet34 utilised residual network (ResNet) and convolutional block 

attention module (CBAM). A novel method of multi-modal emotion identification was presented in 

[20]. The method creates a multi-level convolutional neural network (CNN) model for facial 

expression emotion recognition based on the modal information of facial expression. A stacked 

bidirectional LSTM (Bi-LSTM) model for emotion recognition is created using 

electroencephalography (EEG) information modes.  

In [21], a multimodal attention network using bilinear pooling based on low-rank decomposition 

is suggested to determine the attention weights of facial video characteristics and the related EEG 

features in the fusion. Finally, attention weights and the outputs from the two-modality network are 

used to calculate the continuous sphere polarity values. The 3D-CNN is employed in [22] to obtain the 

EEG signal’s final predictions. For the face approach, the precise facial pixels with emotional 

information are first extracted using the mask-RCNN object detection technique in conjunction with 
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openCV modules. The 3D-CNN output characteristics of the face chunks are then classified using the 

support vector machine (SVM) classifier.  

Based on a global to local feature aggregation network (GLFANet), the authors of [23] suggested 

an EEG emotion identification method. This program creates an undirected topological network to 

represent the spatial connection link between channels by first using the spatial location of the EEG 

signal channels and the frequency domain properties of each channel. The emotion recognition of EEG 

and face is made possible in [24] by the spatio-temporal neural network and the separable residual 

network developed by fusion. In order to identify different emotions more accurately, the authors in 

[25] offered an EEG emotion detection model based on the attention mechanism and a pre-trained 

convolution capsule network. This concept uses coordinate attention to add relative spatial information 

to the input signal before mapping the EEG signal to a higher-dimensional space which enhances the 

EEG’s ability to record emotional information. A unique approach to multi-task learning with a capsule 

network (CapsNet) and an attention mechanism is proposed in [26] as a basis for EEG-based emotion 

identification. Finally, in order to extract crucial information, the attention mechanism might alter the 

weight of various channels [27]. 

The techniques covered in the literature supported the use of facial video clips and EEG for 

emotion identification. Nevertheless, EEG data were quite delicate and are dampened by inferior 

implants. If the individual’s inner state of mind differs from its gestures, the subject’s gestures were 

inadequate for a fair judgement. Exterior achievement, on the other hand, is merely one way to portray 

feeling and is unable to capture the full range of a person’s feelings [28–30]. The neurological system 

of the body has an impact on physiological differences which can better reflect an individual’s 

emotional state. As a result, a distinctive study trend is emerging among scientists all over the world: 

the integration of physiologic and quasi-physiological data for the detection of emotion. It is effective 

to combine facial video clips and EEG signals for bimodal emotion recognition because they have both 

been extensively investigated in non-physiological and physiological contexts. As a result, the 

matching information can improve the objectivity and accuracy of emotion recognition because to this 

cooperative connection.  

In most of their trials, the researchers used full-channel EEG signals to gather EEG signal data. 

The precision of experimental results is impacted by the whole channel signal, which is not favorable 

to experimentation. Channel selection technology is a current research hotspot since it is unknown 

which channels will be able to represent changes in mood the best. Researchers have made some 

advances in using deep understanding to emotion recognition based on EEG signals in recent years 

with the rapid development of deep learning. There are countless models for mixed neural network 

emotion recognition.  

3. Proposed methodology 

This section outlines the general model architecture and examines the suggested methods for 

continual multimodal emotion recognition. Our methodology revolves around the execution of 

continuous synchronized multimodal emotion recognition for face and EEG. Figure 1 depicts the 

system model in broad strokes. The four stages of the system’s model include pre-processing, feature 

extraction, fusion and emotion recognition model (A–D). The overall architecture’s components are 

individually explained as below. 



22988 

AIMS Mathematics Volume 8, Issue 10, 22984–23002. 

 

Figure 1. System architecture for multimodal fusion based facial emotion recognition. 

3.1. Pre-processing using adaptive filters 

The pre-processing step is an important element in the image and signal analysis schema [31,32]. 

It can enhance the original image and reduce noise or unwanted details. 

i. Histogram equalization—this technique increases the pixel’s brightness spectrum from 

the basic scale to 0 to 255. Therefore, the upgraded images have a broader variety of 

brightness and somewhat stronger contrast. 

ii. The filter kernel size was empirically adjusted at 5 × 5 size. Hence Hist. eq. + Gaussian 

blur—this filter lowers certain noise and undesired details that can be confusing for the 

neural network. 

iii. Hist. eq. + bilateral filter—this filter preserves edges while also reducing some noise 

and extraneous details that could confuse the neural network. The experimentally 

determined parameters of the filter are: width = 5, color = 1 and height = 75. 

iv. Adaptive masking—In this suggested pre-processing technique, we first determined the 

maximum (max) and minimum (min) pixel intensities before applying binary 

thresholding with the threshold given by Eq 1. After that, morphologic closure was 
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applied. By doing this, the adaptive mask is created, and following bitwise operation, 

the starting image’s aperture is removed. 

v. Adaptive masking + hist. eq. + Gaussian blur—this method joins adaptive masking with 

histogram equalization and Gaussian blur. 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑖𝑛 + 0.9. (𝑚𝑎𝑥 − min). (1) 

3.2. Resolution improvement  

The process of combining many low-resolution points of view (POVs) iteratively to create a 

higher-resolution image is referred to here as extremely-resolution. The initial estimate of the high-

resolution image, 𝑓(0), in the Irani and Peleg definition of a high-resolution method can be based on 

the average of the amplified observations relocated to a common starting frame. 

 (2) 

where  is the up-sampling operator from the low-resolution to the high-resolution representation, 

𝑇𝑘
−1 is the geometry conversion to a common standard structure and 𝑔𝑘 is one of 𝐾 captures. If the 

process of acquisition were sufficiently modelled, it would be possible to extract the low-resolution 

data collected 𝑔𝑘 from the “true” image 𝑓. The procedure would involve moving the image to the kth 

point of view, blurring it to compensate for the system’s low resolution, down sampling it to that rate 

and adding noise. The low-resolution data is modelled for a certain estimate of the image, 𝑓(𝑛): 

 (3) 

where s ↓ is the down sampling operator, which aggregates pixels belonging to the lesser resolution 

and ∗ h is the distortion operator with the gaussian h. The phrase “noise” is dropped. Tk. is the kth 

acquisition’s initial geometric transformation from the common reference frame. The imager and the 

object have often moved physically from their initial positions. The distinction in the low-resolution 

data gk and the term g˜(n)k , which indicates whatever the low-resolution information should have 

been had the estimate 𝑓(𝑛) been accurate, is used to correct the prior estimate of the high-resolution 

picture 𝑓(𝑛)in order to get a better estimate of the image f. The subsequent high-resolution estimation 

phase f (n+1) is as follows: 

. (4) 

Here, the disparities among gk and g˜(n)k are summed over K captures, relocated to a common 

reference frame,𝑇𝑘
−1 and up-sampled to create the smaller super-resolution pixel size↑ s. Assume that 

𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦) are two input resolution-improved pictures and that 𝑊1(𝑥, 𝑦) and 𝑊1(𝑥, 𝑦) are, 

respectively, the maximum, minimum and mean-maximum DTCWT coefficients. 

Maximum selection: For high pass values, the highest possible coefficients are chosen and the 

mean of the low pass values is used as 
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. (5) 

. (6) 

Here, 𝑊𝐻𝐹and 𝑊𝐿𝐹indicates high pass and low pass filter. Mean selection-average is calculated 

using both the high pass and low pass factors. 

. (7) 

. (8) 

High pass values are averaged while low pass values are used to choose the highest coefficients. 

. (9) 

. (10) 

Utilizing fusion principles, the low-pass and high-pass coefficients for each slice have been 

blended. Each image simply chooses the absolute wavelet coefficients with location from the input 

images to serve as the coefficients at chosen place in the combined image. Before discussing feature 

extraction and classification, the concern notations and abbreviations are given in Table 1.  

Table 1. Description of notations. 

Notation Abbreviation 

𝐻𝑖𝑛𝑝𝑢𝑡 Input vector 

𝐻𝑜𝑢𝑡𝑝𝑢𝑡 Output vector 

H Feature map 

 Activation function 

𝑙 Scaling level 

𝑚𝑠𝑙 Maximum scaling level 

𝑡𝑠𝑙 Total scaling level 

𝑢𝑥 and 𝑣𝑥 Variables u and v in x and y direction 

𝑓𝑔 Filter 

𝑚 Length of filter 

𝑎𝑓(̂𝑠′) Activating function 

𝑐𝑞
𝑑 Offset variable 

ℎ𝑑 Hidden unit 

3.3. Feature extraction of EG and facial clips using CNN 

The CNN architecture was picked for the suggested method’s feature collection and emotion 

identification functions. The approach comprises of two unique models for various tasks. The initial 

CNN model is made to gather characteristics from facial video clips and EEG data. After the features 

are extracted, ECCA is used to perform feature-level fusion and the SoftMax layer is supplied by 

strongly associated characteristics for categorization. The scaling layer, a building element used to 
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adaptively extract useful data-driven spectrogram-like features from raw EEG signals, will be 

discussed first. The scaling layer-based convolutional neural network will then be introduced. We 

examine a multi-kernel convolutional layer that receives a one-dimensional input with shape sampling 

points as inputs and generates a two-dimensional spectrogram-like feature map as output while scaling 

levels using the following layer-wise transmission method. 

. (11) 

The one-dimensional signal and 𝐻𝑖𝑛𝑝𝑢𝑡is the input vector with shape time steps. The output of 𝐻 

is a feature map that resembles a spectrogram in that it is a matrix of activations with shape time steps 

and scaling levels which is given by 𝐻𝑜𝑢𝑡𝑝𝑢𝑡. Scaling a fundamental kernel produces biases for several 

kernels. An activation function is indicated by  where weight is the fundamental kernel from which 

all other kernels are scaled. The scaling level is controlled by the hyperparameter l. Down sample, a 

pooling operator, down samples the weight l time using an average filter and a window size of 2. This 

scales the data-driven pattern weight to a specific period in order to capture specific frequency-like 

representations from 𝐻𝑖𝑛𝑝𝑢𝑡.  

Assume we wish to extract features for signal 𝐻𝑖𝑛𝑝𝑢𝑡at the 𝑙 th scaling level. We first generate the 

𝑙 th scaling level kernel scaled from 𝑤𝑒𝑖𝑔ℎ𝑡 by down sample 𝑤𝑒𝑖𝑔ℎ𝑡. Then, we perform the cross-

correlation operator of the scaled kernel and 𝐻𝑖𝑛𝑝𝑢𝑡. Then, we add the previous result and the 𝑏𝑖𝑎𝑠 (𝑙), 

and then feed the sum to the activation function . We repeat the above process total scaling level 

𝑡𝑠𝑙 times with different setups of hyper-parameter 𝑙 on a range of 0 to maximum scaling level 𝑚𝑠𝑙 

where the maximum scaling level 𝑚𝑠𝑙  is the 𝑙 𝑡ℎ  level that makes the length of vector 

𝑑𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒 (𝑤𝑒𝑖𝑔ℎ𝑡, 𝑙)equal to 1 and the total scaling level 𝑡𝑠𝑙 = 𝑚𝑠𝑙 + 1. Finally, we stack all 

extracted feature vectors into a 2D tensor to obtain the data driven spectrogram-like feature map. 

3.4. Feature level fusion using ECCA 

In this study, we combined highly correlated variables from face video clips and EEG data using 

exponential canonical correlation analysis (ECCA). Initially, ECCA was designed to compute 

representations of various modalities by subjecting them to a number of nonlinear transformations in 

stacked layers. The first step in traditional CCA is typically a matrix to vector conversion which alters 

the space structure of the original data and leads to dimension disaster. Exponential canonical 

correlation analysis which processes the matrix directly was presented as a solution to these issues.  

 are the dimensions of the x, y and z directions. Let  signify a 

three-dimensional source data. Where , an element of 𝐹 is denoted 

by 𝐹𝑖,𝑗,𝑘 . The definition of the dot product of two three-dimensional variables is S

 .   is the formula that defines the norm of 𝐹 . Three-

dimensional data in each direction can be flattened into its corresponding vector space, just like a 
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matrix. The 𝑥 direction flattened matrix is denoted as  𝐼𝑥 and (  are the rows 

and columns respectively of 𝐹(𝑥). The product of 𝐹(𝑥) and matrix 𝑇 is defined as 𝑇𝑦𝐹(𝑥) or 𝐹(𝑥)𝑇. We 

construct objective function as follows: 

 (12) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝐹1𝑥𝑢𝑥𝑦𝑢𝑦𝑧𝑢𝑧𝑥) = 1 𝑎𝑛𝑑 𝑣𝑎𝑟 (𝐹2𝑦𝑣𝑥𝑦𝑣𝑦𝑧𝑣𝑧𝑥) = 1. 
(13) 

 

Figure 2. Flow chart for multimodal fusion process. 
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With the high-dimensional nonlinear optimization issue, the objective function (12) has nonlinear 

restrictions. The illustration of fusion process is shown in Figure 2.  

Directly locating the closed form solution is challenging. To get the solution in this study, we 

employ an alternate numerical iterative method. We only talk about the x-direction-specific solution 

of the transforms 𝑢𝑥  and 𝑣𝑥  Additionally, the 𝑦, 𝑧  transforms are same. In order to create the deep 

learning model that would be utilized in the ECCA method, we employed a grid search methodology 

to determine the best hyperparameters. We chose the regulation parameter to be 1𝑒5, cross-entropy 

loss and a stochastic gradient descent optimizer after a few time-consuming experiments. 

3.5. 1D-CNN classifier 

To enhance the ECCA, the 1D model is created using CNN architecture. The model consists of 

three convolutional layers with a max-pooling layer coupled to each of them, three input layers, one 

dropout layer and ultimately a SoftMax layer. The convolutional layers are created using, respectively, 

128, 256 and 512 convolution kernels with kernel sizes of 3, 5 and 3 with strides of 1. As an activation 

function, ReLU is a nonlinear function. The pool size and stride for each max-pooling layer are both 

2. Designing the dropout layer uses the value 0.4. A group of neurons make up the layers. Every layer 

in this has connections to every layer’s neuron. The prediction is represented by the last completely 

connected layers which also create the result layer.  

Convolutional neural networks are regarded as the go-to solution because they are built to 

effectively map picture data to an output variable for any prediction issue utilizing attributes as an 

input. Each neuron’s input, which is coupled to the local receptive field of the previous layer and tends 

to retrieve the local feature, is included in the categorization of the CNN structure. Since each 

convolutional layer reduces the number of input features to fully connected layers, the output improves 

as we add more convolutional layers, as seen in Figure 3. 

 

Figure 3. Architecture of ID-CNN for classification. 

Consider the input signal sequence as 𝑠𝑖  where 𝑖 = 1,2,3, … . 𝑛𝑖  and the filter as 𝑓𝑔  and 𝑖 =

1,2,3, … . 𝑚. Here, the length of the filter 𝑚 must be greater than the length of the signal sequence 𝑛𝑖. 

Through a partial convolution operation, the filter is run based on the input features of the preceding 

layer. The 1d-CNN’s convolved output, 𝑥𝑖, is expressed in 
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. 
(14) 

The local connection network is established here by correlating every single neuron in the 

𝑑𝑡ℎ layer with neurons in the (𝑑 − 1)𝑡ℎ layer of the local window. The activating function 𝑎𝑓(̂𝑠′) in 

the layer of convolution performs the non-linear mapping. A revised linear unit in this 1D-CNN model 

utilises an activation function in order to speed up convergence with maximum of max (𝑂, 𝑠′). 

. (15) 

Moreover, the input of 𝑞𝑡ℎ neurons of the 𝑑𝑡ℎ layer is derived in Eqs 16 and 17. Furthermore, 

Eqs 16 and 17 derive the 𝑞𝑡ℎ input of the 𝑑𝑡ℎ layer of neuron  

 (16) 

. (17) 

The offset variables in the equation are known as 𝑐𝑞
𝑑  where 𝑞 = 1,2,3, … . 𝑛𝑖  and the 𝑚𝑡ℎ 

dimension filter is known as 𝑓𝑟
𝑑€𝑅𝑚 which is constant across all neurons in the layer of convolution. 

Due to various benefits including easier learning and execution with fewer hidden layers, fewer 

computational hurdles with simple array operations and efficient operation in 1D EEG signals, 1D-

cnns are widely used. Here, ℎ𝑑 indicates the hidden unit. The outputs of the first CNN layer or block’s 

1D convolution layer have been considered as inputs for the second layer or block of CNN. The result 

from the first CNN layer was subjected to BM in the subsequent CNN layer which also imposed the 

first Conv1D configuration. At the conclusion of the second CNN layer, a new sub-block called max 

pooling layer (MaxPooling1D) has been added. MaxPooling1D has been set up with a window that 

slides that has a height of three. 

As a result, Conv1D layer has undergone various adjustments in the third CNN layer. An average 

pooling layer with the same sliding window height has been used in place of the max pooling layer 

where the Conv1D has been configured with 160 sliding windows (feature detection) with 5 kernel 

size or height. To prevent overfitting in the following stage, a dropout layer with a rate of 0.5 has been 

taken into consideration. In order to obtain the classification result, a dense layer that is fully linked 

and activated with a softmax has been employed to construct probabilistic distributions over the two 

classes. 

3.6. Convolutional layer (Maxpool-1D) 

The 1D max pooling layer decreases the feature map dimension by only keeping the maximum 

value of the feature map in a window patch with a predetermined pool size. The output feature maps 

(convolution outputs, c) created by the conv1D layers are given as an input to the layer. With the 

convolution process, the window is shifted and moved across the feature map as illustrated in the image. 

Max pooling’s functionality 𝑐ℎ
𝑙  can be modelled as  



22995 

AIMS Mathematics Volume 8, Issue 10, 22984–23002. 

𝑐ℎ
𝑙 = 𝑚𝑎𝑥 𝑐𝑝

𝑙−1. 𝑟ℎ. 
(18) 

𝑟ℎstands for the pooling area with index ℎ in this case. The values of pool size and stride are used in 

this work as 2, respectively. The max pooling procedure is illustrated using the following parameters: 

; 𝑐𝑚2 = max(𝑐3, 𝑐4) ; . 

3.7. Flatten layer and dropout 

The input data are converted into a one-dimensional vector by the flatten layer and supplied to 

the dense/fully connected layer. After the flatten layer, a dropout parameter is added to help the design 

generalize better by minimizing over fitting during retraining. This is accomplished by varying some 

nodes’ activations to zero, as determined by a dropout rate. A dropout rate of 0.25 has been employed 

in this study. 

3.8. Dense layer for classification 

The flattened output is fed into the dense/fully interconnected layer. Next layer creates the 

categorization result with dimension ; where 𝑀 is the number of categories, as an inputs. The 

layering process is typically expressed as 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎(< 𝑖𝑛𝑝𝑢𝑡, 𝑤𝑑 > +𝑏𝑑) 
(19) 

where 𝑏𝑑 stands for the bias vector for this layer, is the activation function and < 𝑖𝑛𝑝𝑢𝑡, 𝑤𝑑 >denotes 

the dot product between the input and the weight vector 𝑤𝑑employed in this layer. For binary and 

multi-class classification in this study, we employ sigmoid and softmax activation, respectively. The 

sigmoid activation function is given by 

. (20) 

The above function generates a binary output that represents the likelihood for a binary 

classification, depending on which category label is either “0” or “1”. The function that activates 

softmax can additionally be expressed as 

 (21) 

where 𝑧𝑖 stands for the i-th member of the output vector from layer 𝑧 before it. To place the value of 

pi between 0 and 1, the numerator is normalized by the total of all logarithmic terms from 1 to M. The 

categories labels for classes for multi-class classification are generated by this layer. 

4. Experimental analysis 

For both datasets, a three-class problem (happy, neutral and sad) is considered for testing the 

proposed model. We applied EEG and facial video clip data to detect three classes of emotions (happy, 
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neutral and sad) because these are the very basic categories of human emotions. A leave-one-subject-

out strategy was used to conduct experiments for each dataset and the results were compared with three 

existing methods such as attention mechanism-based multi-scale feature fusion network (AM-MSFFN) 

[16], CBAM_ResNet34 [19], stacked bidirectional LSTM (Bi-LSTM) model [20], GLFANet [23] and 

CapsNet [26]. In an experiment where one participant is left out for testing, all subject’s training data 

is included. Furthermore, from the data of N subjects, (N-1) subjects number of trials for every topic 

for train (90% training set, 10% validation) and 1 topic number of trails for each topic for test were 

done.  

In this work, we executed offline experiments using DEAP datasets. 32 subjects’ EEG, video and 

other ancillary physiological data are included in the DEAP [33] dataset. Participants were invited to 

watch 40 one-minute music videos while the information was being collected. Every video’s frame 

size was set to 720 × 576 pixels at the frame rate of 50 frames per second during recording. Moreover, 

this dataset contains ratings of the levels of arousal and valence for each stimulus from each subject. 

Please take note that we only used 22 people for whom all 40 trials’ worth of facial video clips and 

EEG data were accessible. Table 2 shows the results of fusion of EEG and facial video clips using 

ECCA in terms of accuracy.  

Table 2. Results of fusion of EEG and facial video clips using ECCA in terms of accuracy. 

Number of users EEG data Facial data EEG+facial 

User-1 88.5 91.2 97.4 

User-2 87.4 90 99 

User-3 85.7 90.4 98 

User-4 87 93.2 98.2 

User-5 84.5 92 98.4 

User-6 83.5 92.5 99 

User-7 87.3 94 98.3 

User-8 86.2 94.1 98.4 

User-9 87.3 93.6 98.7 

User-10 87 92 98.8 

Average accuracy (%) 87.8 95.1 98.9 

The suggested Multi_Modal_1D-CNN technique, the existing AM-MSFFN, CBAM_ResNet34, 

Bi-LSTM, GLFANet and CapsNet methods are compared in Figure 4 where the X-axis indicates the 

various classes and the Y-axis displays the accuracy achieved in %. When analyzing, the existing 

methods achieves 92.4%, 94%, 97.3%, 95.4% and 96.4% of accuracy and the suggested 

Multi_Modal_1D-CNN achieves 98.9% which is 5.5%, 4.9%, 2.6%, .3.3% and 2.4% better than 

forementioned existing methods.  
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Figure 4. Comparison of accuracy.  

The suggested Multi_Modal_1D-CNN technique, the existing AM-MSFFN, CBAM_ResNet34, 

Bi-LSTM, GLFANet and CapsNet methods are compared in Figure 5 where the X-axis indicates the 

various classes and the Y-axis displays the precision achieved in %. When analyzing, the existing 

methods achieves 89.3%, 87%, 81%, 82.2% and 85% of precision and the suggested Multi_Modal_1D-

CNN achieves 93.2% which is 4.1%, 6.2%, 12.2%, 10.5% and 7.2% better than existing methods.  

 

Figure 5. Comparison of precision. 

The suggested Multi_Modal_1D-CNN technique, the existing AM-MSFFN, CBAM_ResNet34 

Bi-LSTM, GLFANet and CapsNet are compared in Figure 6 where the X-axis indicates the various 

classes and the Y-axis displays the recall achieved in %. When analyzing, the existing methods 

achieves 78%, 77.3% ,78% ,77.5% and 78% of recall and the suggested Multi_Modal_1D-CNN 

achieves 89.3% which is 11.3%, 13%, 11.3% and 12.2% better than existing methods. 
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Figure 6. Comparison of recall. 

The suggested Multi_Modal_1D-CNN technique, the existing AM-MSFFN, CBAM_ResNet34, 

Bi-LSTM, GLFANet and CapsNet methods are compared in Figure 7 where the X-axis indicates the 

various classes and the Y-axis displays the F1-score achieved in %. When analyzing, the existing 

methods achieves 82.4%, 81%, 87.5%, 91.2% and 92% of F1-score and the suggested 

Multi_Modal_1D-CNN achieves 94.23% which is 12.23%, 13.23%, 7.32%, 3.03% and 2.23% better 

than existing methods. 

 

Figure 7. Comparison of F1-score. 

The suggested Multi_Modal_1D-CNN technique, the existing AM-MSFFN, CBAM_ResNet34, 

Bi-LSTM, GLFANet and CapsNet methods are compared in Figure 8 where the X-axis indicates the 

various classes and the Y-axis displays the processing time achieved in %. When analyzing, the existing 
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methods achieves 12 sec, 14 sec, 11 sec, 13 sec and 12 sec of processing time and the suggested 

Multi_Modal_1D-CNN achieves 7 sec which is 5 sec, 7 sec, 4 sec, 6 sec and 5 sec better than existing 

methods. Table 3 summarizes all results.  

 

Figure 8. Comparison of processing time. 

Table 3. Overall comparative analysis. 

Methods Accuracy (%) Precision 

(%) 

Recall  

(%) 

F1-

score 

(%) 

Processing 

time (sec) 

AM-MSFFN 92.4 89.3 78 82.4 12 

CBAM_ResNet34 94 87 77.3 81 14 

Bi-LSTM 97.3 81 78 87.5 11 

GLFANet 95.4 82.2 77.5 91.2 13 

CapsNet 96 85 78 92 12 

Multi_Modal_1D-

CNN 

98.9 93.2 89.3 94.23 7 

5. Conclusions 

This study suggests a multimodal emotion identification model based on the combination of facial 

expressions and EEG inputs. The features of EEG data and facial expressions can be directly extracted 

by the end-to-end model. Pre-trained CNN is utilized to extract facial features from facial expressions 

and exponential canonical correlation analysis is used to combine the features of key emotion images. 

The results of the experiments demonstrate that the proposed model can recognize emotions accurately 

and that utilizing EEG and facial expressions together has a stronger multimodal emotion detection 

effect than using either EEG or facial expressions separately. In order to extract facial expression 

features and cut down on the resources and operating time needed for the model, we will next 

investigate a more trustworthy pre-training model. To enhance the multimodal emotion recognition 

model, we will also aim to add other modalities such as non-physiological inputs. 
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