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Abstract: We study the dynamical properties of a discrete-time host-parasitoid model with Holling
type III functional response. It is shown that flip bifurcation and Neimark-Sacker bifurcation occur
in certain parameter regimes. A sufficient condition based on the model parameters for which both
populations can coexist is derived. The boundedness, existence and local stability of the unique
equilibrium are proved. In addition, the numerical simulations have been done, in addition to
supporting the analytical findings, more behaviors are extracted from the model in a two-dimensional
parameter space. Finally, we emphasize the importance of clearly presenting biological assumptions
that are inherent to the structure of a discrete model.

Keywords: host-parasitoid model; boundedness; Neimark-Sacker bifurcation; mode-locking
structures
Mathematics Subject Classification: 37G35, 39A11

1. Introduction

Population model, epidemic model and complex network model are important components of
biomathematics models, which have been extensively researched by scholars for many centuries. In
particular, the stability of an ecological system that contains many species interacting via competition,
predation and symbiosis, and subjects to environmental and demographic noise, poses an interesting
mathematical and ecological puzzle. Among all these biomathematics models, host-parasitoid
models, play an important role in population dynamics. The interactions between parasitoids and their
hosts are of great interest to ecologists and mathematicians [1–4].

Among the variety of models, the host-parasitoid models with different Holling type functional
responses are refined so as to better reflect the specific characteristics of the different populations or
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economical needs. The functional response represents the intake rate of a species as a function of
food density which is one of the primary component in defining the biological system’s dynamics. A
vast interesting works exhibiting quite rich and complicated dynamics have been performed by the
theoretical and mathematical biologists considering complex Holling type functional responses [5–8].
For instance, Xiang et.al [5] investigate the Bogdanov-Takens bifurcation and Hopf bifurcation of a
host-parasitoid model with Holling II functional response. Wang and Zhang [6] show the importance of
pesticide application on the pest control in a host-parasitoid model with Holling II functional response.
Liu et.al [7] analyze the flip and Neimark-Sacker bifurcation in a host-parasitoid model with Allee
effect and Holling III functional response. Cabello et.al [8] explore the effect of functional response on
a host-parasitoid model and give a biological interpretation for this entomophagous species model.

It is worth noting that the numerical simulation is actually based on the discrete form of continuous
model and the discrete form is a natural connection between the actual model and the simulation. In
fact, many species in real life have no overlap between successive generations and their populations
evolve in discrete time-steps. The discrete model governed by a difference equation is more direct,
convenient and accurate to formulate and simulate than the continuous one because of the fact that the
population has a short life expectancy, non-overlapping generations in the real world. Thus the discrete
models are been noticed more in recent years [9–12]. Motivated by the above mentioned discussions,
here we consider a discrete-time host-parasitoid model with Holling type III functional response, which
will be meaningful work. This model is [13]

 xn+1 = xn exp
[
r
(
1 − xn

K

)
−

bT xnyn

1+cxn+bTh x2
n

]
,

yn+1 = xn

[
1 − exp

(
−

bT xnyn

1+cxn+bTh x2
n

)]
,

(1.1)

where xn and yn stand for the densities of host and parasitoid in generation n (n = 0, 1, 2, ...),
respectively; r denotes the intrinsic growth rate of the host population without parasitoid, K represents
the carrying capacity, T is the total time initially available for search, i.e., the total time the hosts are
exposed to parasitoids, Th is the handling time, i.e., the time between hosts being encountered and
search being resumed, bxn/(1 + cxn) stands for the instantaneous search rate which depends on the
host density, and b, c are given constants.

Tang and Chen have investigated the complexities of system (1.1) numerically. So, our main
motivation is to algebraically show that the system will experience flip bifurcation and
Neimark-Sacker bifurcation which will be derived by the center manifold theorem and bifurcation
theory [14, 15]. The detailed existence conditions of each bifurcation are given in a strict
mathematical way. Numerical simulations are performed, including bifurcation diagrams, phase
portraits and maximum Lyapunov exponents to validate the theoretical results and exhibit some new
and interesting kinetics. The contents studied in this paper have never been considered in
reference [13].

The remainder of the paper is organized as follows. In Section 2, we establish the boundedness
conditions for the solution of model (1.1). In Section 3, we explore the uniqueness and local stability
of the positive equilibrium. In Section 4, we show that there exist some values of parameters such that
model (1.1) undergoes flip and Neimark-Sacker bifurcation. In Section 5, numerical simulation results
are presented for supporting the theoretical findings and exhibiting new and rich dynamical regimes.
The final section summarizes results and provides conclusions.
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2. Boundedness of positive equilibrium

Biologically speaking many species obey their own ecological genetic laws, and all have their own
bounds. Once the population size is above the upper bound or below the lower bound, the species will
explode or die out which can lead to an imbalance in the ecosystem. Thus, it is necessary to consider
the upper or lower bound of a biological model.

The boundedness of model (1.1) can be found by the following lemma.
Lemma 2.1. ( [16]) Assume that x0 > 0 for every xt and xt+1 < xt exp(A(1−Bxt)) for t ∈ [t1,∞], where
B > 0 is a positive constant. Then,

lim
n→∞

S up xt ≤
1

AB
eA−1.

Using Lemma 2.1, we state the following theorem for the uniform boundedness of model (1.1).
Theorem 2.1. Any positive solution (xn, yn) of model (1.1) is uniformly bounded.

Proof. Suppose that (xn, yn) is arbitrary positive solution of model (1.1). Then, we have

xn+1 ≤ xner(1− xn
K ), f or all n ∈ N.

Let x0 > 0. Using Lemma 2.1, we acquire

lim
n→∞

S up xn ≤
K
r

er−1 = l1.

Through the solution of model (1.1), we obtain the following expression:

yn+1 = xn

(
1 − e−r(1− xn

K )) ≤ xn + xne−r(1− xn
K ) ≤ 2xn.

Let y0 > 0. We conclude
lim
n→∞

S up yn ≤ 2l1 = l2.

Thus, it follows that lim
n→∞

S up(xn, yn) ≤ l, l = max{l1, l2}. The proof is completed. �

3. Existence and stability of positive equilibrium

By solving model (1.1), one can explore the existence of all equilibria. A simple algebraic
computation shows that model (1.1) has two boundary fixed points E1(0, 0) and E2(K, 0). In addition,
we also discuss the existence and uniqueness of the positive solution of model (1.1) because the
positive equilibria are not in a closed form. For this purpose, the following computation exhibits the
existence and uniqueness at the positive solution of model (1.1).
Theorem 3.1. There exists an unique positive equilibrium (x∗, y∗) ∈ [0, l1] × [0, l2] of model (1.1).

Proof. We begin our analysis of the model (1.1) by solving the equations x = x exp
[
r
(
1 − x

K

)
−

bT xy
1+cx+bTh x2

]
,

y = x
[
1 − exp

(
−

bT xy
1+cx+bTh x2

)]
.

(3.1)

Suppose that
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g(x) = r
(
1 −

x
K

)
−

bT x2

1 + cx + bThx2

[
1 − e−r(1− x

K )]
for all x ∈ [0, l1]. Then, it follows that g(0) = r > 0. Assume that exp[r(1 − x/K)] > 1, we have

g(l1) = −
bT K2e2(r−1)

[
1 − e−r(1−l1/K)

]
r2 + cKrer−1 + bThK2e2(r−1) + r − er−1 < 0

for all constants are positive. Thus, there exists at least one positive real root of g(x) = 0 in [0, l1]. And
because

g
′

(x) = −
r
K
−

brT x2e−r(1− x
K )

K(1 + cx + bThx2)
−

[
1 − e−r(1− x

K )
] 2bT x + bcT x2

(1 + cx + bThx2)2 < 0.

Therefore, the model (1.1) has an unique positive equilibrium (x∗, y∗) ∈ [0, l1]×[0, l2]. And by direct
computations to the model (3.1), it is easy to obtain that the unique equilibrium E(x∗, y∗) satisfies the
following equations:

x∗ =
−cRlnR −

√
RlnR[4bT (R − 1) + RlnR(c2 − 4bTh)]
2b[T (1 − R) + ThRlnR]

,

y∗ =
−cRlnR(R − 1) − (R − 1)

√
RlnR[4bT (R − 1) + RlnR(c2 − 4bTh)]

2bR[T (1 − R) + ThRlnR]
,

where R = exp(r(1 − x∗/K)). �

Initially, we explore the stability of the boundary points E1(0, 0) and E2(K, 0). The Jacobian matrix
J0 at (0, 0) is given as

J0 =

(
er 0
0 0

)
.

Accordingly, we can get eigenvalues λ1 = er > 1, λ2 = 0 < 1. From which we can easily check that
E1 is an unstable node. Also, two eigenvalues at E2(K, 0) are λ1 = 1− r, λ2 = − bT K2

1+cK+bThK2 . Then, E2 is
stable when |1 − r| < 1 and |bT K2/(1 + cK + bThK2)| < 1. Next, we just need to consider the stability
of the equilibrium E(x∗, y∗).

The Jacobian matrix of model (1.1) evaluated at the unique positive equilibrium E(x∗, y∗) is given
by

J =

(
1 − rG + L −M

1 − (1 + L)N MN

)
,

where

M =
bT x2

∗

1 + cx∗ + bThx2
∗

, N = e
−bT x∗y∗

1+cx∗+bTh x2
∗ , G =

x∗
K
,

L =
bT x2

∗y∗(c + 2bThx∗) − bT x∗y∗(1 + cx∗ + bThx2
∗)

(1 + cx∗ + bThx2
∗)2 .
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Moreover, the characteristic polynomial of J reads as

F(λ) = λ2 − P(x∗, y∗)λ + Q(x∗, y∗), (3.2)

where
P(x∗, y∗) = 1 − rG + L + MN, Q(x∗, y∗) = M − rGMN.

In order to study the local stability and bifurcation phenomenon of the positive equilibrium, the
following lemma will be very useful and essential, which can be easily proved by the relationship
between roots and coefficients of a quadratic equation [17, 18].
Lemma 3.1. Let F(λ) = λ2 + Pλ + Q and F(1) > 0. Suppose λ1 and λ2 are two roots of F(λ) = 0.
Then, the following results hold true.

i) |λ1| < 1 and |λ2| < 1⇔ F(−1) > 0 and Q < 1;

ii) |λ1| > 1 and |λ2| > 1⇔ F(−1) > 0 and Q > 1;

iii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1)⇔ F(−1) < 0;

iv) λ1 = −1 and |λ2| , 1⇔ F(−1) = 0 and P , 0, 2;

v) λ1, λ2 are complex and |λ1| = |λ2| = 1⇔ P2 − 4Q < 0 and Q = 1;

vi) λ1 = λ2 = −1⇔ F(−1) = 0 and P = 2.

By applying Lemma 3.1 and some definitions in [17,18], the following conclusions can be obtained.
Theorem 3.2. For the positive equilibrium E(x∗, y∗), we have the following estimates.

1) When r < 2+L+M+MN
G+GMN ,

a) if r > M−1
GMN , E is a sink;

b) if r < M−1
GMN , E is a source.

2) When r > 2+L+M+MN
G+GMN , E is a saddle.

3) E is non-hyperbolic if and only if

r =
2 + L + M + MN

G + GMN
and r ,

1 + L + MN
G

,
3 + L + MN

G
;

or
r =

M − 1
GMN

and
L + MN − 1

G
< r <

L + MN + 3
G

.

From the above conclusion, if the first condition of (3) is true then one can easily find that one of the
eigenvalues of E is −1 and the other is λ2 = 2 − rG + L + MN which is neither 1 nor -1. If the second
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condition holds true, the eigenvalues of E are a pair of complex conjugate numbers whose modulus
is 1.

Consider

FB =

{
(r,K, b, c,T,Th) ∈ R+ : r1 =

2 + L + M + MN
G + GMN

}
.

The unique positive equilibrium E(x∗, y∗) of model (1.1) undergoes flip bifurcation when parameters
vary in a small neighborhood of FB.

Let

HB =

{
(r,K, b, c,T,Th) ∈ R+ : r2 =

M − 1
GMN

,
L + MN − 1

G
< r <

L + MN + 3
G

}
.

The unique fixed point E(x∗, y∗) can pass through a Neimark-Sacker bifurcation when the
parameters fluctuate in a small neighborhood of HB.

4. Bifurcation analysis

Based on the previous analysis, we choose the parameter r as a bifurcation parameter to explore
flip and Neimark-Sacker bifurcation for the point E(x∗, y∗) by using the center manifold theorem and
bifurcation theory in [14,15,17,18].

Suppose that all parameters (r1, b, c,K,T,Th) belong to FB. If the parameter r varies in a small
neighborhood of r1, then, the model (1.1) experiences a flip bifurcation at the fixed point E. For
simplicity, model (1.1) can be written in the form:

[
x
y

]
→

 xe
r(1− x

K )− bT xy
1+cx+bTh x2

x
(
1 − e

−
bT xy

1+cx+bTh x2
)  . (4.1)

Giving a perturbation r of parameter r1, the model (4.1) is converted to

[
x
y

]
→

 xe
(r+r1)(1− x

K )− bT xy
1+cx+bTh x2

x
(
1 − e

−
bT xy

1+cx+bTh x2
)  . (4.2)

Let H = x − x∗, P = y − y∗, and transform the fixed point E(x∗, y∗) to the origin O(0, 0) and model
(4.2) into [

H
P

]
→

[
a11 a12

a21 a22

] [
H
P

]
+

[
f1(H, P, r)
f2(H, P, r)

]
, (4.3)

where

f1(H, P, r) = a13H2 + a14HP + a15P2 + b1H3 + b2H2P + b3HP2 + b4P3 + e1Hr + e2Pr + e3r2

+ e4HPr + e5H2r + e6P2r + e7Hr2
+ e8Pr2

+ e9r3
+ O((|H| + |P| + |r|)4),

f2(H, P, r) = a23H2 + a24HP + a25P2 + d1H3 + d2H2P + d3HP2 + d4P3 + O((|H| + |P| + |r|)4).
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The detailed expressions of the involved coefficients can be found in Appendix A.
The canonical form of (4.3) at r1 = 0 can be obtained by assuming the following map:[

H
P

]
=

[
a12 a12

−1 − a11 λ2 − a11

] [
u
v

]
. (4.4)

The normal form of model (4.3) under translation (4.4) can be expressed as[
u
v

]
→

[
−1 0
0 λ2

] [
u
v

]
+

[
g1(u, v, r)
g2(u, v, r)

]
, (4.5)

where the expressions g1(u, v, r) and g1(u, v, r) are provided in Appendix B.
From center manifold theory, we know that there exists a center manifold WC(0, 0, 0), which can be

approximated as follows:

WC(0, 0, 0) = {(u, v, r) ∈ R3 : v = M1u2 + M2ur + M3r2
+ O((|u| + |r|)3)},

where

M1 =
a12

1 − λ2
2

[a13(1 + a11) + a23a12] −
1 + a11

1 − λ2
2

[a14(1 + a11) + a24a12]

+
(1 + a11)2

a12(1 − λ2
2)

[a15(1 + a11) + a25a12] ,

M2 =
1 + a11

1 − λ2
2

[e1a12 − e2(1 + a11)] , M3 =
e3(1 + a11)
a12(1 − λ2

2)
.

Consequently, the map restricted to center manifold WC(0, 0, 0) is expressed as follows:

F : u→ −u + h1u2 + h2ur + h3u2r + h4ur2
+ h5u3 + O((|u| + |r|)4),

where the detailed expressions of hi are given in Appendix B.
Straightforward but detailed calculations show that

α1 =

(
∂2F
∂u∂r

+
1
2
∂F
∂r

∂2F
∂u2

)
(0,0)

=
e1(λ2 − a11)

1 + λ2
−

e2(λ2 − a11)(1 + a11)
a12(1 + λ2)

, 0,

α2 =

(
1
6
∂3F
∂u3 +

(
1
2
∂2F
∂u2

))
(0,0)

= h5 + h2
1 , 0,

which are the existence conditions for flip bifurcation.
Combining the above conclusions, and applying the bifurcation theory presented as Section 3.2 in

Guckenheimer [15], we state the following conclusion for flip bifurcation.
Theorem 4.1. If α2 , 0, there exists a flip bifurcation at E(x∗, y∗) of model (1.1). Furthermore, the
period-2 orbits bifurcated from E(x∗, y∗) are stable (unstable) if α2 > 0 (α2 < 0) which is also named
supercritical (subcritical) flip bifurcation.
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Next, we investigate the Neimark-Sacker bifurcation of model (1.1), which occurs when the
eigenvalues of the characteristic equation are complex conjugates with unit modulus. i.e.,
|λ1| = 1, |λ2| = 1.

Now choose r as a bifurcation parameter and let H = x− x∗, P = y−y∗. Here r = r2 + r̃ and |̃r| << 1.
The fixed point E is shifted to the origin, the model (4.1) is converted into the new following form:[

H
P

]
→

[
a11 a12

a21 a22

] [
H
P

]
+

[
f 1(H, P)
f 2(H, P)

]
. (4.6)

Where

f 1(H, P) = a13H2 + a14HP + a15P2 + b1H3 + b2H2P + b3HP2 + b4P3 + O((|H| + |P|)4),
f 2(H, P) = a23H2 + a24HP + a25P2 + d1H3 + d2H2P + d3HP2 + d4P3 + O((|H| + |P|)4),

and ai j, bi, di are described in Appendix A by replacing r = r2 + r̃. Let

λ2 − m(̃r)λ + n(̃r) = 0

be the characteristic equation of the Jacobian matrix of model (4.6) evaluated at (0, 0) with coefficients

m(̃r) = 1 − (r2 + r̃)G + L + MN, n(̃r) = M − (r2 + r̃)GMN.

Since (r2, b, c,K,T,Th) ∈ HB, the roots of the characteristic equation are

λ1,2 =
m(̃r) ± i

√
4n(̃r) − m2(̃r)
2

.

Hence,

|λ1,2| =
√

n(̃r),
(
d|λ1,2|

d̃r

)
r̃=0

= −
GMN

2
√

M − r2GMN
< 0.

There are non degeneracy conditions λ j
1,2 , 1, j = 1, 2, 3, 4 when r̃ = 0 if and only if m2(̃r)−4n(̃r) <

0 and m(̃r) , 0,−1, i.e.,

ξ + L + MN ,
M − 1
MN

, ξ = 1, 2.

Now we construct the canonical form of (4.6) at r̃ = 0 by taking α =
m(0)

2 , β =

√
4n(0)−m2(0)

2 and
assuming [

H
P

]
=

[
a12 0

α − a11 −β

] [
u
v

]
. (4.7)

Under transformation (4.7), the map (4.6) yields[
u
v

]
→

[
α −β

β α

] [
u
v

]
+

[
F(u, v)
G(u, v)

]
, (4.8)
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where

F(u, v) =
1

a12
(a13H2 + a14HP + a15P2 + b1H3 + b2H2P + b3HP2 + b4P3) + O(|H, P|4),

G(u, v) =
a13(α − a11) − a23a12

βa12
H2 +

a14(α − a11) − a24a12

βa12
HP +

a15(α − a11) − a12a25

βa12
P2

+
b1(α − a11) − a12d1

βa12
H3 +

b2(α − a11) − d2a12

βa12
H2P +

b3(α − a11) − a12d3

βa12
HP2

+
b4(α − a11) − d4a12

βa12
P3 + O(|H, P|4),

and H = a12u, P = (α − a11)u − βv.
Next, we characterize a nonzero real number

θ = −Re
(
(1 − 2λ1)λ2

2

1 − λ1
ρ20ρ11

)
−

1
2
|ρ11|

2 − |ρ02|
2 + Re(λ2ρ21),

where

ρ20 =
1
8

[Fuu − Fvv + 2Guv + i(Guu −Gvv − 2Fuv)] ,

ρ11 =
1
4

[Fuu + Fvv + i(Guu + Gvv)] ,

ρ02 =
1
8

[Fuu − Fvv − 2Guv + i(Guu −Gvv + 2Fuv)] ,

ρ21 =
1

16
[Fuuu + Fuvv + Guuv + Gvvv + i(Guuu + Guvv − Fuuv − Fvvv)] .

Keeping in view the aforementioned calculations and implementing the bifurcation theory for
normal forms. Ultimately, we deduce the following theorem for the direction and existence of the N-S
bifurcation.
Theorem 4.2. There is a Neimark-Sacker bifurcation at E(x∗, y∗) whenever r deviates within the small
neighborhood of r2 = M−1

GMN . Furthermore, if θ < 0 then the Neimark-Sacker bifurcation is supercritical
and the closed invariant curve is stable. If θ > 0, the Neimark-Sacker bifurcation is subcritical and the
closed invariant curve is unstable. Also, it implies that both species in the system can coexist under
some specific conditions.

5. Numerical simulations

In this section, we conduct numerical results to validate the above theoretical analyses and to
illustrate some complex dynamical behaviors of model (1.1). We take the bifurcation parameters in
the following two cases into account.

Case 1: Take parameters b = 0.0015, T = 100, K = 3, Th = 1, c = 0.03 in model (1.1), and
vary r in the range of 1.8 ≤ r ≤ 2.8. By some complex calculations, we find that the flip bifurcation

AIMS Mathematics Volume 8, Issue 10, 22675–22692.
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emerges from E(2.8001, 0.3737) with α1 = −1.07576, α2 = 0.31807 > 0 when r = 2.15. Hence, the
theoretical results in Theorem 4.1 are verified.

Figure 1(a) shows two-dimensional bifurcation diagram of model (1.1) in (r, x) space when r varies
in [1.8, 2.8]. The corresponding Lyapunov exponents are shown in Figure 1(b) to confirm the existence
of periodic orbits and chaotic motions. Figure 1(b) shows that some Lyapunov exponents are negative,
which implies that there exists stable fixed point or stable periodic window; the others are positive,
which means that there exist chaotic regions. From Figure 1, we see that the fixed point E is stable
for r < 2.15, loses its stability for r > 2.15 and a flip bifurcation takes place for r = 2.15. With the
increase of r, period-doubling bifurcation leads to the birth of a chaos. Figure 1 also shows that the loss
of stability through increasing r yields drastic swings in host population size. In agricultural scenarios,
these host outbreaks could have devastating consequences.
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Figure 1. (a) Flip bifurcation diagram of model (1.1) in (r, x) space. (b) Lyapunov Exponents
related to (a).

Case 2: Fix b = 0.003, T = 100, K = 5, Th = 1, c = 0.03, let r vary in the range [1, 2].
We get an unique equilibrium E(2.248523, 1.150799) when r = 1.303 and its eigenvalues are λ1,2 =

0.222866 ± 0.974952i. For r = 1.303, we have |λ1,2| = 1, θ = −0.36798753 < 0. It is clear that the
Neimark-Sacker bifurcation occurs at this time, which confirms the effectiveness of theoretical analysis
in Theorem 4.2.

Figure 2(a) shows two-dimensional bifurcation diagram of model (1.1) in (r, x) space when r varies
in a neighbourhood of r = 1.303. The corresponding maximum Lyapunov exponent is shown in Figure
2(b) to confirm the existence of periodic orbits and invariant circle. More specially, the appearance of
invariant circle demonstrates that these two populations can coexist in the same environment.

In above sections, we have investigated flip bifurcation and Neimark-Sacker bifurcations
analytically and numerically. In fact, we find that model (1.1) is a complex multiparameter system.
Therefore, it is natural to ask how the parameters affect the dynamics of the model, what may happen
and what match rules about parameters are when two or more parameters change simultaneously,
which are what we concern. Here we use some high-definition resolution phase diagrams to display
more and richer nonlinear dynamics for this model, which are described by the efficient methods
described in [19–22].
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Figure 2. (a) Neimark-Sacker bifurcation diagram of model (1.1) in (r, x) space. (b) The
maximum Lyapunov exponent related to (a).

Figure 3(a) represents period stability phase of the (r, b) parameter-space with
K = 5, T = 100, Th = 1, c = 0.03. In which period−1 solution is plotted in brown, period−29
solution is plotted in light gray, the regions for period 2 − 28 are codified in other different colors. In
which, there exist periodic structures numbered as 1, 3, 4, 5, 6, ... embedded in the chaotic regions.
Except these periodic solutions, there exist quasiperiodic solutions, which arise after a
Neimark-Sacker bifurcation and divergence regions for which the related parameters are
corresponding to unbounded orbits. Here, period motions are indicated by numbers, quasiperiodic
regions are indicated by the letter Q, and chaotic regions are indicated by the letter C. The variations
of complex parameter space reveal that small changes of key parameters could significantly influence
the oscillation patterns of both host and parasitoid species. Consequently, this could result in
difficulties for the development of biological control theory.

Figure 3(b) shows the magnification of Figure 3(a) for 1 < r < 2 and 0.0025 < b < 0.01. From
which, we can see Arnold tongue [19, 20] sequences 5, 10, 20, 6, 12, 24, ... due to the period-doubling
bifurcation. Figure 3(b) also shows that the Arnold tongues have self-similar properties. Some Arnold
tongues with fractal structure are embedded in quasi-periodic regions, that is, the mode-locking regions
and the quasi-periodic regions alternately appear.

(a) (b)
Figure 3. (a) Period stability phase in (r, b) parameter-space. (b) Magnification in (a) is
located in the range of 1 < r < 2 and 0.0025 < b < 0.01. The right number is related to the
period of the respective period regions.
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Unexpectedly, in Figure 3(b), we obtain that the mode-locking structure is formed depending on the
broken Farey tree by examining the rotation number of these Arnold tongues, which orders all rations
numbers between 0 and 1 depending on a strict definition [19]. We suppose that p/q and r/s are
two adjacent tongues of rotations numbers there exists a tongue with rotation number (p + r)/(q + s)
between these two irreducible fractions. For instance, the tongue with the rotation number 3/13 is
situated in tongues with rotation numbers 2/9 and 1/4, tongue 2/9 between the tongues 1/4 and 1/5
and the tongue 2/11 between the tongues 1/5 and 1/6, which is only a small and incomplete part of a
Farey tree, not an intact one, so we call it the broken Farey tree.

Next, we will investigate some details about the kinetics of model (1.1) from Figure 3(a). Figure 4
shows the bifurcation diagrams when r = 1.5 which is marked by the vertical line in Figure 3(a). By
increasing b from 0.0025, the system stays in a period-1 state until b = 0.003, being characterized by
the maximum Lyapunov exponent (MLE) is less than zero. At b = 0.003, MLE reaches zero value and
a Neimark-Sacker bifurcation occurs at this point. These two phenomena can be seen in Figure 5(a)
and (b). By increasing b until b = 0.0042, period-5 orbit appears in the system and flip bifurcation
results in period-10 and period-20 orbits which are shown in Figure 5(c)–(e). When b = 0.005522,
we cross the quasiperiodic region shown in Figure 5(f). By increasing b more, we can find a period-5
orbit again at b = 0.007578 which can be seen in Figure 5(g). Finally a chaotic state whose MLE is
greater than zero is created at b = 0.008106. A typical chaotic attractor appears in Figure 5(h) for
b = 0.008902. In fact, this shows a classical route to chaos.
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Figure 4. (a) Bifurcation diagram of model (1.1) in (b, x) space. (b) Bifurcation diagram of
model (1.1) in (b, y) space. (c) Maximum Lyapunov exponent. (d) Magnification of (a) for
0.0042 < b < 0.0056.
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Figure 5. Phase portraits for various values of b corresponding to Figure 4 (a) b = 0.0025,
(b) b = 0.00295, (c) b = 0.004526, (d) b = 0.005018, (e) b = 0.005418, (f) b = 0.005782,
(g) b = 0.007825, (h) b = 0.008902.
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Another attractive phenomenon is the coexistence of multi-attractors which shows the host final
states. It follows from the bifurcation analysis that multiple attractors can coexist for a wide range of
parameters. To further confirm this and address their biological implications, we set all parameters as
the same as in Figure 3. The overlapped colors in the neighborhood of two points P1(1.438, 0.00586)
and P2(1.492, 0.007585) in the parameter plane of Figure 3(b) are a forceful implication of
multistability. As we know through coloring diverse kinetic behaviors, attraction basins make the
separation of attractors possible in kromograms. Figure 6(a) and (b) depict coexistence of period-5
and period-12 attractors, period-5 and period-7 attractors in this discrete model, respectively. Thus, it
is shown that the model (1.1) is characterized by a higher degree of unpredictability and complexity
of basin’s structures.

(a) (b)
Figure 6. Basins of two attractors of model (1.1). White and blue stand for the period-5 and
period-7 attractor in (a). White and magenta represent the period-5 and period-12 attractor
in (b).

6. Conclusions

In summary, we discuss the comprehensive rich dynamics for a discrete host-parasitoid system
with Holling type III functional response. The theoretical analysis demonstrates that the model (1.1)
undergoes flip bifurcation and Neimark-Sacker bifurcation. In the case of these codimension one
bifurcations, the normal forms for maps and their approximations to the flows of the corresponding
differential equations are obtained to determine the bifurcation diagrams. All the numerical
continuations are in concordance with analytical predictions. Furthermore, the high-quality phase
diagrams are employed to illustrate the mode-locking structures in the quasiperiodic rotation motions.
Finally, coexisting multi-chaotic attractors such as coexistence of seven-piece, twelve-piece and
five-piece chaotic attractors have been found in this model. Applying the new results and techniques
in this article to the discrete model is an interesting point for future research work.

The results obtained in the paper show that the complex dynamic behaviors are widespread in
some basic discrete models of two host-parasitoid interactions. Some complexities are related to
chaotic bands with periodic window, flip bifurcation, Neimark-Sacker bifurcation and mode-locking
structure. The others are related to the non-uniqueness of the dynamics, or attractors (meaning that
several attractors coexist). As discussed in Section 5, the dynamic behavior of a population may
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dramatically be affected by small changes in the parameters’ values. As a result, in analyzing these
biologically realistic models, it is important to choose the suitable values of the parameters.
Therefore, identifying complicated, possible chaotic dynamics in population data is still a major
challenge in ecological studies.
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a11 = 1 − rG + L, a12 = −M, a21 = 1 − (1 + L)N, a22 = MN,
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2x∗
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Appendix B
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b2(λ2 − a11) − d2a12

1 + λ2
(1 + a11)a12

+ 2M1a12
a13(λ2 − a11) − a12a23

1 + λ2
+ (1 + a11)2 b3(λ2 − a11) − d3a12

1 + λ2

+ M1(λ2 − 2a11 − 1)
a14(λ2 − a11) − a12a24

1 + λ2
− (1 + a11)3 b4(λ2 − a11) − d4a12

a12(1 + λ2)

− 2M1(λ2 − a11)(1 + a11)
a15(λ2 − a11) − a12a25

a12(1 + λ2)
.
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