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Abstract: This paper studies the persistence, extinction and practical exponential stability of
impulsive stochastic competition models with time-varying delays. The existence of the global
positive solutions is investigated by the relationship between the solutions of the original system and
the equivalent system, and the sufficient conditions of system persistence and extinction are given.
Moreover, our study shows the following facts: (1) The impulsive perturbation does not affect the
practical exponential stability under the condition of bounded pulse intensity. (2) In solving the stability
of non-Markovian processes, it can be transformed into solving the stability of Markovian processes by
applying Razumikhin inequality. (3) In some cases, a non-Markovian process can produce Markovian
effects. Finally, numerical simulations obtained the importance and validity of the theoretical results
for the existence of practical exponential stability through the relationship between parameters, pulse
intensity and noise intensity.
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1. Introduction

The stochastic model of a predator and prey has been widely investigated for many years [1–4].
It is well known that two species models are difficult to describe ecological changes, and the critical
behaviors can only be expressed by population models of more species. Because of its theoretical and
practical significance, it is also one of the most important problems in theoretical ecology to study
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the dynamic characteristics of the one predator and two competitive prey population model, such as
permanent existence, extinction, stability and periodicity [5–9]. Ma et al. [5] proposed the one predator
and two competitive preys model for the first time. Ahmad considered a competitive trio of species
satisfying two inequalities involving the growth rate and the average interaction coefficient, which
implies persistence [7]. By constructing auxiliary equations and Lipschitz conditions, Qiu [9] proved
that the three-dimensional Lotka-Volterra system has a stationary distribution. Freedman’s analysis
of equilibrium points for three-level models, stability criteria, and minimum carrying capacity for
population persistence and extends the work on the Lotka-Volterra model. It is shown that the recent
research models are closer to reality and increase in dimensionality [8].

In addition, time delays can not be ignored in biological model. Time delay is a common problem
in many practical systems, which will lead to system instability or oscillation. Therefore, the stability
of time-delay systems has been one of the hot topics in recent twenty years [10–19]. Xu [12] used
some differential inequalities and random analysis techniques to study a class of switched systems
with delays. Nevertheless, the impulse is a discrete moment in a very short time interval to a
supercritical state [20–22]. Pulse perturbation has been extensively studied in the fields of ecology
and epidemiology. The population dynamic system is studied extensively by impulse differential
equation [11, 12, 19, 23–27]. Lu [25] obtained the threshold between weak persistence and extinction
by using Itô’s formula theorem and mathematical analysis.

Bio-mathematic stability refers to the ability of a biological system to maintain its stable state
when various factors or parameters change. Biological systems are usually affected by internal and
external environments, including changes in temperature, nutrition, water, oxygen, light and other
factors, as well as interactions between organisms. Exponential stability means that the index remains
relatively stable within a certain period of time. Hutson [6] pointed out that asymptotic stability and
global asymptotic stability are intuitive concepts that neither of the two most widely used conditions
can reflect persistence in a satisfactory way. Practical exponential stability of differential equations
is a kind of asymptotic stability with good properties and a kind of Lyapunov stability. That is, the
system state is kept stable by allowing the system to oscillate in a small neighborhood [28–32]. Yao
investigated the practical exponential stability of mild solutions with delays using direct and indirect
methods [29]. As far as we know, there are few studies on stochastic impulsive high-dimensional
models with time-varying delays. The study of the delay independent and Markovian effects of the
practical exponential stability of the following impulsive stochastic model with time varying delay for
one predator and two competitive preys model has not been done:

dx1(t) = x1(t) [r1 − a11x1(t) − a12x2(t − τ12(t)) − a13x3(t − τ13(t))] dt
+σ1x1(t)dB1(t),
dx2(t) = x2(t) [r2 − a21x1(t − τ21(t)) − a22x2(t) − a23x3(t − τ23(t))] dt
+σ2x2(t)dB2(t),
dx3(t) = x3(t) [−r3 + a31x1(t − τ31(t)) + a32x2(t − τ32(t)) − a33x3(t)] dt
+σ3x3(t)dB3(t),
xi(t+

k ) = (1 + αik)xi(tk), xi(t−k ) = xi(tk),

(1.1)

where xi(θ) = φi(θ),−τ0 ≤ θ ≤ 0, t ≥ 0. xi(t), i = 1, 2, 3 stands for population size of the two
independent prey and one predator population at t, respectively. ai j > 0(i, j = 1, 2, 3).
τmin ≤ τi(t) ≤ τmax represent the time-varying delay, where τmin and τmax are given bounds.
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φ(θ) = (φ1(θ), φ2(θ), φ3(θ))> ∈ U, U = C([−τ0, 0],R3
+) represent the space of all the continue function.

The Brownian motions Bi(t)(i = 1, 2, 3) defined on a complete probability space (Ω,Ft, (Ft)t≥0,P)
with a filtration (Ft)t≥0 are independent to each other. 0 < t1 < t2 < · · · < tk < · · · and
limk→+∞ tk = +∞. In view of biological significance in reality, we just consider 1 + αik > 0(i = 1, 2, 3),
which is a natural constraint. Pulse parameter αik refer to specific properties of the pulse, such as
pulse width, frequency, peak voltage and repetition rate. In biological research, pulse parameters can
affect the response and reaction mode of organisms. The biological interpretations of these parameters
are described in Table 1.

Table 1. Definition of parameters [33].

Parameters Biological interpretations or Description of parameters
r1, r2 Intrinsic growth rate
r3 Mortality rate
aii,i = 1, 2, 3 Intra-specific competition rate
a13,a23 Capturing rate of the predator
a12,a21, Inter-specific competition rates between prey species
a31,a32 The efficiency of food conversion
σ1, σ2, σ3 Effects of environmental stochastic perturbations

This paper studies the well-posedness and asymptotic behavior of the model (1.1). The main
contributions of this paper lie in that this paper reveals the following facts: (i) The practical
exponential stability under the condition of bounded pulse intensity is not affected by the impulsive
perturbation. (ii) Razumikhin inequality can be used to transform the solution of the stability of
non-Markovian processes to the solution of the stability of Markovian ones. (iii) In some cases, a
non-Markovian process can produce Markovian effects. Moreover, examples obtained the theoretical
results for the existence of practical exponential stability through the relationship between parameters,
pulse intensity and noise intensity. The work in literature [11] is generalized.

2. Prilimary

For convenience, we use the following notations. If f (t) is a continuous bounded function on
R+, define f u = supt∈R+ f (t), f l = inft∈R+ f (t). f (t) = t−1

∫ t

0
f (s)ds, f ∗ = lim supt→+∞ f (t), f∗ =

lim inft→+∞ f (t). Define the norm |y| =
∑n

i=1.
Next, we consider the stochastic equations{

dx(t) = f (t, xt)dt + g(t, xt)dB(t),
x(t0) = φ(0), x(t0 + θ) = x(θ), xt = x(t + θ),−τ0 ≤ θ ≤ 0, t ≥ t0,

(2.1)

where φ ∈ C([−τ0, 0],Rn), x ∈ Rn, xt ∈ Lp
Ft

([−τ0, 0],Rn), f : Lp
Ft

(R+ × ([−τ0, 0],Rn)) → Rn, g :
Lp

Ft
(R+ × ([−τ0, 0],Rn))→ Rn×m.
The Lyapunov operator is defined as:

LV = Vt(t, xt) + Vx f (t, xt) +
1
2

trace[g>(t, xt)Vxx g(t, xt)].
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Definition 1. Let x(t) = (x1(t), x2(t), x3(t))> be the solution of model (1.1).
1) p is a positive integer, and if limt→+∞ E|x(t)|p > 0, then the species is pth moment persistent, and
limt→+∞ E|x(t)|p = 0, the species is pth moment extinct [30].
2) If limt→+∞ xi(t) = 0, and species xi(t) is extinction, limt→+∞ xi(t) = 0, then species xi(t) is
considered to be non-persistent in the mean.
3) If xi

∗ > 0, and species xi(t) is weakly persistent in the mean, x∗i > 0, then species xi(t) is considered
to be weakly persistent.
4) Moment stabilization, also known as pth moment stabilization, requires convergence to zero
moments of order p.
5) For p > 0, system (1.1) is said to be pth moment practical exponential stability [28]. If there exist
positive constants Z1 > 0, Z2 ≥ 0 and ` > 0, then

E|x(t)|p ≤ Z1E|φ|pCe−`(t−t0) + Z2, t ≥ t0. (2.2)

Lemma 1. ( [4]) The solution x(t) of the predator-prey model (1.1) obeys

lim sup
t→+∞

ln xi(t)
ln t

≤ 1 + lim sup
t→+∞

∑
0<tk<t ln(1 + αik)

ln t
a.s., 1 ≤ i ≤ 3, t > 0. (2.3)

3. Global positive solutions

Under the condition of bounded pulse intensity, an equivalent equation is established to obtain a
pure differential equation of the same type as (2.4) in [34], and the existence of a global solution is
obtained. Building an equivalence system:



dy1(t) = y1(t)

r1 +

k∑
j=1

ln(1 + α1 j) − a11A1(t)y1(t) − a12A2(t − τ12(t))y2(t − τ12(t))

−a13A3(t − τ13(t))y3(t − τ13(t))
]
dt + σ1y1(t)dB1(t),

dy2(t) = y2(t)

r2 +

k∑
j=1

ln(1 + α2 j) − a21A1(t − τ21(t))y1(t − τ21(t)) − a22A2(t)y2(t)

−a23A3(t − τ23(t))y3(t − τ23(t))
]
dt + σ2y2(t)dB2(t),

dy3(t) = y3(t)

−r3 +

k∑
j=1

ln(1 + α3 j) + a31A1(t − τ31(t))y1(t − τ31(t))

+a32A2(t − τ32(t))y2(t − τ32(t)) − a33A3(t)y3(t)
]
dt + σ3y3(t)dB3(t),

(3.1)

where yi(θ) = φi(θ), −τ0 ≤ θ ≤ 0, t ≥ 0, xi(t) = Ai(t)yi(t) and Ai(t) = (
∏k

j=1(1 + αi j))−t ∏
tk<t(1 + αik).
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Let y(t) = (y1(t), y2(t), y3(t))>,

y(t − τ(t)) =


0 y21(t − τ21(t)) y31(t − τ31(t))

y12(t − τ12(t)) 0 y32(t − τ32(t))
y13(t − τ13(t)) y23(t − τ23(t)) 0

 ,
R(t) =

r1 +

k∑
j=1

ln(1 + α1 j), r2 +

k∑
j=1

ln(1 + α2 j),−r3 +

k∑
j=1

ln(1 + α3 j)

 ,
J1(t) =


a11A1(t) 0 0
a21A1(t) 0 0

0 0 a33A3(t)

 ,

J2(t) =


0 −a12A2(t − τ12(t)) −a13A3(t − τ13(t))
0 −a22A2(t − τ22(t)) −a23A3(t − τ23(t))

a31A1(t − τ31(t)) a32A2(t − τ32(t)) 0

 ,
σ =


σ1 0 0
0 σ2 0
0 0 σ3

 ,
dB(t) = (dB1(t), dB2(t), dB3(t))>, φ(θ) = (φ1(θ), φ2(θ), φ3(θ))>, then (3.1) can be rewritten as{

dy(t) = y>(t)(R(t) − J1(t)y(t) + J2(t)y(t − τ(t)))dt + φ(y>(t)dB(t)),
y(θ) = φ(θ),−τ0 ≤ θ ≤ 0, t ≥ 0.

(3.2)

For model (1.1), we always assume
(T1) In terms of biological significance, we consider 1 + αi j > 0, j ∈ N, i = 1, 2, 3.
(T2) ∃ C1 > 0, C2 > 0 , C1 ≤

∏k
j=1(1 + αi j) ≤ C2, C1 ≤

∑k
j=1(1 + αi j) ≤ C2, i = 1, 2, 3.

Theorem 1. Assume (T1) and (T2) hold, there exists a unique solution y(t) on t ∈ R+ = [0,∞), and the
solution remain in R3

+ with probability 1 in (3.2).

Proof. Because ri +
∑k

j=1 ln(1 + αi j)(i = 1, 2), −r3 +
∑k

j=1 ln(1 + α3 j) and Ai(t), i = 1, 2, 3 are bounded,
we can prove that the model (3.2) has a unique global solution y(t) remain in R3

+ with probability 1
under the condition of (T1) and (T2) by the same method as lemma 2.2 in [34]. In fact, Eq (2.4) in [34]
is pure differential equation, while the Eq (3.2) in this paper is a simultaneous differential equation of
the same type. It’s proof is similar, so we omit. �

Theorem 2. By the equivalence system and xi(t) = Ai(t)yi(t), xi(t) is a solution of the original
system (1.1).

Proof. The proof of the theorem is along the same lines as in [15]. �

Remark 1. Theorem 2 shows that under conditions (T1) and (T2), the solutions to the original system
and the auxiliary system has the same asymptotic behavior. In order to facilitate the study, we convert
the four-dimensional equation into the three-dimensional equivalent equation, which provides
convenience for the following studies on the extinction, non-persistence and practical exponential
stability of the system.
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4. Persistence and extinction

Theorem 3. (I) If h∗i < 0(i = 1, 2), then the prey xi(i = 1, 2) will be extinct, where
hi(t) =

∑k
j=1,0<tk<t ln(1 + αi j) + ri − 0.5σ2

i + 1
t ln Ai(t), (i = 1, 2).

(II) If h∗i = 0(i = 1, 2), then the prey xi(i = 1, 2) is non-persistent in the mean.

(III) If h∗i > 0(i = 1, 2), lim supt→+∞

∑k
j=1,0<tk<t ln(1+αi j)

ln t < ∞(i = 1, 2) and h∗3 < 0, then the prey xi(i = 1, 2)
is weakly persistent in the mean, where h3(t) =

∑k
j=1,0<tk<t ln(1 + α3 j) − r3 − 0.5σ2

3 + 1
t ln A3(t).

Proof. Applying Itô’s formula to the model (3.1) yields

ln x1(t) − ln x1(0)
t

= h1(t) − a11x1(t) − a12x2(t)

− a13x3(t − τ13(t)) +
Λ1

t
, t > 0, (4.1)

ln x2(t) − ln x2(0)
t

= h2(t) − a21x1(t) − a22x2(t)

− a23x3(t − τ23(t)) +
Λ2

t
, t > 0, (4.2)

and

ln x3(t) − ln x3(0)
t

= h3(t) + a31x1(t − τ31(t)) + a32x2(t − τ32(t))

− a33x3(t) +
Λ3

t
, t > 0, (4.3)

where x(0) = φ0, Λi(t) =
∫ t

0
σidBi(s)(i=1,2,3), local martingale quadratic variation satisfies

〈Λi,Λi〉(t) =
∫ t

0
σ2

i dBi(s) ≤ σ2
i t (i=1,2,3). Using strong law of large numbers [27], we obtain

lim
t→∞

Λi

t
= 0, a.s., 1 ≤ i ≤ 3. (4.4)

Case (I). Taking the limit in (4.1), (4.2) and using (4.4),

[t−1 ln xi(t)]∗ ≤ h∗i − ai1x1(t)∗ − ai2x2(t)∗
− ai3x3(t − τi3(t))∗ ≤ h∗i < 0(i = 1, 2), a.s.

So, lim
t→+∞

xi(t) = 0(i=1,2) a.s. hold.

Case (II). By (4.4), for ∀ε > 0, ∃ T > 0, then ln xi(0)
t < ε

3 , hi(t) < h∗i + ε
3 and Λi

t < ε
3 (i = 1, 2). Add (4.1)

and (4.2) to the equation above, we have

ln xi(t)
t
≤
ε

3
+ h∗i +

ε

3
− ai1x1(t) +

ε

3
− ai2x2(t) − ai3x3(t − τi3(t))

≤ ε − ai1x1(t) − ai2x2(t), i = 1, 2.

AIMS Mathematics Volume 8, Issue 10, 22643–22661.



22649

So,
ln xi(t)

t
≤ ε − aiixi(t), i = 1, 2.

Using Lemma 3.2 in [25], then
xi(t)

∗
≤
ε

aii
, i = 1, 2. (4.5)

For ∀ε, we have lim
t→+∞

xi(t) = 0.

Case (III). By Lemma 1 and the condition lim sup
t→+∞

∑k
j=1,0<tk<t ln(1 + αi j)

ln t
< ∞(i = 1, 2), we can easily

get [t−1 ln xi(t)]∗ ≤ 0(i = 1, 2) a.s. The following formula can be obtained by taking limit in (4.1) and
(4.2)

ai1x1
∗

+ ai2x2
∗

+ ai3x3(t − τi3(t))
∗
≥ h∗i > 0, a.s. i = 1, 2. (4.6)

Therefore, xi
∗ > 0 (i=1,2) a.s. For ∀ω ∈ {xi(t, ω) = 0, i = 1, 2}, x3(t − τ3(t), ω)

∗
> 0. Yet, for (4.3) take

the superior limit and use xi
∗

= 0(i = 1, 2) a.s. yields[
t−1 ln x3(t)

]∗
≤ h∗3 + a31x1(t − τ31(t))

∗
+ a32x2(t − τ32(t))

∗
− a33x3(t)∗

≤ h∗3 + a31 max x1(s)t−τ0≤s≤t
∗

+ a32 max x2(s)t−τ0≤s≤t
∗

− a33x3(t)∗ ≤ h∗3 − a33x3(t)∗ ≤ h∗3(t) < 0.

In other words, lim
t→∞

x3(t, ω) = 0, which the contradiction arises. Therefore, xi
∗ > 0(i = 1, 2) a.s. �

Corollary 1. (I) If, in addition to (T2), the model (1.1) satisfies the condition ri < 0.5σ2
i , 1 ≤ i ≤ 2, the

prey xi, 1 ≤ i ≤ 2, will be extinct.
(II) If, in addition to (T2), the model (1.1) satisfies the condition ri = 0.5σ2

i , 1 ≤ i ≤ 2, the prey
xi, 1 ≤ i ≤ 2, will be non-persistent in the mean.
(III) If, in addition to (T2), the model (1.1) satisfies the condition ri > 0.5σ2

i , 1 ≤ i ≤ 2 and −r3 < 0.5σ2
3,

the prey xi, 1 ≤ i ≤ 2, will be weakly persistent in the mean.

Proof. The impulsive perturbations are bounded by (T2).

ln Ai(t)
t

=
−t

∑k
j=1,0<tk<t ln(1 + αi j) + ln

∏
tk<t(1 + αik)

t

= − ln
k∏

j=1,0<tk<t

(1 + αi j) +
ln

∏
tk<t(1 + αik)

t
, (1 ≤ i ≤ 2).

So,

hi(t) =

k∑
j=1,0<tk<t

ln(1 + αi j) + ri − 0.5σ2
i +

1
t

ln Ai(t)

= ln
k∏

j=1,0<tk<t

(1 + αi j) + ri − 0.5σ2
i − ln

k∏
j=1,0<tk<t

(1 + αi j)

+
ln

∏
tk<t(1 + αik)

t
= ri − 0.5σ2

i +
ln

∏
tk<t(1 + αik)

t
,

1 ≤ i ≤ 2, t > 0.
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From (T2), we have

lim
t→+∞

ln
∏

tk<t(1 + αik)
t

= 0.

h∗i (t) = ri − 0.5σ2
i , (1 ≤ i ≤ 2), t > 0.

Similarly,

h3(t) = −r3 − 0.5σ2
3 +

ln
∏

tk<t(1 + α3 j)
t

, t > 0,

h∗3(t) = −r3 − 0.5σ2
3, t > 0.

�

Based on Theorem 3, we can get Corollary 1.

Theorem 4. (I) If a11a22h∗3 + a31a22h∗1 + a32a11h∗2 < 0 and h∗3 < 0, then the predator x3 will be extinct.

(II) If a11a22h∗3 + a31a22h∗1 + a32a11h∗2 = 0, h∗3 < 0 and lim sup
t→+∞

∑k
j=1,0<tk<t ln(1 + αi j)

ln t
< ∞(i = 1, 2, 3),

then the predator x3 is non-persistent in the mean.
(III) If h∗3 > 0, a31a22h∗1 + a11a32h∗2 + a11a22h∗3 > a32a11a21x1

∗
+ a31a22a12x2

∗

and lim sup
t→+∞

∑k
j=1,0<tk<t ln(1 + αi j)

ln t
< ∞(i = 1, 2, 3), then predator x3 is weakly persistent in the mean.

Proof. Case (I). If h∗i ≤ 0(i = 1, 2) a.s., xi
∗

= 0(i = 1, 2) a.s. can be obtained by Theorem 3. Since
superior limit h∗3 < 0, for ∀ε > 0, ∃T > 0 such that h3(t) < h∗3 + ε, for all t > T . From (4.3), we get

ln x3(t) − ln x30

t
≤ h∗3 + ε + a31x1(t − τ31(t)) + a32x2(t − τ32(t)) − a33x3(t) +

Λ3

t
, t > T.

In order to seek the type on the limit, we have[
t−1 ln x3(t)

]∗
≤ h∗3 + ε + a31x1

∗
+ a32x2

∗
− a33x3∗

= h∗3 + ε − a33x3∗ ≤ h∗3 + ε. a.s.

Thus, lim
t→+∞

x3(t) = 0, a.s. If h∗i > 0(i = 1, 2), from (4.1), (4.2) and (4.4), we can obtain

ln xi(t)
t
≤ h∗i + ε − aiixi(t), i = 1, 2.

Using Lemma 3.2 in [25], we have

xi
∗
≤

h∗i
aii
, i = 1, 2. a.s. (4.7)

From (4.3) and (4.7), we see

[t−1 ln x3(t)]∗ ≤ h∗3 + a31x1(t − τ31(t))
∗

+ a32x2(t − τ32(t))
∗
− a33x3∗

≤ h∗3 + a31x1
∗

+ a32x2
∗
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≤
a11a22h∗3 + a31a22h∗1 + a32a11h∗2

a11a22
< 0, a.s.

So, lim
t→+∞

x3(t) = 0, a.s. If h∗1 > 0, h∗2 = 0 or h∗1 = 0, h∗2 > 0, we can also obtain the same result. Here we
omit the proof.
Case (II). It has been proved from case (I) that if h∗i ≤ 0(i = 1, 2), we can get lim

t→∞
x3(t) = 0, a.s. That

is, x3(t)
∗

= 0, a.s. Now suppose h∗i > 0(i = 1, 2). If x3(t)
∗
> 0, a.s., [t−1 ln x3(t)]∗ = 0. a.s. is obtained

from Lemma 1 and from assumption lim supt→∞

∑k
j=1,0<tk<t ln(1+α3k)

ln t < ∞. By (4.3), we have

0 = [t−1 ln x3(t)]∗ ≤ h∗3 + a31x1(t − τ31(t))
∗

+ a32x2(t − τ32(t))
∗

= h∗3 + a31x1
∗

+ a32x2
∗. a.s.

On the flip hand, for ∀ε > 0, ∃ T > 0, then

ln x30

t
<
ε

5
, h3 ≤ h∗3 +

ε

5
, a31x1 < a31x1

∗
+
ε

5
, a32x2 < a32x2

∗
+
ε

5
,

Λ3(t)
t

<
ε

5
.

From (4.3), we get

t−1 ln x3(t) ≤ h∗3 + a31x1(t − τ31(t))
∗

+ a32x2(t − τ32(t))
∗
− a33x3(t) + ε.

Using Lemma 3.2 in [25], we have

x∗3 ≤
1

a33

(
h∗3 + a31x1(t − τ31(t))

∗
+ a32x2(t − τ32(t))

∗
+ ε

)
,

which indicates that

x3
∗
≤

1
a33

(
h∗3 + a31x1(t)

∗
+ a32x2(t)

∗)
.

Substituting (4.7) into the above inequality yields

x3
∗
≤

a11a22h∗3 + a31a22h∗1 + a32a11h∗2
a11a21a33

= 0, a.s.

Then conflict arises. Thus, x3
∗

= 0 a.s.
Case (III). Multiplying (4.1)–(4.3) by a31a22, a32a11 and a11a22, respectively, we find

a31a22t−1 ln(
x1(t)
x10

) + a32a11t−1 ln(
x2(t)
x20

) + a11a22t−1 ln(
x3(t)
x30

)

= a31a22h1(t) − a31a22a11x1(t) − a31a22a12x2(t) − a31a22a13x3(t − τ13(t))
+ a32a11h2(t) − a32a11a21x1(t) − a32a11a22x2(t) − a32a11a23x3(t − τ23(t))
+ a11a22h3(t) + a11a22a31x1(t − τ31(t)) + a11a22a32x2(t − τ32(t)) − a11a22a33x3(t)

+ a31a22t−1
∫ t

0
σ1dB1 + a32a11t−1

∫ t

0
σ2dB2 + a11a22t−1

∫ t

0
σ3dB3. (4.8)
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Local martingale, the strong law was applied to get limt→∞

∫ t
0 a31a22σ1dB1

t = 0, limt→∞

∫ t
0 a32a11σ2dB2

t = 0,

limt→∞

∫ t
0 a11a22σ3dB3

t = 0, a.s. To find the superior limit of (4.8) and noting that (t−1 ln xi(t))∗ ≤ 0, 1 ≤ i ≤
3 a.s., we have

a31a22(t−1 ln x1(t))∗ + a32a11(t−1 ln x2(t))∗ + a11a22(t−1 ln x3(t))∗

= a31a22h∗1 − a31a22a11x1
∗
− a31a22a12x2

∗
− a31a22a13x3

∗

+ a32a11h∗2 − a32a11a21x1
∗
− a32a11a22x2

∗
− a32a11a23x3

∗

+ a11a22h∗3 + a11a22a31x1
∗

+ a11a22a32x2
∗
− a11a22a33x3

∗.

That is
(a31a22a13 + a32a11a23 + a11a22a33)x3

∗

≥ (a31a22a13 + a32a11a23 + a11a22a33)x3
∗

+ a31a22(t−1 ln x1(t))∗

+ a32a11(t−1 ln x2(t))∗ + a11a22(t−1 ln x3(t))∗

= a31a22h∗1 + a32a11h∗2 + a11a22h∗3 − a32a11a21x1
∗
− a31a22a12x2

∗ > 0.

So x3
∗ > 0 a.s., i.e., the predator x3 is weakly persistent in the mean.

The proof is therefore completed. �

Corollary 2. (I) If, in addition to (T2), the model (1.1) satisfies the condition a31a22(r1 − 0.5σ2
1) +

a32a11(r2 − 0.5σ2
2) ≤ a11a12(r3 + 0.5σ2

3), the predator x3 will be extinct.
(II) If, in addition to (T2), the model (1.1) satisfies the condition a31a22(r1−0.5σ2

1)+a32a11(r2−0.5σ2
2) =

a11a12(r3 + 0.5σ2
3), the predator x3 is non-persistent in the mean.

Proof. From (T2), we know that
∑k

j=1,0<tk<t ln(1 + αi j) = ln
∏k

j=1,0<tk<t(1 + αi j), 1 ≤ i ≤ 3, is bounded

variable. So, lim supt→∞

∑k
j=1,0<tk<t ln(1+αi j)

ln t = lim supt→∞
ln

∏k
j=1,0<tk<t(1+αi j)

ln t = 0, 1 ≤ i ≤ 3.
Based on h∗i = ri − 0.5σ2

i , (1 ≤ i ≤ 2), t > 0, and h∗3 = −r3 − 0.5σ2
3, t > 0, we have the following

conclusions.
1) If a31a22(r1−0.5σ2

1)+a32a11(r2−0.5σ2
2) < a11a22(r3 +0.5σ2

3), then a31a22h∗3 +a31a22h∗1 +a32a11h∗2 < 0
and h∗3 < 0 hold. From Theorem 4, the predator x3 will be extinct.
2) If a31a22(r1−0.5σ2

1)+a32a11(r2−0.5σ2
2) = a11a22(r3 +0.5σ2

3), then a31a22h∗3 +a31a22h∗1 +a32a11h∗2 = 0
and h∗3 < 0 hold. From Theorem 4, the predator x3 is non-persistent in the mean. �

Remark 2. When a13 = a23 = a31 = a32 = a33 = 0, r3 = 0, τi j(t) = 0, σ3 = 0, the model (1.1)
degenerates into the model studied in Wu et al. [23]. Theorems 3 and 4 include some results of Wu et
al. [23] as a special case.

Practical exponential stability is a kind of asymptotic stability with good properties and a kind
of Lyapunov stability. According to Lemmas 2 and 3 in [15], we obtain the first moment practical
exponential stability of the system. The system (2.1) is also considered to be pth moment exponential
stability [30]. Indeed, ignoring the impulse in Theorem 3.1 in [30], the theorem reduces to Lemma 2
in [15]. Practical exponential stability means to some extent the permanence of the population. The
system (2.1) is considered to be pth moment exponential stability[30].

Proof. The proof is similar to [30], here we omit it. �
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Theorem 5. Let Ri = ri +
∑k

j=1 ln(1 + αi j)(i = 1, 2), R3 = −r3 +
∑k

j=1 ln(1 + α3 j), and 2a11a22a33A3 −

a22a2
31A1 − a11a2

32A2 , 0.
I =

a11a22(R3−a33A3)2

4a11a22a33A3−2a22a2
31A1−2a11a2

32A2
+ A1(2a11)−1( R1

A1
− a11 − a21 + a31)2 + A2(2a22)−1( R2

A2
− a12 − a22 + a32)2 +

(R1 + R2 + R3) +
σ2

1+σ2
2+σ2

3
2 . Assume that Ai j(t− τi j(t)) < Ai j(t), (T1), (T2) and the Razumikhin conditions

hold

yi j(t − τi j(t)) < yi j(t), (4.9)

where t ≥ 0, i, j = 1, 2, 3. If I > 0, then model (3.1) is 1th moment practical exponential stability, that
is model (1.1) is 1th moment persistence. On the contrary, when I < 0, then model (3.1) is 1st moment
exponential stability, that is model (1.1) is 1st moment extinction.

Proof. Let Vi(y) = yi + ln(yi + 1), V(y) = V1 + V2 + V3.
Then

yi ≤ Vi(y) ≤ 2yi + 3. (4.10)

|y| ≤ V(y) ≤ 2|y| + 3. (4.11)

From (4.9) and (4.11), we get

EV(φ(θ)) ≤ 2E|φ(θ)| + 3 < 2V(φ(0)) + 3. (4.12)

The constructed V function, and inequality (4.18)–(4.20) satisfies the Lemma 2 in [15], then

LV1 = (1 +
1

y1 + 1
)y1(r1 +

k∑
j=1

ln(1 + α1 j) − a11A1y1 − a12A2y2

− a13A3(t − τ13(t))y3(t − τ13(t))) −
1
2

y2
1

(1 + y1)2σ
2
1

≤ (y1 + 1)(R1 − a11A1y1 − a12A2y2 − a13A3(t − τ13(t))y3(t − τ13(t)))

+
1
2
σ2

1

= R1y1 − a11A1y2
1 − a12A2y1y2 − a13A3(t − τ13(t))y1y3(t − τ13(t))

+ R1 − a11A1y1 − a12A2y2 − a13A3(t − τ13(t))y3(t − τ13(t)) +
1
2
σ2

1

< −a11A1y2
1 + (R1 − a11A1)y1 − a12A2y2 + R1 +

1
2
σ2

1. (4.13)

Similarly, we have

LV2 < −a22A2y2
2 + (R2 − a22A2)y2 − a21A1y1 + R2 + 1

2σ
2
2. (4.14)

LV3 ≤ −a33A3y2
3 + (R3 − a33A3)y3 + a31A1(t − τ31(t))y1(t − τ31(t))

+ a32A2(t − τ32(t))y2(t − τ32(t)) + a31A1(t − τ31(t))y1(t − τ31(t))y3
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+ a32A2(t − τ32(t))y2(t − τ32(t))y3(t) + R3 +
1
2
σ2

3

< −a33A3y2
3 + (R3 − a33A3)y3 + a31A1y1 + a32A2y2

+ a31A1y1y3 + a32A2y2y3 + R3 +
1
2
σ2

3. (4.15)

So

LV = LV1 +LV2 +LV3

< −a11A1y2
1 + (R1 − a11A1)y1 − a12A2y2 + R1 +

1
2
σ2

1 − a22A2y2
2

+ (R2 − a22A2)y2 − a21A1y1 + R2 +
1
2
σ2

2 − a33A3y2
3 + (R3 − a33A3)y3

+ a31A1y1 + a32A2y2 + a31A1y1y3 + a32A2y2y3 + R3 +
1
2
σ2

3

= (R1 − (a11 + a21 − a31)A1)y1 −
1
2

a22A2y2
2 + (R2 − (a12 + a22 − a32)A2)y2

−
1
2

a11A1y2
1 −

1
2

a11A1y2
1 + a31A1y1y3 −

1
2

a22A2y2
2 + a32A2y2y3 − a33A3y2

3

+ (R3 − a33A3)y3 +
1
2

(σ2
1 + σ2

2 + σ2
3) + (R1 + R2 + R3)

= −A1((
a11

2
)

1
2 y1 − (2a11)−

1
2 (

R1

A1
− a11 − a21 + a31))2

+ A1(2a11)−1(
R1

A1
− a11 − a21 + a31)2 − A2((

a22

2
)

1
2 y2

− (2a22)−
1
2 (

R2

A2
− a12 − a22 + a32))2 + A2(2a22)−1(

R2

A2
− a12 − a22 + a32)2

− A1((
a11

2
)

1
2 y1 − (2a11)−

1
2 a31y3)2 +

A1a2
31

2a11
y2

3 + (R1 + R2 + R3)

− A2((
a22

2
)

1
2 y2 − (2a22)−

1
2 a32y3)2 +

A2a2
32

2a22
y2

3 +
1
2

(σ2
1 + σ2

2 + σ2
3)

− a33A3y2
3 + (R3 − a33A3)y3

≤ −(a33A3 −
A1a2

31

2a11
−

A2a2
32

2a22
)y2

3

+ (R3 − a33A3)y3 + (R1 + R2 + R3) +
1
2

(σ2
1 + σ2

2 + σ2
3)

+ A1(2a11)−1(
R1

A1
− a11 − a21 + a31)2 + A2(2a22)−1(

R2

A2
− a12 − a22 + a32)2

= −((a33A3 −
A1a2

31

2a11
−

A2a2
32

2a22
)

1
2 y3 −

R3 − a33A3

2(a33A3 −
A1a2

31
2a11
−

A2a2
32

2a22
)

1
2

)2
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+
(R3 − a33A3)2

4(a33A3 −
A1a2

31
2a11
−

A2a2
32

2a22
)

+ (R1 + R2 + R3) +
1
2

(σ2
1 + σ2

2 + σ2
3)

+ A1(2a11)−1(
R1

A1
− a11 − a21 + a31)2 + A2(2a22)−1(

R2

A2
− a12 − a22 + a32)2

≤
(R3 − a33A3)2

4(a33A3 −
A1a2

31
2a11
−

A2a2
32

2a22
)

+ (R1 + R2 + R3) +
1
2

(σ2
1 + σ2

2 + σ2
3)

+ A1(2a11)−1(
R1

A1
− a11 − a21 + a31)2 + A2(2a22)−1(

R2

A2
− a12 − a22 + a32)2

= I. (4.16)

If I > 0, the system (1.1) is 1st moment practical exponential stability. I < 0, the system (3.1) is 1st
moment exponential stability. Practical exponential stability means to some extent the permanence of
the population, exponential stability implies a degree of extinction. �

Corollary 3. (I) In addition to (T2) and (4.18), if the model (1.1) meets the following conditions

R1 = (−a31 + a11 + a21)A1, (4.17)

R2 = (−a32 + a12 + a22)A2, (4.18)

R3 = a33A3, (4.19)

then
(I)

(−a31 + a11 + a21)A1 + (−a32 + a12 + a22)A2

+ a33A3 +
1
2

(σ2
1 + σ2

2 + σ2
3) > 0, (4.20)

the system (1.1) is 1st moment persistence.
(II)

(−a31 + a11 + a21)A1 + (−a32 + a12 + a22)A2

+ a33A3 +
1
2

(σ2
1 + σ2

2 + σ2
3) < 0, (4.21)

the system (1.1) is 1st moment extinction.

Proof. If the condition (4.17)–(4.19) hold, from (4.16), we have

LV ≤ LV1 +LV2 +LV3 < R1 + R2 + R3 +
1
2

(σ2
1 + σ2

2 + σ2
3) = I. (4.22)

From Theorem 5, the Corollary 3 is true.
In fact, when αi j = 0, 1 ≤ i ≤ 3, j = 1, 2, · · · , then Ai = 1, 1 ≤ i ≤ 3 and Ri = ri +

∑k
j=1 ln(1 + αi j) =

ri, 1 ≤ i ≤ 3. From (4.17)–(4.19), we have ri = Ri = a1i + a2i − a3i, 1 ≤ i ≤ 2, r3 = R3 = a33. The
following conditions can be obtained by using Corollary 3. �

AIMS Mathematics Volume 8, Issue 10, 22643–22661.



22656

Remark 3. Since the model (1.1) contains time delay, it is a non-Markov process. In solving the
stability of non-Markovian processes, it is transformed into solving the stability of Markovian processes
by applying Razumikhin’s inequality. In some cases, a non-Markovian process can produce Markovian
effects.

5. Results

In this section, the numerical simulation results prove the correctness of Theorem 5. We will give
some reasonable parameters to get the corresponding time series diagram and corresponding histogram,
which can more intuitively reflect the persistence and extinction of the population. In addition, we
discussed how impulse and white noise affect the persistence and extinction in model.
Case 1. Set up the system of the initial value (1.1) is (x10, x20, x30)> = (1, 1.2, 1.4)>. We have chosen
the parameters values as r1 = 0.2, r2 = 0.2, r3 = 0.9, a11 = 0.3, a12 = 0.3, a13 = 0.2, a21 = 0.2,
a22 = 0.4, a23 = 0.1, a31 = 0.6, a32 = 0.4, a33 = 0.6, σ1 = 1, σ2 = 1, σ3 = 1, α1k = 0, α2k = 0,
α3k = e

1
k2 − 1, τi j(t) = 0.3 + 0.1 sin t. By calculating I > 0, the theorem condition is satisfied. See

Figure 1 for details. In bio-mathematics, practical exponential stability usually refers to the stable
property of a dynamic system, which describes the exponential rate at which the state of the system
tends to a stable state when the system experiences some perturbation.
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2.5

3

x3

Figure 1. The system is practically exponentially stable.

Case 2. Set up the system of the initial value (1.1) for (0.4, 0.6, 0.5)>. We have chosen the parameters
values as r1 = 0.2, r2 = 0.07, r3 = 0.9, a11 = 0.3, a12 = 0.23, a13 = 0.6, a21 = 0.1, a22 = 0.3, a23 = 0.16,
a31 = 1.2, a32 = 1.1, a33 = 0.1, σ1 = 0.001, σ2 = 0.001, σ3 = 0.5, α1k = e

1
k2 − 2, α1k = e

1
k2 − 1.5,
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α3k = e
1

k2 − 1, τi j(t) = 0.1 + 0.1 sin t. According to Theorem 5, all the species are 1st moment
extinction. See Figure 2 for details. The significance of exponential stability in bio-mathematics is
that it can help us predict the population dynamics of individual species in an ecosystem and assess
the effects of different disturbance factors on ecosystem stability. This will help us better protect and
manage ecosystems and maintain ecological balance and biodiversity.
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Figure 2. The system is exponentially stable.

Case 3. Set up the system of the initial value (1.1) for (0.4, 0.6, 0.5)>. We have chosen the parameters
values as r1 = 0.01, r2 = 0.01, r3 = 1.6, a11 = 0.24, a12 = 0.15, a13 = 0.7, a21 = 0.4, a22 = 0.6,
a23 = 0.15, a31 = 0.8, a32 = 1.3, a33 = 1.8, σ1 = 0.0001, σ2 = 0.0001, σ3 = 0.0001, α1k = 0, α2k = 0,
α3k = e

1
k2 −1. Extinction means that all populations in the system have disappeared, that is, completely

extinct. In ecology, extinction usually refers to the disappearance or extinction of a species. A species
is considered extinct if it can no longer reproduce or survive in its natural environment.
Case 4. All parameters are the same as case 3. We modify the intensity of white noise σ1 = 0.2,
σ2 = 0.1, σ3 = 1. The mean-square weak persistence parameter is used to describe the magnitude
of change in the number of individuals in a system. It represents the change trend of the population
number in the system from the perspective of time series. The larger the mean square weak persistence
parameter, the more drastic the population fluctuation and the worse the stability of the system.

Remark 4. As shown in Figures 3 and 4, the model is unstable under the condition of normal pulse and
weak white noise. By increasing the intensity of white noise appropriately, the model can be changed
from weak persistent to persistent.

Remark 5. When the intensity of the white noise is high or the intensity of the pulse is high, it will
cause the extinction of the population. Under the condition of bounded pulse intensity, the impulsive
perturbation does not affect the practical exponential stability of species in time average. We get the
same conclusion as Lu et al. [11]. When the delay of our model is 0, the three-dimensional model
becomes a two-dimensional model, and we generalize the partial work of Lu et al. [11].
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Figure 3. The system is weak persistence.
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Figure 4. The system is persistence.

Remark 6. Under the Razumikhin condition, the future population development will be better than the
past population development, and since this process is a Markov process, plus Lipschitz condition, the
solution of the model is globally unique.

Remark 7. In the study of the extinction, non-persistence in mean square and mean square weak
persistence of preys are only described by the relationship between pulse parameters and noise
intensity parameters. However, the sufficient condition to obtain the practical exponential stability of
the population is the characterization of the relationship between noise, pulse intensity and equation
coefficient. Practical exponential stability uses more comprehensive parameters. At the same time,
delay has no effect on the persistence, extinction and practical exponential stability of the stochastic
system.
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6. Conclusions

This paper has studied the persistence, extinction and practical exponential stability of impulsive
stochastic competition models with time-varying delays. The paper has obtained the following facts:
The impulsive perturbation does not affect the practical exponential stability under the condition of
bounded pulse intensity. In solving the stability of non-Markovian processes, it can be transformed
into solving the stability of Markovian processes by applying Razumikhin inequality. In some cases,
a non-Markovian process can produce Markovian effects. Finally, numerical simulations obtained the
importance and validity of the theoretical results for the existence of practical exponential stability
through the relationship between parameters, pulse intensity and noise intensity.
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