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Abstract: In this article, we have achieved new solutions for the Novikov-Veselov system using
several methods. The present solutions contain soliton solutions in the shape of hyperbolic, rational,
and trigonometric function solutions. Magneto-sound and ion waves in plasma are examined by
employing partial differential equations, such as, the Novikov-Veselov system. The Generalized
Algebraic and the Modified F-expansion methods are employed to achieve various soliton solutions for
the system. The finite difference method is well applied to convert the proposed system into numerical
schemes. They are used to obtain the numerical simulations for NV. I also present a study of the
stability and Error analysis of the numerical schemes. To verify the validity and accuracy of the exact
solutions obtained using exact methods, we compare them with the numerical solutions analytically
and graphically. The presented methods in this paper are suitable and acceptable and can be utilized
for solving other types of non-linear evolution systems.
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1. Introduction

In various fields of science, nonlinear evolution equations practically model many natural,
biological and engineering processes. For example, PDEs are very popular and are used in physics
to study traveling wave solutions. They have played a crucial role in illustrating the nature of nonlinear
problems. PDEs are collected to control the diffusion of chemical reactions. In biology, they play a
fundamental role in describing various phenomena, such as population growth. In addition, natural
phenomena such as fluid dynamics, plasma physics, optics and optical fibers, electromagnetism,
quantum mechanics, ocean waves, and others are studied using PDEs. The qualitative and quantitative
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characteristics of these phenomena can be identified from the behaviors and shapes of their solutions.
Therefore, finding the analytic solutions to such phenomena is a fundamental topic in mathematics.
Scientists have developed sparse fundamental approaches to find analytic solutions for nonlinear PDEs.
Among these techniques, I present integration methods from [1] and [2], the modified F-expansion and
Generalized Algebraic methods, respectively. Bekir and Unsal [3] proposed the first integral method to
find the analytical solution of nonlinear equations. Kumar, Seadawy and Joardar [4] used the improved
Kudryashov technique to extract fractional differential equations. Adomian [5] proposed the Adomian
decomposition technique to find the solution of frontier problems of physics. [6] uses an exploratory
method to find explicit solutions of non-linear PDEs. Many different methods of solving equations
arising from natural phenomena and some of their analytic solutions, such as dark and light solitons,
non-local rogue waves, an occasional wave and mixed soliton solutions, are exhibited and can be found
in [7–40].

The Novikov-Veselov (NV) system [41, 42] is given by

Ψt + αΓxxy + βΦxyy + γΓyΦ + γ

(
Ψ2

2

)
y

+ λΓ Φx + λ

(
Ψ2

2

)
x

= 0,

Γy = Ψx,

Ψy = Φx,

(1.1)

where α, β, γ and λ are constants. Barman [42] declared that Eq (1.1) is involved to represent tidal and
tsunami waves, electro-magnetic waves in communication cables and magneto-sound and ion waves
in plasma. In [42], the generalized Kudryashov method was utilized to have traveling wave solutions
for Eq (1.1). According to Croke [43], the Novikov-Veselov system is generalized from the KdV
equations which were examined by Novikov and Veselov. Croke [43] used several approaches, (the
extended mapping, the Hirota and the extended tanh-function approaches) in the proposed system to
achieve numerous soliton solutions, such as breathers, and constrained analytic solutions. Boiti, Leon,
and Manna [44] applied the inverse dispersion technique to solve (1.1) for a particular type of initial
value. Numerical solutions and a study of the stability of solutions for the proposed equation were
presented by Kazeykina and Klein [45]. The Nizhnik-Novikov-Veselov system for two dimensions was
also solved using the Kansa technique to find the numerical results [46]. To the best of my knowledge,
the stability and error analysis of the numerical scheme presented here has not yet been discussed for
system (1.1). Therefore, this has motivated me enormously to do so. The primary purpose is to obtain
multiple analytic solutions to system (1.1) by using both the modified F-expansion and Generalized
Algebraic methods. In connection with the numerical solution, the method of finite differences is
utilized to achieve numerical results for the studied system. I graphically and analytically compare the
traveling wave solutions and numerical results. Undoubtedly, the presented results strongly contribute
to describing physical problems in practice.

The outline of this article is provided in this paragraph. Section 2 summarizes the employed
methods. All the analytic solutions are extracted in Section 3. The shooting and BVP results for
the proposed system are presented in Section 4. In addition, I examine the numerical solution of the
system (1.1) in Section 5. Sections 6 and 7 study the stability and error analysis of the numerical
scheme, respectively. Section 8 presents the results and discussion.
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2. Summary of proposed methods

Considering the development equation with physical fields Ψ(x, y, t), Φ(x, y, t) and Γ(x, y, t) in the
variables x, y and t is given in the following form:

Q1(Ψ,Ψt,Ψx,Ψy,Γ,Γy,Γxxy,Φ,Φxyy,Φx, . . . ) = 0. (2.1)

Step 1. We extract the traveling-wave solutions of System (1.1) that are formed as follows:

Φ(x, y, t) =φ(η), η = x + y − wt,

Ψ(x, y, t) =ψ(η),
Γ(x, y, t) =Θ(η),

(2.2)

where w is the wave speed.
Step 2. The nonlinear evolution (2.1) is reduced to the following ODE:

Q2(ψ, ψη,Θ,Θη,Θηηη, φ, φηηη, φη, . . . ) = 0, (2.3)

where Q2 is a polynomial in ψ(η), φ(η), Θ(η) and their total derivatives.

2.1. The modified F-expansion method

According to the modified F-expansion method, the solutions of (2.3) are given by the form

ψ(η) = ρ0 +

N∑
k=1

(
ρkF(η)k +

qk

F(η)k

)
, (2.4)

and F(η) is a solution of the following differential equation:

F′(η) = µ0 + µ1F(η) + µ2F(η)2, (2.5)

where µ0, µ1, µ2, are given in Table 1 [1], and ρk, qk are to be determined later.

Table 1. The relations among µ0, µ1, µ2 and the function F(η).

µ0 µ1 µ2 F(η)

µ0 = 0, µ1 = 1, µ2 = −1, F(η) =
1
2

+
1
2

tanh
(
1
2
η

)
.

µ0 = 0, µ1 = −1, µ2 = 1, F(η) =
1
2
−

1
2

coth
(
1
2
η

)
.

µ0 =
1
2
, µ1 = 0, µ2 =

−1
2
, F(η) = coth(η) ± csch(η), tanh(η) ± sech(η).

µ0 = 1, µ1 = 0, µ2 = −1, F(η) = tanh(η), coth(η).

µ0 =
1
2
, µ1 = 0, µ2 =

1
2
, F(η) = sec(η) + tan(η), csc(η) − cot(η).

µ0 =
1
2
, µ1 = 0, µ2 =

1
2
, F(η) = sec(η) − tan(η), csc(η) + cot(η).

µ0 = ±1, µ1 = 0, µ2 = ±1, F(η) = tan(η), cot(η).

AIMS Mathematics Volume 8, Issue 1, 1230–1250.



1233

2.2. The generalized algebraic method

According to the generalized direct algebraic method, the solutions of (2.3) are given by

ψ(η) = ν0 +

N∑
k=1

(
νkG(η)k +

rk

G(η)k

)
, (2.6)

and G(η) is a solution of the following differential equation:

G′(η) = ε

√√
4∑

k=0

δkGk(η), (2.7)

where νk, and rk are to be determined, and N is an integer number obtained by the highest degree of the
nonlinear terms and the highest order of the derivatives. ε is user-specified, usually taken with ε = ±1,
and δk, k = 0, 1, 2, 3, 4, are given in Table 2 [2].

Table 2. The relations among δk, k = 0, 1, 2, 3, 4, and the function G(η).

δ0 δ1 δ2 δ3 δ4 G(η)

δ0 = 0, δ1 = 0, δ2 > 0, δ3 = 0, δ4 < 0, G(η) = ε

√
−
δ2

δ4
sech

(√
δ2η

)
.

δ0 =
δ2

2

4c4
, δ1 = 0, δ2 < 0, δ3 = 0, δ4 > 0, G(η) = ε

√
−
δ2

2δ4
tanh

√−δ2

2
η

.
δ0 = 0, δ1 = 0, δ2 < 0, δ3 = 0, δ4 > 0, G(η) = ε

√
−
δ2

δ4
sec

(√
−δ2η

)
.

δ0 =
δ2

2

4δ4
, δ1 = 0, δ2 > 0, δ3 = 0, δ4 > 0, G(η) = ε

√
δ2

2δ4
tan

√δ2

2
η

.
δ0 = 0, δ1 = 0, δ2 = 0, δ3 = 0, δ4 > 0, G(η) = −

ε
√
δ4η

.

δ0 = 0, δ1 = 0, δ2 > 0, δ3 , 0, δ4 = 0, G(η) = −
δ2

δ3
. sech2

( √
δ2

2
η

)
.

3. Methodology

Consider the Novikov-Veselov (NV) system

Ψt + αΓxxy + βΦxyy + γΓyΦ + γ

(
Ψ2

2

)
y

+ λΓ Φx + λ

(
Ψ2

2

)
x

= 0,

Γy = Ψx,

Ψy = Φx,

(3.1)

a system of PDEs in the unknown functions Ψ = Ψ(x, y, t), Φ = Φ(x, y, t), Γ = Γ(x, y, t) and their
partial derivatives. I plug the transformations

Φ(x, y, t) =φ(η), η = x + y − wt,

Ψ(x, y, t) =ψ(η),
Γ(x, y, t) =Θ(η),

(3.2)
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into Eq (3.1) to reduce it to a system of ODEs given by

−w ψη + αΘηηη + βφηηη + γΘηφ + γ

(
ψ2

2

)
η

+ λΘ φη + λ

(
ψ2

2

)
η

= 0,

Θη = ψη,

ψη = φη.

(3.3)

Integrating Θη = ψη and φη = ψη yields

Θ = ψ, and φ = ψ. (3.4)

Substituting (3.4) into the first equation of (3.3) and integrating once with respect to η yields

−w ψ + (α + β)ψηη + (γ + λ)ψ2 = 0. (3.5)

Balancing ψηη with ψ2 in (3.5) calculates the value of N = 2.

3.1. Application of modified F-expansion method

According to the modified F-expansion method with N = 2, the solutions of (3.5) are

ψ(η) = ρ0 + ρ1F(η) +
q1

F(η)
+ ρ2F(η)2 +

q2

F(η)2 , (3.6)

and F(η) is a solution of the following differential equation:

F′(η) = µ0 + µ1F(η) + µ2F(η)2, (3.7)

where µ0, µ1, µ2 are given in Table 1. To explore the analytic solutions to (3.5), I ought to follow the
subsequent steps.

Step 1. Placing (3.6) along with (3.7) into Eq (3.5) and gathering the coefficients of F(η) j,
j=−4,−3,−2,−1, 0, 1, 2, 3, 4, to zeros gives a system of equations for ρ0, ρk, qk, k = 1, 2.

Step 2. Solve the resulting system using mathematical software: for example, Mathematica or Maple.
Step 3. Choosing the values of µ0, µ1 and µ2 and the function F(η) from Table 1 and substituting them

along with ρ0, ρk, qk, k = 1, 2, in (3.6) produces a set of trigonometric function and rational
solutions to (3.5).

Applying the above steps, I determine the values of ρ0, ρ1, ρ2, q1, q2 and w as follows:

(1). When µ0 = 0, µ1 = 1 and µ2 = −1, I have two cases.
Case 1.

ρ0 =0, ρ1 =
6(α + β)
γ + λ

, ρ2 = −
6(α + β)
γ + λ

, q1 = q2 = 0, and w = α + β. (3.8)

The solution is given by

Ψ1(x, y, t) =
3(α + β)
2(γ + λ)

sech2
(
1
2

(x + y − (α + β)t + x0)
)
. (3.9)
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Case 2.

ρ0 = −
α + β

γ + λ
, ρ1 =

6(α + β)
γ + λ

, ρ2 = −
6(α + β)
γ + λ

, q1 = q2 = 0, and w = − (α + β) . (3.10)

The solution is given by

Ψ2(x, y, t) = −
(α + β)
2(γ + λ)

(
3 tanh2

(
1
2

(x + y + t(α + β)) + x0
)
− 1

)
. (3.11)

Figure 1 presents the time evolution of the analytic solutions (a) Ψ1 and (b) Ψ2 with t = 0, 10, 20.
The parameter values are x0 = −20, α = 0.50, β = 0.6, γ = −1.5, and λ = 1. Figure 2 presents
the wave behavior by changing a certain parameter value and fixing the values of the others.
Figure 2(a, b) presents the behavior of Ψ1 when I change the values of (a) α or β and (b) γ or
λ. In Figure 2(a) it can also be seen that the value of α or β affects the direction and amplitude
of the wave, such that a negative value always makes the wave negative, its amplitude decreases
when α, β → 0, and its amplitude increases when α, β → ∞. In Figure 2(b) the value of γ or λ
affects the direction and amplitude of the wave, such that a negative value always makes the wave
negative, and its amplitude decreases when the value of γ or λ increases. In Figure 2, (c) and (d)
present the wave behavior of Ψ2.

Figure 1. Time evolution of the analytic solutions (a) Ψ1 and (b) Ψ2 with t = 0, 10, 20. The
parameter are given by x0 = −20, α = 0.50, β = 0.6, γ = −1.5, and λ = 1.
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Figure 2. This figure present the wave behavior when changing a certain parameter value
and fixing the values of the others. (a) presents the behavior when I change the value of α or
β, and (b) presents when I change the value of γ or λ for the solution Ψ1. (c) and (d) are for
Ψ2.

(2). When µ0 = 0, µ1 = −1, and µ2 = 1, I have two cases.
Case 3. The solution is given by

Ψ3(x, y, t) = −
3(α + β)
2(γ + λ)

csch2
(
1
2

(x + y − (α + β)t)
)
. (3.12)

Case 4. The solution is given by

Ψ4(x, y, t) = −
(α + β)
2(γ + λ)

(
3 coth2

(
1
2

(x + y + t(α + β))
)
− 1

)
. (3.13)

(3). When µ0 = 1, µ1 = 0, and µ2 = −1, I have
Case 5. The solution is given by

Ψ5(x, y, t) = −
8(α + β)
γ + λ

(cosh(4(16t(α + β) + x + y)) + 2) csch2(2(16t(α + β) + x + y)). (3.14)

(4). When µ0 = ±1, µ1 = 0, and µ2 = ±1, I have one case.
Case 6. The solution is given by

Ψ6(x, y, t) = −
24(α + β)
γ + λ

csc2(2(16t(α + β) + x + y)). (3.15)

3.2. Application of the generalized algebraic method

According to the generalized algebraic method, the solutions of (3.5) are given by the form

ψ(η) = ν0 + ν1G(η) + ν2G(η)2 +
r1

G(η)
+

r2

G(η)2 , (3.16)
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where νk, rk are to be determined later. G(η) is a solution of the following differential equation:

G′(η) = ε

√√
4∑

k=0

δkGk(η), (3.17)

where δk, k = 0, 1, 3, 4, are given in Table 2. In all the cases mentioned above and the
subsequent solutions, I used the mathematical software Mathematica to find the values of the constants
ν0, ν1, ν2, r1, r2 and w. Thus, the analytic solutions to (3.5) using the generalized algebraic method
will be presented here with different values of the constants δk, k = 0, 1, 3, 4.

(5). When δ0 =
δ2

2

4δ4
, δ1 = δ3 = 0, δ2 < 0, δ4 > 0, and ε = ±1,

ν0 =
±

√
4δ2

2ε
4 (α + β)2 (γ + λ)2

− 3δ2ε4 (α + β)2 (γ + λ)2
− 2δ2ε

2 (α + β) (γ + λ)

(γ + λ)2 ,

ν2 = −
6δ4ε

2 (α + β)
(γ + λ)

,

ν1 =r1 = r2 = 0, ε = ±1.

w = ±
2
√(

4δ2
2 − 3δ2

)
ε4 (α + β)2 (γ + λ)2

(γ + λ)
.

(3.18)

Case 7. The solution is given by

Ψ7(x, y, t) = −
1

(γ + λ)2

−3δ2ε
4(α + β)(γ + λ) tanh2


√
−δ2

(
2t
√
δ2(4δ2−3)ε4(α+β)2(γ+λ)2

γ+λ
+ x + y

)
√

2


+2δ2ε

2(α + β)(γ + λ) +
√
δ2(4δ2 − 3)ε4(α + β)2(γ + λ)2

)
.

(3.19)
Figure 3 shows the time evolution of the analytic solutions. Figure 3(a) shows Ψ7 with t=0 : 2 : 6.
The parameter values are δ2 = −1, δ4 = 1, ε = −1, α = 0.50, β = 0.6, γ = −1.5, λ = 1.8 and
x0 = −10. Figure 3(b) shows Ψ8 with t = 0 : 2 : 8. The parameter values are δ2 = 1, δ4 = −1,
ε = −1, α = 0.50, β = 0.6, γ = −1.5, λ = 1.8 and x0 = −10. Figures 4–6 present the 3D
time evolution of the analytic solutions Ψ2 (left) and the numerical solutions (right) obtained
employing the scheme 5.1 with t = 5, 15, 25, Mx = 1600, Ny = 100, x = 0→ 60 and y = 0→ 1.

AIMS Mathematics Volume 8, Issue 1, 1230–1250.



1238

Figure 3. Time evolution of the analytic solutions. (a) Ψ7 with t = 0 : 2 : 6. The parameter
values are δ2 = −1, δ4 = 1, ε = −1, α = 0.50, β = 0.6, γ = −1.5, λ = 1.8 and x0 = −10. (b)
Ψ8 with t = 0 : 2 : 8. The parameter values are δ2 = 1, δ4 = −1, ε = −1, α = 0.50, β = 0.6,
γ = −1.5, λ = 1.8 and x0 = −10.

Figure 4. 3D graphs presenting the analytic (left) and the numerical (right) solutions of
Ψ2(x, y, t) at t = 5. The figures present the strength of agreement between analytic and
numerical solutions.
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Figure 5. 3D graphs presenting the analytic (left) and the numerical (right) solutions of
Ψ2(x, y, t) at t = 15. The figures present the strength of agreement between analytic and
numerical solutions.

Figure 6. 3D graphs presenting the analytic (left) and the numerical (right) solutions of
Ψ2(x, y, t) at t = 25. The figures present the strength of agreement between analytic and
numerical solutions.

(6). When δ0 = 0, δ1 = δ3 = 0, δ2 > 0, δ4 < 0, and ε = ±1,

ν2 = −
6δ4ε

2(α + β)
γ + λ

, ν1 = ν0 = r1 = r2 = 0, w = 4δ2ε
2(α + β). (3.20)

AIMS Mathematics Volume 8, Issue 1, 1230–1250.
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Case 8. The solution is given by

Ψ8(x, y, t) =
6δ2ε

4(α + β) sech2
(√
δ2

(
−4δ2ε

2t(α + β) + x + y
))

γ + λ
(3.21)

(7). When δ0 = 0, δ1 = δ4 = 0, δ3 , 0, δ2 > 0, ε = ±1

Set 1. ν1 = −
3δ3ε

2(α+β)
2(γ+λ) , ν0 = ν2 = r1 = r2 = 0, w = δ2ε

2 (α + β) .

Set 2. ν0 = −
δ2ε

2(α+β)
(γ+λ) , ν1 = −

3δ3ε
2(α+β)

2(γ+λ) , ν2 = r1 = r2 = 0, w = −δ2ε
2 (α + β) .

(3.22)

Case 9. The solution is given by

Ψ9(x, y, t) =
3δ2(α + β) sech2

(
1
2

√
δ2(δ2t(−(α + β)) + x + y)

)
2(γ + λ)

. (3.23)

Case 10. The solution is given by

Ψ10(x, y, t) =
3δ2(α + β) sech2

(
1
2

√
δ2(δ2t(α + β) + x + y)

)
2(γ + λ)

−
δ2(α + β)
γ + λ

. (3.24)

4. Numerical solution

In this section I extract numerical solutions to the resulting ODE system (3.5) using several
numerical methods. The purpose of this procedure is to guarantee the accuracy of the analytic solutions.
I picked one of the analytic solutions above to be a sample, (3.11). The nonlinear shooting and BVP
methods, at t = 0, are used by taking the value of ψ at the right endpoint of the domain η = 0 with
guessing the initial value for ψη. The new target is to obtain the second boundary condition of ψ at
the left endpoint of a particular domain. Once the numerical result is obtained, I compare it with the
analytic solution (3.11). The MATLAB solver ODE15s and FSOLVE [47] are used to get the numerical
solution. The resulting ODE (3.5) is discretized as

f (ψ) = 0, f (ψi) = −w ψi +
α + β

∆η

(ψi+1 − 2ψi + ψi−1) +
γ + λ

2∆η

(
ψ2

i+1 − ψ
2
i−1

)
, (4.1)

for the BVP method and

ψηη =
1

α + β

(
wψ − (γ + λ)ψ2

)
, (4.2)

for the shooting method. Figure 7 presents the comparison between the numerical solutions obtained
using the above numerical methods and the analytic solution. Figure 7 shows that the solutions are
identical to the analytic solution.
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Figure 7. Comparing the numerical solutions resulting from the shooting and BVP methods
with the analytic solution (3.11) at t = 0. The parameter values are taken as α = 0.50, β = 0.6,
γ = −1.5, λ = 1.8, with N = 600.

Thus, it is possible to verify the correctness of the analytic solution. I also accept the obtained
numerical solution as an initial condition for the numerical scheme in the next section.

5. Numerical scheme on a fixed mesh

In this section, I use the finite-difference method to obtain the numerical results of system (1.1) over
the domain [a, b] × [c, d]. Here, a, b, c and d represent the endpoints of the rectangular domain in
the x and y directions, respectively, and T f is a certain time. The domain [a, b] × [c, d] is split into
(Mx + 1) × (Ny + 1) mesh points:

xm =a + m ∆x, m = 0, 1, 2, . . . , Mx,

yn = c + n ∆y, n = 0, 1, 2, . . . , Ny,

where ∆x and ∆y are the step-sizes of the x and y domains, respectively. The system (1.1) is converted
to an ODE system by discretizing the space derivatives while keeping the time derivative continuous.
Completing this yields

Ψt|
k
m,n +

α

2∆y∆2
x
δ2

x

(
Γk+1

m,n+1 − Γk+1
m,n−1

)
+

β

2∆x∆2
y
δ2

y

(
Φk+1

m+1,n − Φk+1
m−1,n

)
−

γ

4∆y

((
Φk+1

m,n+1 + Φk+1
m,n

)
Γk+1

m,n+1 −
(
Φk+1

m,n + Φk+1
m,n−1

)
Γk+1

m,n−1

)
−

λ

4∆x

((
Γk+1

m+1,n + Γk+1
m,n

)
Φk+1

m+1,n −
(
Γk+1

m,n + Γk+1
m−1,n

)
Φk+1

m−1,n

)
+

γ

4∆y

((
Ψk+1

m,n+1

)2
−

(
Ψk+1

m,n−1

)2
)

+
λ

4∆x

((
Ψk+1

m+1,n

)2
−

(
Ψk+1

m−1,n

)2
)

= 0,

1
2∆y

(Γk+1
m,n+1 − Γk+1

m,n−1) =
1

2∆x
(Ψk+1

m+1,n − Ψk+1
m−1,n),

1
2∆y

(Ψk+1
m,n+1 − Ψk+1

m,n−1) =
1

2∆x
(Φk+1

m+1,n − Φk+1
m−1,n),

(5.1)
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where

δ2
xΓ

k+1
m,n =

(
Γk+1

m+1,n − 2Γk+1
m,n + Γk+1

m−1,n

)
,

δ2
yΦ

k+1
m,n =

(
Φk+1

m,n+1 − 2Φk+1
m,n + Φk+1

m,n−1

)
,

subject to the boundary conditions:

Ψx(a, y, t) = Ψx(b, y, t) = 0, ∀y ∈ [c, d],

Ψy(x, c, t) = Ψy(x, d, t) = 0, ∀x ∈ [a, b].
(5.2)

Equation (5.2) permits us to use fictitious points in estimating the space derivatives at the domain’s
endpoints. The initial conditions are generated by

Ψ2(x, y, 0) = −
(α + β)
2(γ + λ)

(
3 tanh2

(
1
2

(x + y + x0
)
− 1

)
, (5.3)

where α, β, γ and λ are user-defined parameters. In all the numerical results shown in this section,
the parameter values are fixed as α = 0.50, β = 0.6, γ = −1.50, λ = 1.80, x0 = −45.0, y = 0 → 1,
x = 0→ 60 and t = 0→ 25. The above system is solved by using an ODE solver in FORTRAN called
the DDASPK solver [48]. This solver used a backward differentiation formula. Since I do not have the
initial conditions for the space derivatives, I approximate the Jacobian matrix of the linearized system
by using LU-Factorization. The obtained numerical results are acceptable. This can be observed from
the Figures 8 and 9.
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Figure 8. Time change for the numerical results while holding y = 0.5 and Mx = 1600 at
t = 0 : 5 : 25. The wave at t = 25 illustrates that the numerical and the analytic solutions are
quite identical.
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6. Stability of the numerical scheme

The von Neumann analysis is used to examine the stability of the scheme (5.1). The von Neumann
analysis is occasionally called Fourier analysis and is utilized exclusively when the scheme is linear.
Hence, I suppose that the linear version is given by

Ψt + αΓxxy + βΦxyy + s0 Γy + s1 Ψy + s2 Φx + s3 Ψx = 0,
Γy = Ψx,

Ψy = Φx,

(6.1)

where s0 = γΦ, s1 = γΨ, s2 = λΓ, s3 = λΨ are constants. Since Γy = Ψx, and Ψy = Φx, the first
equation of (6.1) is given by

Ψt + αΨxxx + βΨyyy + s0 Ψy + s1 Ψy + s2 Ψx + s3 Ψx = 0, (6.2)

where α, β, γ, λ, s0, s1, s2, s3, l4 are constants. I set directly

Ψk
m,n =µk exp(ι π ξ0 n ∆x) exp(ι π ξ1 m ∆y), (6.3)

and also I can have

Ψk+1
m,n =µΨk

m,n, Ψk
m+1,n = exp(ι π ξ0 ∆x) Ψk

m,n, Ψk
m,n+1 = exp(ι π ξ1 ∆y) Ψk

m,n,

Ψk
m−1,n = exp(−ι π ξ0 ∆x) Ψk

m,n, Ψk
m,n−1 = exp(−ι π ξ1 ∆y) Ψk

m,n,

m =1, 2, . . . , Nx − 1, n = 1, 2, . . . , Ny − 1.

Substituting (6.3) into (6.2) and doing some operations, I have

1 = µ
(
1 − ι∆t

(
sin(ξ0π∆x)

∆x

(
4α
∆2

x
sin2( ξ0π∆x

2 ) − s2 − s3

)
+

sin(ξ1π∆y)
∆y

(
4 β
∆2

y
sin2( ξ1π∆y

2 ) − s0 − s1

)))
.
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Hence,

µ =
1

1 − aι
, (6.4)

where

a = ∆t

(
sin(ξ0π∆x)

∆x

(
4α
∆2

x
sin2( ξ0π∆x

2 ) − s2 − s3

)
+

sin(ξ1π∆y)
∆y

(
4 β
∆2

y
sin2( ξ1π∆y

2 ) − s0 − s1

))
.

Thus,

|µ|2 =
1

1 + a2 ≤ 1. (6.5)

The stability condition of the von Neumann analysis is fulfilled. Consequently, from Eq (6.5), the
scheme is unconditionally stable.

7. Error analysis

To examine the accuracy of the numerical scheme (5.1), I study the truncation error utilizing Taylor
expansions. Suppose that the error is

ek+1
m,n = Ψk+1

m,n − Ψ(xm, yn, tk+1), (7.1)

where Ψ(xm, yn, tk+1) and Ψk+1
m,n are the analytic solution and an approximate solution, respectively.

Substituting (7.1) into (5.1) gives

ek+1
j,k − ek

j,k

∆t
=T k+1

m,n −

(
α

1
2∆3

x
δ2

x

(
ek+1

m+1,n − ek+1
m−1,n

)
+ β

1
2∆3

y
δ2

y

(
ek+1

m,n+1 − ek+1
m,n−1

)
+

s2 + s3

2∆x

(
ek+1

m+1,n − ek+1
m−1,n

)
+

s0 + s1

2∆y

(
ek+1

m,n+1 − ek+1
m,n−1

))
,

where

T k+1
m,n =

α

2∆3
x
δ2

x (Ψ(xm+1, yn, tk+1) − Ψ(xm−1, yn, tk+1)) +
β

2∆3
y
δ2

y (Ψ(xm, yn+1, tk+1) − Ψ(xm, yn−1, tk+1))

+
s2 + s3

2∆x
(Ψ(xm+1, yn, tk+1) − Ψ(xm−1, yn, tk+1)) +

s0 + s1

2∆y
(Ψ(xm, yn+1, tk+1) − Ψ(xm, yn−1, tk+1)) .

Hence,

T k+1
m,n ≤

∆t

2
∂2Ψ(xm, yn, ξk+1)

∂t2 −
∆2

x

2
∂5Ψ(ζm, yn, tk+1)

∂x5 −
∆2

y

2
∂5Ψ(xm, ηn, tk+1)

∂x5

−
∆2

y

6
∂3Ψ(xm, ηn, tk+1)

∂x3 −
∆2

x

6
∂3Ψ(ζm, yn, tk+1)

∂x3 .

Accordingly, the truncation error of the numerical scheme is

T k+1
m,n = O(∆t,∆

2
x,∆

2
y).
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8. Results and discussion

I have prosperously employed several analytical methods to extract the traveling wave solutions
to the two-dimensional Novikov-Veselov system, confirming the solutions with numerical results
obtained using the numerical scheme (5.1). The major highlights of the results are shown in Table 3 and
Figures 8–10, which allow immediate comparison of the analytic solutions with the numerical results.
Through these, I can notice that the solutions are identical to a large extent, and the error approaches
zero whenever the value of ∆x,∆y → 0. The numerical schemes are unconditionally stable for fixing
the parameter values α = 0.50, β = 0.6, γ = −1.50, λ = 1.80, x0 = −45.0, y = 0 → 1, x = 0 → 60
and t = 0→ 25.

Table 3. The relative error with L2 norm and CPU at t = 20.

∆x The Relative Error CPU
0.6000 5.600 × 10−3 0.063 × 103 m
0.3000 2.100 × 10−3 0.1524 × 103 s
0.1500 6.700 × 10−4 0.3564 × 103 s
0.0750 2.100 × 10−4 0.8892 × 103 s
0.0375 6.610 × 10−5 1.7424 × 103 s
0.0187 2.310 × 10−5 4.0230 × 103 s
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Figure 10. The convergence histories measured utilizing the relative error with l2 norm as a
function of ∆x (see Table 3). Here, I picked a certain value of the variable y = 0.5 at t = 20
and x = 0→ 60.

Figure 1 presents the time evolution of the analytic solutions (a) Ψ1 and (b) Ψ2 with t = 0, 10, 20.
The parameter values are x0 = −20, α = 0.50, β = 0.6, γ = −1.5, and λ = 1. Figure 2 presents the
wave behavior by changing a certain parameter value and fixing the values of the others. Figure 2(a, b)
presents the behavior of Ψ1 when I change the values of (a) α or β and (b) γ or λ. In Figure 2(a) it
can also be seen that the value of α or β affects the direction and amplitude of the wave, such that
a negative value always makes the wave negative, its amplitude decreases when α, β → 0, and its
amplitude increases when α, β → ∞. In Figure 2(b) the value of γ or λ affects the direction and
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amplitude of the wave, such that a negative value always makes the wave negative, and its amplitude
decreases when the value of γ or λ increases. In Figure 2(c, d) present the wave behavior of Ψ2.

Figure 3 shows the time evolution of the analytic solutions. Figure 3(a) shows Ψ7 with t = 0 : 2 : 6.
The parameter values are δ2 = −1, δ4 = 1, ε = −1, α = 0.50, β = 0.6, γ = −1.5, λ = 1.8 and
x0 = −10. Figure 3(b) shows Ψ8 with t = 0 : 2 : 8. The parameter values are δ2 = 1, δ4 = −1, ε = −1,
α = 0.50, β = 0.6, γ = −1.5, λ = 1.8 and x0 = −10. Figures 4–6 present the 3D time evolution of
the analytic solutions Ψ2 (left) and the numerical solutions (right) obtained employing the scheme 5.1
with t = 5, 15, 25, Mx = 1600, Ny = 100, x = 0 → 60 and y = 0 → 1. These figures provide us with
an adequate answer that the numerical and analytic solutions are quite identical. Barman et al. [42]
accepted several traveling wave solutions for (1.1) as hyperbolic functions. The authors employed other
parameters to develop new forms for the accepted solution. They proposed that Eq (1.1) describes tidal
and tsunami waves, electromagnetic waves in transmission cables and magneto-sound and ion waves in
plasma. In comparison, I have found numerous solutions also as hyperbolic functions. Furthermore, I
obtained the numerical solutions to enhance the assurance that the solutions presented here are correct
and accurate.

9. Conclusions

I have successfully utilized the generalized algebraic and modified F-expansion methods to acquire
the soliton solutions for the two-dimensional Novikov-Veselov system, verifying these solutions with
numerical results obtained by employing the numerical scheme (5.1). The major highlights of the
results shown in Figures 8–10 and Table 3, which allow immediate comparison of the analytic solutions
with the numerical results. Through these, I can notice that the solutions are identical to a large
extent, and the error approaches zero whenever the value of ∆x,∆y → 0. The numerical schemes
are unconditionally stable for fixing the parameter values α = 0.50, β = 0.6, γ = −1.50, λ = 1.80,
x0 = −45.0, y = 0 → 1, x = 0 → 60 and t = 0 → 25. The Jacobi elliptic functions have effectively
deteriorated to hyperbolic functions. The applied numerical schemes have provided reliable numerical
solutions when using a small value of ∆x,∆y → 0.

Ultimately, I can deduce that the methods used are valuable and applicable to extract soliton
solutions for other nonlinear evolutionary systems found in chemistry, engineering, physics and other
sciences.
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