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Abstract: Survival data with high dimensional covariates have been collected in medical studies and
other fields. In this work, we propose a seamless L0 (SELO) penalized method for the accelerated
failure time (AFT) model under the framework of high dimension. Specifically, we apply the SELO
to do variable selection and estimation under this model. Under appropriate conditions, we show that
the SELO selects a model whose dimension is comparable to the underlying model, and prove that the
proposed procedure is asymptotically normal. Simulation results demonstrate that the SELO procedure
outperforms other existing procedures. The real data analysis is considered as well which shows that
SELO selects the variables more correctly.
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1. Introduction

Analyzing high-dimensional survival data has become an important topic in statistics, among
which finding covariates with good predictive power of survival is a fundamental step. In the
variable selection, penalized least squares procedures is an attractive approach. Penalized least squares
procedures are used for variable selection and estimation which help predict estimators.

As a useful alternative to the Cox model [2], the AFT model [10] based on linear regression
models has an intuitive form compared to Cox model. The AFT model with an unspecified error
distribution has been studied commonly for right-censored data. Two approaches in this aspect have
gained attractive attention. One uses the Kaplan-Meier estimator to obtain the ordinary least squares
estimator. The other is the rank-based estimator, which is motivated by the score function of the partial
likelihood. See for examples in [1, 13, 17].

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023060


1196

Identifying significant factors with predictive power, many techniques for linear regression models
have been extended to the Cox regression and the AFT model. Penalized methods have drawn extensive
attentions, which are for imposing some penalties to the regression coefficients. By balancing the
goodness of fit and model complexity, penalization approaches lead the complex models to a profile.
There exists plenty of methods used in gene expression analysis with survival data; see for examples
in [16, 19]. Moreover, various penalization methods of consistent selection have also been proposed.
Examples include the adaptive Lasso [19], the smoothly clipped absolute deviations (SCAD) [6], the
minimax concave penalty (MCP) [20] and the bridge penalty. It has been shown that the bridge penalty
had the oracle estimation in the linear regression models having divergent number of covariates. For
the AFT models, there also exists much literature (e.g., [7, 9, 22]). To name but a few, Huang et
al. [7] considered the regularization approaches for estimation in the AFT model with high-dimension
covariates based on Stute’s weighted least squares method. Huang and Ma [8] considered variable
selection for AFT model with bridge method. Wang and Song [18] applied adaptive lasso to the AFT
models. In recent years, there are still a lot of studies on the AFT models. For example, Chai et al. [3]
considered a set of low-dimensional covariates of main interest and a set of high-dimensional covariates
that may also affect survival under the accelerated failure time model. Choi and Choi [4] proposed
the logistic-kernel smoothing procedure for the semi-parametric AFT model with high-dimensional
right-censored data. Li et al. [12] proposed a unified Expectation-Maximization approach combined
with the L1-norm penalty to perform variable selection and parameter estimation simultaneously in the
accelerated failure time model with right-censored survival data of moderate sizes.

This article is motivated by the need for considering a seamless-L0 (SELO) penalty [5] under the
AFT model, which is a smooth function similar to the L0 penalty. Under appropriate conditions, we
show that the SELO selects a model whose dimension is comparable to the underlying model and
prove that the proposed estimators is asymptotically normal. Monte Carlo simulations to evaluate the
finite sample performance of the proposed procedure are computed. The proposed method is also
demonstrated through an empirical analysis.

The rest of this paper is organized as follows. The AFT model is based on SELO penalization
and computational algorithm are introduced in Section 2. In Section 3, we further propose an accurate
variable selection for high dimensional sparse AFT model based on seamless L0. The root n consistency
and the asymptotic normality of the resulting estimate are established. We simulate Monte Carlo
simulation study to examine the finite sample performance of the proposed estimate in Section 4. A
real data example is used to illustrate the proposed methodology in Section 5.

2. SELO estimation in the AFT model

Let Ti be the logarithm of the failure time and Xi be the p-dimensional covariate vector. The AFT
model assumes

Ti = α + Xiβ + εi, i = 1, . . . , n, (2.1)

where α is the intercept, β ∈ Rp is an unknown vector of interest, and εi is the random error. When
Ti is subject to right censoring, we can only observe (Yi, δi, Xi), where Yi = min(Ti,Ci), Xi be the p-
dimensional covariate vector for the ith row of the n × p matrix X which is the covariate matrix, Ci is
the logarithm of the censoring time, and δi = I{Ti ≤ Ci} is the censoring indicator. We assume that
(Yi, δi, Xi), i = 1, . . . , n, come from the same distribution.
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Let F̂n be the Kaplan-Meier estimator of the distribution function F of T . F̂n can be written as

F̂n(y) =

n∑
i=1

wiI{Y(i) ≤ y},

where the wi’s are the jumps in the Kaplan-Meier estimator expressed as w1 =
δ(1)

n , wi =
δ(i)

n−i+1

∏i−1
j=1

(
n− j

n− j+1

)δ( j)
, j = 2, . . . , n. wi’s are also called the Kaplan-Meier weights; see for examples

in Stute and Wang [14]. Here Y(1) ≤ · · · ≤ Y(n) are the order statistics of Yi’s and δ(1), . . . , δ(n) are the
associated censoring indicators. Similarly, let X(1), . . . , X(n) be the associated covariates of the ordered
Yi’s. The weighted least square(WLS) loss function is

1
2

n∑
i=1

wi(Y(i) − α − X(i)β)2. (2.2)

Let X̄w =
∑n

i=1 wiX(i)/
∑n

i=1 wi, and Ȳw =
∑n

i=1 wiY(i)/
∑n

i=1 wi, denoted by X∗(i) = (nwi)1/2(X(i) − X̄w)
and Y∗(i) = (nwi)1/2(Y(i) − Ȳw). The weighted least square(WLS) objective function (2.2) can be written
as

`n(β) =
1
2

n∑
i=1

(Y∗(i) − XT
(i)β)2.

Penalized regression problem has been studied extensively. LASSO is one of the most popular and
widely studied L1 penalty. But it has been proved that its estimator may be inconsistent for model
selection. The smoothly clipped absolute deviations (SCAD) and the minimax concave penalty (MCP)
are another two popular penalties. SCAD is a continuous penalty and its estimator has oracle property.
MCP also performs well in variable selection , whose estimator is consistent. However, L0 penalty
directly penalizes the non-zero parameters,whose drawback is the difficulty of computing because of
its discontinuity. Seamless-L0 (SELO) was proposed in Dicker [5], which was explicitly designed to
minic L0 penalty. It has been found that SELO possessed good theoretical properties.

We now describe the variable selection for AFT model via SELO. Coordinate descent is introduced
to solve this problem. We propose tuning parameter λ using cross-validation. The SELO penalized
objective function is,

Q(β) = `n(β) +

p∑
j=1

pS ELO(β j), (2.3)

where SELO(β j) is defined as,

pS ELO(β j) = PS ELO,λ,τ(β j) =
λ

log(2)
log

(
|β j|

|β j| + τ
+ 1

)
,

and λ is tuning parameter. When λ is large, SELO may select small estimators. In the paragraph, λ is
determined by Cross Validation. It is easy to see that when τ is enough small, pS ELO(β j) ≈ λI{β j , 0},
which is similar to L0 penalty.

To minimize (2.3), we utilize coordinate descent algorithm. Coordinate descent algorithm [21]
has been widely used in penalized regression problem, which optimizes an objective function by
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calculating a single parameter at a time until convergence is reached. Dicker [5] described this
algorithm for obtaining SELO estimators. The algorithm is formulated in terms of the tuning parameter
λ. For a fixed value of λ, it can be implemented in the following steps.

Algorithm of AFT model with SELO penalty
Step 1. Initialize β(0)

j = 0, j = 1, · · · , p.
Step 2. For the k-th iteration, we calculate the parameter from βk

1 to βk
p.

β̃(k)
i = argminQ(β̃k

1, . . . , β̃
k
i−1, βi, β

k−1
i+1 , . . . , β

k−1
p ).

Step 3. If |β̃(k+1) − β̃(k)| is small or k is very large, return β(k+1);
otherwise increase k to k + 1 and go to Step 2.

Step 4. Repeat Steps 2 and 3 until convergence.

3. Theoretical properties

In this section, we prove the consistency and asymptotic normality of WLS estimator via SELO
under some conditions. Following the notation of Stute [14, 15], let H denote the distribution function
of Y . Under the assumption of independence between T and C, 1−H(y) = (1− F(y))(1−G(y)), where
F and G are the distribution functions of T and C. Let τY , τT and τC be the endpoints of the support of
Y , T and C. We put

F̃0(x, y) =

{
F0(x, y) y <τH,

F0(x, τH) + 1{τH∈A}F0(x, {τH}) y ≥ τH.

Now, introduce the following sub-distribution functions:

H̃1(x, y) = P(X ≤ x,Z ≤ y, δ = 1) and H̃0(y) = P(Z ≤ y, δ = 0).

Under random censoring the limit variance becomes much more complicated. Let

γ0(y) = exp
{∫ y−

0

H̃0(dz)
1 − H(z)

}
, γ1(y) =

1
1 − H(y)

∫
1y<w(w − xTβ)x jγ0(w)H̃1(dx, dw)

and

γ2(y) =

∫ ∫
1{v<y,v<w}(w − xTβ)x jγ0(w)

[1 − H(v)]2 H̃0(dz)H̃1(dx, dw).

We assume that

(A1) (a) E[(Y−XTβ∗)2XXTδ]<∞, (b)
∫
|(w− xTβ∗)x j|D1/2(w)F̃0(dx, dw)<∞, for j = 1, ..., p and D(y) =∫ y−

0
[(1 − H(w))(1 −G(w))]−1G(dw).

(A2) λ = O(1), τ = O(p1/2/n3/2), λ
√

n/p→ ∞ and pσ2/n→ 0 when n→ ∞.
(A3) r ≤ λ(E(XXT )) ≤ R, where r and R are positive constant.
(A4) limn→∞ n−1 max1≤i≤n

∑p
j=1 w2

i x2
i j = 0.

(A5) E
(∣∣∣∣ εσ ∣∣∣∣2+ 2δ

1+δ

)
<M for some M<0 and δ>0.
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Condition (A1) is usually used for the proof of consistency in Stute [14]. Condition (A2) restricts
the size of λ and τ. Condition (A3) gives the bound of the eigenvalues of E(XXT ), which is used in
Theorem 3.1. Conditions (A4) and (A5) are used for the proof the asymptotic normality of SELO
estimators and are related to the Lindeberg condition of Lindeberg-Feller CLT.

Theorem 3.1. Suppose that conditions (A1)–(A5), then

(i) limn→∞ P({ j : β̂ j , 0} = A) = 1, A = { j; β j , 0}.

(ii)
√

n(n−1XT
A WXA/σ

2)1/2(β̂A − β∗A)
D
→ (σ2(XT

A WXA))−
1
2 GA where G ∼ N(0,Σ) and Σ =

Var{δγ0(Y)(Y − Xβ∗)X + (1 − δ)γ1(Y; β∗) − γ2(Y; β∗)}/n and GA is the part of G corresponding to
β∗A.

The proof is put in the supplementary.

4. Numerical results

Let T be generated from T = Xβ + ε, where ε ∼ N(0, σ). The covariates X = (X1, ..., Xp) are
standard normal. Here we set σ = 0.1. The censoring variables are generated as uniformly distributed
U(0,C0) and independent of the events, where C0 is chosen to obtain the censoring rate 25% and 40%.
Set two sample sizes n = 200 and n = 400. The tuning parameter λ is chosen by cross validation.
For each value of n, we simulated 1000 independent datasets {(y1, xT

1 ), ..., (yn, xT
n )}. For each dataset,

we calculated estimates of β. For each estimator β̂, we recorded: the model size, Â = { j; β̂ j , 0}; an
indicator of whether or not the true model was selected, I{Â = A}; the false positive rate, |Â−A|/|Â|; the
false negative rate, |A− Â|/(p− |Â|); and the model error, (β̂− β∗)T (β̂− β∗). The column labeled “size”,
“rate”,“F+”,“F-” and “MSE” represent the above indicators. Results for SELO, LASSO, SCAD and
MCP are summarized in the tables. Furthermore, we use the V-fold cross-validation to determine the
tuning parameter. The CV score is

∑V
v=1[`n(β̂(−v)) − `(−v)

n (β̂(−v))]. In this article, we set V = 5.

4.1. Simulation I

The example was conducted with p = 8 and set β = (3, 1.5, 0, 0, 1, 0, 0, 0) ∈ R8, where Table1
summarizes the variable selection results based on SELO, LASSO, SCAD and MCP when censoring
rates are 25% and 40%. Overall, SELO performs better than other three methods, which selects the
correct model more frequently. For instance, when the censoring rate is 25%, SELO selects the true
model most accurately. The true model size is 3 and the average size from SELO is 3.43. LASSO
performs worse than other three methods both in model size and correct rate. LASSO, SCAD and
MCP select model with average size 4.12, 4.05 and 4.04 and select the correct model in 42%, 46.7%
and 47%. Similar results perform when the censoring rate is 40%. But we can easily see that the
situation when the censoring rate is 25% is better than that when the censoring rate is 40%. When
n increases, we can see that the results are better. For instance, SELO selects 3.07 variables when
n = 400, which is more accurate compared to 3.43 when n = 200. Other indicators can also prove it.
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Table 1. Simulation results for p = 8.

25% censoring 40% censoring
n Method size rate F+ F- MSE size rate F+ F- MSE
200 SELO 3.43 0.568 0.137 0.156 2.61 3.62 0.38 0.267 0.287 2.55

LASSO 4.12 0.429 0.212 0.428 3.62 4.43 0.338 0.276 0.567 2.72
SCAD 4.05 0.467 0.198 0.417 2.41 4.36 0.346 0.271 0.537 2.49
MCP 4.04 0.47 0.196 0.412 2.46 4.33 0.359 0.267 0.531 2.45

400 SELO 3.07 0.894 0.035 0.029 2.27 3.27 0.589 0.147 0.139 2.43
LASSO 3.80 0.620 0.136 0.277 3.44 3.96 0.519 0.178 0.373 2.66
SCAD 3.74 0.641 0.131 0.275 2.20 3.93 0.534 0.171 0.363 2.42
MCP 3.74 0.641 0.131 0.275 2.24 3.92 0.533 0.170 0.361 2.40

4.2. Simulation II

The example was conducted with p = 50 and set β = (3, 1.5, 0, 0, 2, 0, 3, 0, 0, 2, 0, . . . , 0) ∈ R50, the
rest of β is zero. Other settings were similar to the case in simulation I and the results are listed in
Table 2. It is easy to see that SELO remains better performance compared to other three methods. The
model size from SELO is 5.68, which is the closest to the true model when the censoring rate is 25%
compared to 9.64, 9.27 and 8.86 for LASSO, SCAD and MCP. And it also performs better in correct
rate and other indicators. For instance, SELO selects 52% correct variables which is better compared to
3%, 5% and 7% for LASSO, SCAD and MCP. The indicators “F+” and “F-” of SELO are the smallest
among four methods. Similar results perform when p = 50 compared to p = 8. It can be concluded
that the results are worse when the censoring rate is 40%. However, when n increases from 200 to 400,
SELO selects more correct models.

Table 2. Simulation results for p = 50.

25% censoring 40% censoring
n Method size rate F+ F- MSE size rate F+ F- MSE
200 SELO 5.68 0.29 0.194 0.028 3.05 6.27 0.27 0.267 0.287 2.55

LASSO 9.64 0.03 0.416 0.127 5.32 9.27 0.08 0.276 0.567 2.72
SCAD 9.27 0.05 0.396 0.116 5.19 8.91 0.12 0.271 0.537 2.49
MCP 8.86 0.07 0.374 0.104 5.88 8.42 0.10 0.267 0.531 2.45

400 SELO 5.09 0.52 0.138 0.015 5.00 5.48 0.29 0.245 0.031 2.805
LASSO 9.2 0.03 0.396 0.124 5.18 9.42 0.07 0.405 0.116 3.356
SCAD 8.66 0.10 0.357 0.101 5.20 8.99 0.09 0.375 0.103 2.830
MCP 8.56 0.13 0.347 0.099 5.53 8.70 0.11 0.357 0.095 2.662

4.3. Simulation III

The example is set under 25% and 40% censoring, and we also estimate the mean estimated variance
across 1000 simulated datasets when n is 200 and 400. From the Tables 3 and 4, we see that SELO
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with tuning over τ ∈ {0.001, 0.01, 0.1, 0.5} seems to give better variance when compared to SELO with
τ = 0.01 fixed. We can see that the 1000 estimators remain stable whenever censoring rate are 25%
and 40% and the simulation results perform better when n increases to 400.

Table 3. Variance of SELO estimator under 25% censoring.

n τ β1 β2 β3 β4 β5 β6 β7 β8

200 0.001 0.322 0.254 0.103 0.104 0.270 0.103 0.09 0.11
{0.001, 0.01, 0.1, 0.5} 0.319 0.204 0.011 0.004 0.940 0.01 0.02 0.001

400 0.001 0.152 0.125 0.045 0.043 0.135 0.043 0.03 0.04
{0.001, 0.01, 0.1, 0.5} 0.145 0.120 0.009 0.026 0.136 0.005 0.02 0.02

Table 4. Variance of SELO estimator under 40% censoring.

n τ β1 β2 β3 β4 β5 β6 β7 β8

200 0.001 0.319 0.376 0.041 0.032 0.326 0.037 0.03 0.32
{0.001, 0.01, 0.1, 0.5} 0.316 0 0.010 0.007 0.007 0.002 0.003 0.012

400 0.001 0.157 0.322 0.003 0.003 0.162 0.003 0.015 0.021
{0.001, 0.01, 0.1, 0.5} 0.154 0.077 0.001 0 0.098 0 0 0.002

4.4. PBC Data

PBC data was collected in the Mayo Clinic trial of primary biliary cirrhosis of liver conducted
between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year
interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine.
The first 312 cases in the data were participated in the randomized trial and contained complete data.
The additional 112 cases did not participate in the clinical trial. After deleting the missing data, the
remaining 276 datasets are used for the analysis. We consider 17 covariates: age, albumin, alk.phos,
ascites, ast, bili, chol, copper, platelet, edema, hepato, protime, sex, spiders, stage, trt, trig.

Among 276 samples without losing data, we calculated Table 5. The optimal values of lambda
with SELO is small, which is 0.008. And the optimal values of lambda that are chosen by CV for
LASSO, SCAD and MCP are 0.011. LASSO selects 6 variables and SELO selects 3 variables. LASSO
selects the genes including sex, heptato, bili, albumin, protime, stage. SCAD selects the same variables
like MCP. However, SELO selects sex,albumin and protime. The variables selected by SELO are also
contained by other three methods. Meanwhile, we also calculate the AIC (Akaike Information Criteria)
AIC = n log(σ̂2) + 2(d + 1) (d is the non-zero parameter and σ̂ is the error between the estimator and
true value) for four methods which show that SELO results better with smaller AIC. In Table 6, we
also calculated p values for the coefficients of variables selected by SELO. We calculated p values for
several steps. Firstly, we calculated t values called tk where tk = β̂/s and s is the sum of squares error
of the estimators. Secondly, we found the value of tα/2(n − K) where α = 0.05 and n − K is the degree.
Finally, we calculated the values of P(T>tα/2(n − K)) = P(T<tα/2(n − K)).
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Table 5. PBC data: Estimated coefficients and selected variables.

Method Model size R2 Covariate AIC
SELO 3 0.349 sex,albumin,protime 68.72

LASSO 6 0.249 sex,heptato,bili,albumin,protime,stage 85.76
SCAD 5 0.299 sex,heptato,bili,albumin,protime 75.48
MCP 5 0.299 sex,heptato,bili,albumin,protime 75.48

Table 6. PBC data: Significance test and p value.

variable coefficient p-value
sex 0.624 1.53 × 10−11<0.05

albumin 0.341 1.2 × 10−4

protime 0.210 1.004 × 10−4

hepato -0.045 0.217
bili -0.068 0.116

stage -0.036 0.255

Table 6 indicates the significance test results. From the results, we can see that the p value of sex,
albumin and protime are all less than 0.05. The variables selected by SELO are all significant. Overall,
SELO selected a simple model compared to another three methods.

5. Conclusions

Statistical analysis of failure time with high dimension covariates is an important topic. In this
article, we investigate a new method (SELO) for the AFT model with high dimension covariates, for
simultaneous variable selection and estimation. A real dataset (PBC) is analyzed and SELO selects
some important covariates. Our numerical results indicate that SELO performs better than another
three methods. In this article, we address the situation where p � n and prove the oracle property
under the condition p/n→ 0. We allow both n and p to diverge but p goes to infinity more slowly than
n. The situation where p is much larger than n will be extended in the future research.
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Supplementary

In order to complete the proofs of Theorem 3.1 (i), we first show two lemmas.
Lemma 1. Recall that

Q(β) =
1
2

n∑
i=1

wi(Y(i) − X
T

(i)β)2 +

p∑
j=1

PS ELO(β j). (A.1)

Then for every r ∈ (0, 1), there exists a constant C0>0 such that

lim inf
n→∞

P

 argmin
‖β−β∗‖≤C

√
pσ2/n

Qn(β) ⊂

β ∈ Rp; ‖β − β∗‖<C

√
pσ2

n


>1 − r

where C ≥ C0.
Proof. Let αn =

√
pσ2/n and fix r ∈ (0, 1). To prove the Lemma 1, it suffices to show that if C>0 is

large enough, then

P
{

sup
‖u‖=1

Q(β∗ + Cαnu)>Q(β∗)
}
≥ 1 − ε.

Furthermore, define Qn(u) = Q(β∗ + Cαnu) − Q(β∗).Then,

Qn(u) =
1
2

C2α2
nuT

 n∑
i=1

wiX(i)XT
(i)

 u −
n∑

i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)Cαnu +

p∑
j=1

[PS ELO(β∗j + Cαnu j) − PS ELO(β∗j)]

≥
1
2

C2α2
nuT

 n∑
i=1

wiX(i)XT
(i)

 u −
n∑

i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)Cαnu +
∑

j∈K(u)

[PS ELO(β∗j + Cαnu j) − PS ELO(β∗j)].

By the results of Stute (1993, 1996), we have

n∑
i=1

wiX(i)XT
(i)

P
→ E(XXT ), and

√
n

n∑
i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)
D
→ W,
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where W ∼ N(0,Σ), with Σ defined in the theorem. The last term in Qn(u) where K(u) = { j; PS ELO(β∗j +
Cαnu j) − PS ELO(β∗j) < 0}. The fact that PS ELO is concave on [0,∞) imply that, for each β, PS ELO(β∗j +

Cαnu j) − PS ELO(β∗j) ≥ −Cαn|u j|P′S ELO(β j + Cαnu j)

Qn(u) ≥
1
2

C2α2
nuT

 n∑
i=1

wiX(i)XT
(i)

 u −
n∑

i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)Cαnu −
∑

j∈K(u)

Cαn|u j|P′S ELO(β∗j + Cαnu j)

=
1
2

C2α2
nuT

 n∑
i=1

wiX(i)XT
(i)

 u −
n∑

i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)Cαnu −Cαn

∑
j∈K(u)

λ

log(2)
τ

(2|β∗j | + τ)(|β∗j | + τ)

∆
= I1 + I2 + I3.

Under conditions (A1) and (A3), for I1,

n∑
i=1

wiX(i)XT
(i)

P
−→ E(XXT ), and I1 ≥

1
2

C2α2
nR.

For I2,

√
n

n∑
i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)
D
−→ N(0,Σ), and I2 = Op

(
Cαn
√

n

)
.

For I3, by condition (A2), we have I3 = op(Cαn). We conclude that if C>0 is large enough, then
inf‖u‖=1 Qn(u)>0 holds for all n sufficiently large, with probability at least 1 − r. This finishes the proof
of the Lemma 1. �
Lemma 2. We assume that C>0, Q(β) is similar to that in Lemma 1. Under the conditions (A1)–(A3),

lim
n→∞

P

 argmin
‖β−β∗‖≤C

√
pσ2/n

Qn(β) ⊂ {β ∈ Rp; βAc = 0}

 = 1,

where Ac = {1, ..., p}/A is the complement of A in {1, ..., p}.
Proof. Suppose that β ∈ Rp and that ‖β − β∗‖<Cαnu. Define β̃ ∈ Rp by β̃Ac = 0 and β̃A = βA. Similar to
the proof of Lemma 1, if Dn(β, β̃) = Qn(β) − Qn(β̃), then

Dn(β, β̃) =
1
2

n∑
i=1

wi(Y(i) − XT
(i)β)2 −

1
2

n∑
i=1

wi(Y(i) − XT
(i)β̃)2 +

∑
j∈Ac

PS ELO(β j)

=
1
2

n∑
i=1

wi(β − β̃)T X(i)XT
(i)(β − β̃) −

n∑
i=1

wi(Y(i) − XT
(i)β̃)XT

(i)(β − β̃) +
∑
j∈Ac

PS ELO(β j)

∆
= I1 + I2 + I3.

For I1 and I2, under the conditions (A1) and (A3),

I1 + I2 = Op(||β − β̃||

√
pσ2

n
).
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For I3, PS ELO is concave ‖β‖<C
√

pσ2/n→ |β j|<C
√

pσ2/n, and∑
j∈Ac

PS ELO(β j) >
τ

(2|C
√

pσ2/n| + τ)(|C
√

pσ2/n| + τ)
‖β − β̃‖ > 0.

Under the condition (A2),we combine the results of I1, I2 and I3. So, Dn(β, β̃)>0. �
Combining the proof of Lemmas 1 and 2, we can have the conclusion of Theorem 3.1 (i).

Proof of Theorem 3.1 (ii). We consider the proof related to the Lindeberg condition of Lindeberg-Feller
CLT. Under the conditions (A1)–(A5), let β̂A be a estimator where A = { j; β̂ j , 0}.

We can easily have the following form,

β̂A = β∗A +
(
XT

A WXA

)−1
XT

Aε −
(
XT

A WXA

)−1
p′A(β̂)

and

√
n
(
(n−1XT

A WXA)
σ2

)1/2

(β̂A − β
∗
A) =

(
σ2XT

A WXA

)−1/2
XT

A WXAε −

σ2
n∑

i=1

XT
A WXA

−1/2

p′A(β̂).

To prove,

(
σ2XT

A WXA

)− 1
2 XT

A Wε → N(0,G) and
(
σ2XT

A WXA

)− 1
2 XT

A Wε =

n∑
i=1

wi,n,

where wi,n =
(
σ2XT

A WXA

)− 1
2 wix′(i),Aεi. Let ηi,n = wixT

(i),A

(
XT

A WXA

)− 1
2 (XT

A WXA)−
1
2 wix(i),A.

By the condition of Lindeberg-Feller CLT, we have

E[‖wi,n‖
2; ‖wi,n‖

2>δ0] = ηi,nE
[
ε2

i

σ2 ; ηi,n
ε2

i

σ2>δ0

]
= ηi,n

∫
ηi,n

ε2i
σ2 >δ0

ε2
i

σ2 dF(x).

By Holder inequality, set 1
p = 2

2+δ
, 1

q = δ
δ+2 ,

E[‖wi,n‖
2; ‖wi,n‖

2>δ0] ≤ ηi,n

∫
ηi,n

ε2i
σ2 >δ0

∣∣∣∣ εi

σ

∣∣∣∣2p
dF(x)


1
p
∫

ηi,n
ε2i
σ2 >δ0

1qdF(x)


1
q

= ηi,n

∫
ηi,n

ε2i
σ2 >δ0

∣∣∣∣ εi

σ

∣∣∣∣2+δ

dF(x)


2

2+δ

P
{
ηi,n

ε2
i

σ2>δ0

} δ
2+δ

= ηi,nE
(∣∣∣∣ εi

σ

∣∣∣∣2+δ
) 2

2+δ

P
{
ηi,n

ε2
i

σ2>δ0

} δ
2+δ

.

By Markov inequality,

P
{
ηi,n

ε2
i

σ2>δ0

} δ
2+δ

≤

(
ηi,n

δ0
E

{
ε2

i

σ2

}) δ
2+δ

= δ
−δ

2+δ

0 η
δ

2+δ E
(∣∣∣∣ εi

σ

∣∣∣∣2) δ
2+δ
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and

E[‖wi,n‖
2; ‖wi,n‖

2>δ0] ≤ η1+ δ
2+δ δ

− δ
δ+2

0 E
(∣∣∣∣ ε
σ

∣∣∣∣) 4δ+4
2+δ

.

We showed that
∑n

i=1 ηi,n =
∑n

i=1 wi and ηi,n ≤ ‖(n−1XT
A WXA)−

1
2 ‖2max

1≤i≤n

∑q
j=1

1
nw2

i x2
i j

n∑
i=1

E[‖wi,n‖
2; ‖wi,n‖

2>δ0] ≤ δ
− δ

2+δ

0 E
(∣∣∣∣ ε
σ

∣∣∣∣2+ 2δ
1+δ

) n∑
i=1

w2
i x2

i jmax
1≤i≤n

η
δ

2+δ

i,n .

By conditions (A4) and (A5),
∑n

i=1 E[‖wi,n‖
2; ‖wi,n‖

2>δ0]→ 0.

By conditions (A1)–(A3), ‖
(
σ2 ∑n

i=1 XT
A WXA

)−1/2
p′A(β̂)‖ = op(1),

and

√
n

n∑
i=1

wi(Y(i) − XT
(i)β
∗)XT

(i)
D
→ N(0,Σ),

where, Σ = Var{δγ0(Y)(Y − Xβ∗)X + (1 − δ)γ1(Y; β∗) − γ2(Y; β∗)}.
So, (σ2XT

A WXA)−
1
2 XT

A Wε
D
→ (σ2XT

A WXA)−
1
2 GA ,where G ∼ N(0,Σ) follows. �
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