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1. Introduction

The singular value decomposition (SVD) is a key tool in matrix theory and numerical linear algebra,
and plays an important role in many areas of scientific computing and engineering applications, such
as least square problem [1], data mining [2], pattern recognition [3], image and signal processing [4,5],
statistics, engineering, physics and so on (see [1–6]).

Research on the efficient numerical methods for computing the singular values of a matrix has
been a hot topic, many practical algorithms have been proposed for this problem. By using the
symmetric QR method to AT A, Golub and Kahan [7] presented an efficient algorithm named as Golub-
Kahan SVD algorithm; Gu and Eisenstat [8] introduced a stable and efficient divide-and-conquer
algorithm, called as Divide-and-Conquer algorithm as well as Bisection algorithm for computing
the singular value decomposition (SVD) of a lower bidiagonal matrix, see also [1]; Drmac and
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Veselic [9] given the superior variant of the Jacobi algorithm and proposed a new one-sided Jacobi
SVD algorithm for triangular matrices computed by revealing QR factorizations; many researchers
such as Zha [10], Bojanczyk [11], Shirokov [12] and Novaković [13] came up with some methods
for the problem of hyperbolic SVD; A Cross-Product Free (CPF) Jacobi-Davidson (JD) type method
is proposed to compute a partial generalized singular value decomposition (GSVD) of a large matrix
pair (A, B), which is referred to as the CPF-JDGSVD method [14]; many good references for these
include [1, 2, 7–9, 15–26] and the references therein for details.

There are important relationships between the SVD of a matrix A and the Schur decompositions of

the symmetric matrices AT A, AAT and
(

0 AT

A 0

)
. These connections to the symmetric eigenproblem

allow us to adapt the mathematical and algorithmic developments of the eigenproblem to the singular
value problem. So most of the algorithms mentioned above are analogs of algorithms for computing
eigenvalues of symmetric matrices. All the algorithms mentioned above except for the Jacobi
algorithm, had firstly to reduce A to bi-diagonal form. When the size of the matrix is large, this
performance will become very costly. On the other hand, the Jacobi algorithm is rather slowly, though
some modification has been added to it (see [9]).

In some applications, such as the compressed sensing as well as the matrix completion problems [3,
27] or computing the 2-norm of a matrix, only a few singular values of a large matrix are required. In
these cases, it is obvious that those methods, mentioned the above, for computing the SVD is not very
suitable. If only the largest singular value and the singular vectors corresponding to the largest singular
value of A is needed, the power method, which is used to approximate a largest eigenpair of an n × n
symmetric matrix A, should be more suitable.

Computing the largest singular value and corresponding singular vectors of a matrix is one of the
most important algorithmic tasks underlying many applications including low-rank approximation,
PCA, spectral clustering, dimensionality reduction, matrix completion and topic modeling. This paper
consider the problem of computing the largest singular value and singular vectors corresponding to
the largest singular value of a matrix. We propose an alternating direction method, a fast general
purpose method for computing the largest singular vectors of a matrix when the target matrix can only
be accessed through inaccurate matrix-vector products. In the other words, the proposed method is
analogous to the well-known power method, but has much better numerical behaviour than the power
method. Numerical experiments show that the new method is more effective than the power method in
some cases.

The rest of the paper is organized as follows. Section 2 contains some notations and some general
results that are used in subsequent sections. In Section 3 we propose the alternating direction power-
method in detail and give its convergence analysis. In Section 4, we use some experiments to show the
effectiveness of the new method. Finally, we end the paper with a concluding remark in Section 5.

2. Preliminaries

The following are some notations and definitions we will use later.
We use Rm×n to denote the set of all real m × n matrices, and Rn the set of real n × 1 vectors. The

symbol I denotes the n × n identity matrix. For a vector x ∈ Rn, ‖x‖2 denotes the 2-norm of x. For a
matrix A ∈ Rn×n, AT is used to express the transpose of A, rank(A) is equal to the rank of a matrix A,

AIMS Mathematics Volume 8, Issue 1, 1127–1138.



1129

‖A‖2 denotes the 2-norm of A and the Frobenius norm by ‖A‖F is the maximum absolute value of the
matrix entries of a matrix A. diag(a1, a2, . . . , an) represents the diagonal matrix with diagonal elements
a1, a2, . . . , an.

If A ∈ Rm×n, then there exist two orthogonal matrices

U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n

such that

UT AV =

(
Σr 0
0 0

)
, (2.1)

where Σr = diag(σ1, σ2, . . . , σr), σ1 ≥ σ2 ≥ · · · ≥ σr > 0, r = rank(A) 6 min{m, n}. The σi are the
singular values of A and the vectors ui and vi are the ith left singular vector and the ith right singular
vector respectively. And we have the SVD expansion

A =

r∑
i=1

σiuivT
i .

This is the well-known singular value decomposition (SVD) theorem [2].
Lemma 2.1. (see Lemma 1.7 and Theorem 3.3 of [1]) Let A ∈ Rm×n. Then ‖A‖2 = ‖AT ‖2 =

√
‖AAT ‖2 =

σ1, where σ1 is the largest singular value of A.

Lemma 2.2. (see Theorem 3.3 of [1]) Let A ∈ Rm×n and σi, ui, vi, i = 1, 2, . . . , r be the singular values
and the corresponding singular vectors of A respectively. Then

AAT ui = σ2
i ui, AT Avi = σ2

i vi, i = 1, 2, . . . , r.

Lemma 2.3. (refer to Section 2.4 of [2] or Theorem 3.3 of [1])) Assume the matrix A ∈ Rm×n has rank
r > k and the SVD of A be (2.1). The matrix approximation problem min

rank(Z)=k
‖A−Z‖F has the solution

Z = Ak = UkΣkVT
k ,

where Uk = (u1, . . . , uk), Vk = (v1, . . . , vk) and Σk = diag(σ1, . . . , σk).

Let A ∈ Rn×n. The power method for computing the module largest eigenvalue of A is as follows
(see as Algorithm 4.1 of [1]).

Power method:
(1) Choose an initial vector x0 ∈ R

n. For k = 0, 1, . . . until convergence;
(2) Compute yk+1 = Axk;
(3) Compute xk+1 = yk+1/‖yk+1‖2;
(4) Compute λk+1 = xT

k+1Axk+1;
(5) Set k = k + 1 and go to (2).

The power method is very simple and easy to implement and is applied in many applications, for
example, for the PCA problem (see [28]).
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To compute the largest singular value and the corresponding singular vectors of A, we can apply the
power method to AAT or AT A, without actually computing AAT or AT A.

Power method (for largest singular value):
(1) Choose an initial vector u0 ∈ R

m and v0 ∈ R
n. For k = 0, 1, . . . until convergence;

(2) Compute yk+1 = A(AT uk), zk+1 = AT (Avk);
(3) Compute uk+1 = yk+1/‖yk+1‖2, vk+1 = zk+1/‖zk+1‖2;
(4) Compute λk+1 = uT

k+1Auk+1 and σk+1 =
√
λk+1;

(5) Set k = k + 1 and go to (2).

However, the power method will cost extra operations if the two singular vectors are needed and, in
some cases, it converges very slowly. So, in the next section, we will propose a new iteration method
for computing the largest singular value and the corresponding singular vectors of a matrix, which is
similar to the power method but needs fewer operations in the iterations.

3. An alternating direction power-method

In this section, we will introduce an alternating direction power iteration method. The new method
is based on an important property of the SVD.

From Lemma 2.3, it is known that the largest singular value σ1 and the corresponding singular
vectors u1, v1 of A satisfy the following condition

‖A − σ1u1vT
1 ‖F = min

u,v
‖A − uvT ‖F ,

where u ∈ Rm and v ∈ Rn. Thus the problem of computing σ1, u1 and v1 is equivalent to solve the
optimization problem

min
u,v
‖A − uvT ‖F .

Let f (u, v) = 1
2‖A − uvT ‖2F . For the sake of simplicity, we will solve the equivalent optimization

problem

min
u,v

f (u, v) = min
u,v

1
2
‖A − uvT ‖2F , (3.1)

where u ∈ Rm and v ∈ Rn. However, the problem (3.1) is difficult to solve since it is not convex
for u and v. Fortunately, it is convex for u individually and so is v, so we can use the alternating
direction method to solve it. Alternating minimization is widely used in optimization problems due
to its simplicity, low memory and flexibility (see [20, 29]). In the following we apply an alternating
method to solve the unconstrained optimization problem (3.1).

Suppose vk was known, then (3.1) can be reduced to the unconstrained optimization problem

min
u

f (u, vk) = min
u

1
2
‖A − uvT

k ‖
2
F . (3.2)

The (3.2) can be solved by many efficient methods, such as steepest decent method, Newton method,
conjugate gradient (CG) method and so on (see [29]). Because Newton method is simple and converges
fast, we will choose to use the Newton method. By direct calculation, we get

∇u f = −(A − uvT )v, ∆u f = ‖v‖22I.
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Then applying Newton method, we get

uk+1 = uk − (∆u f )−1∇u f

= uk +
1
‖vk‖

2
2

(A − ukvT
k )vk

=
1
‖vk‖

2
2

Avk.

Alternatively, when uk+1 is known, the problem (3.1) can be reduced to

min
v

f (uk+1, v) = min
v

1
2
‖A − uk+1vT ‖2F . (3.3)

Also,
∇v f = −(A − uvT )T u, ∆v f = ‖u‖22I,

it is obtained that by applying Newton method

vk+1 = vk − (∆v f )−1∇v f

= vk +
1

‖uk+1‖
2
2

(A − uk+1vT
k )T uk+1

=
1

‖uk+1‖
2
2

AT uk+1.

Solving (3.2) and (3.3) to high accuracy is both computationally expensive and of limited value if
uk and vk are far from stationary points. So, in the following, we apply the two iterations alternately.
Thus the alternating directional Newton method for solving (3.1) isuk+1 = 1

‖vk‖
2
2
Avk

vk+1 = 1
‖uk+1‖

2
2
AT uk+1

, k = 0, 1, . . . , (3.4)

where u0 ∈ R
m and v0 ∈ R

n are both initial guesses. At each iteration, only two matrix-vector
multiplications are required and the operation costs are about 4mn, which is less than that of the power
method.

Next, the convergence analysis of (3.4) would be provided.
Theorem 3.1 Let A ∈ Rm×n and σ1, u, v be the largest singular value and the corresponding singular

vectors of A respectively. If u0 ∈ R
m and v0 ∈ R

n are both initial guesses such that the projections on u
and v are not zero, then the iteration (3.4) is convergent with

lim
k→∞

uk

‖uk‖2
= u, lim

k→∞

vk

‖vk‖2
= v,

and
lim
k→∞
‖uk‖2 · ‖vk‖2 = σ1.
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Proof. From (3.4) we can deduce that

uk+1 =
1
‖vk‖

2
2

Avk =
‖uk‖

2
2

‖AT uk‖
2
2

AAT uk,

vk+1 =
1

‖uk+1‖
2
2

AT uk+1 =
‖vk‖

2
2

‖Avk‖
2
2

AT Avk.

As in the proof of the power method (see as [2]), if the projections of u0 on u, and v0 on v are not zero,
then we have

lim
k→∞

uk

‖uk‖2
= u, lim

k→∞

vk

‖vk‖2
= v.

On the other hand, we have

‖uk+1‖2 · ‖vk+1‖2 =
1
‖vk‖

2
2

‖Avk‖2
‖vk‖

2
2

‖Avk‖
2
2

‖AAT uk‖2

=
1

‖Avk‖2
‖AAT uk‖2

≤‖AT ‖2

=σ1.

Thus the sequence {‖uk‖2 · ‖vk‖2} is bounded from the above. By

‖uk+1‖2 · ‖vk+1‖2 =
1
‖vk‖

2
2

‖Avk‖2
1

‖uk+1‖
2
2

‖AT uk+1‖2,

we can conclude that when k → ∞

‖uk+1‖
2
2 · ‖vk+1‖2 · ‖vk‖2 =‖A

1
‖vk‖2

vk‖2 · ‖AT 1
‖uk+1‖2

uk+1‖2

→‖Av‖2 · ‖AT u‖2
=σ2

1.

Therefore,
lim
k→∞
‖uk‖2 · ‖vk‖2 = σ1.

�

We now propose the alternating direction power-method with the discussions above for computing
the largest singular value and corresponding singular vectors of a matrix as follows.

Alternating Direction Power-Method (ADPM):
(1) Choose initial vectors v0 ∈ R

n. For k = 0, 1, . . . until convergence;
(2) Compute uk+1 = Avk/‖vk‖

2
2;

(3) Compute vk+1 = AT uk+1/‖uk+1‖
2
2;

(4) Compute µk+1 = ‖uk+1‖2 · ‖vk+1‖2;
(5) Set k = k + 1 and go to (2).
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4. Numerical experiments

Here, we use several examples to show the effectiveness of the alternating direction power-method
(ADPM). We compare ADPM with the power method (PM) and present numerical results in terms
of the numbers of iterations (IT), CPU time (CPU) in seconds and the residue (RES), where the
measurement method of CPU time in seconds is uniformly averages over multiple runs by embed
matlab functions tic/toc at each iteration step and

RES = abs (‖uk+1‖2 · ‖vk+1‖2 − ‖uk‖2 · ‖vk‖2) .

The initial vectors u0 and v0 are chosen randomly by the matlab statements u0 = rand(m, 1) and
v0 = rand(n, 1). In our implementations all iterations are performed in matlab (R2016a) on the same
workstation with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz that has 16GB memory and 32-bit
operating system, and are terminated when the current iterate satisfies RES< e−12 or the number of
iterations is more than 9000, which is denoted by ’-’.
Experiment 4.1. In the first experiment, we generate random matrices with uniformly distributed
elements by the matlab statement

A = rand(m, n).

For different sizes of m and n, we apply the power method and the alternating direction power-method
with numerical results reported in Table 1.

Table 1. Numerical results of Experiment 4.1.

m n Method IT CPU RES ratio(%)
500 100 PM 7 0.001340 1.4211e-13

ADPM 4 0.000471 1.4172e-15 35.15
500 200 PM 7 0.002753 5.6843e-14

ADPM 4 0.000641 2.8422e-14 23.28
1000 200 PM 7 0.015660 2.8422e-14

ADPM 4 0.003914 1.7053e-13 24.99
1000 500 PM 6 0.017024 2.8422e-13

ADPM 3 0.004934 2.8422e-13 28.98
2000 500 PM 6 0.030742 5.6843e-14

ADPM 3 0.016660 1.1369e-13 54.19
2000 1000 PM 6 0.060125 4.5475e-13

ADPM 3 0.014466 1.1369e-13 24.05

Experiment 4.2. In this experiment, we generate random matrices with normally distributed
elements by

A = randn(m, n).

For different sizes of m and n, we apply the power method and the alternating direction power-method
to A.

Numerical results are reported in Table 2.
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Table 2. Numerical results of Experiment 4.2.

m n Method IT CPU RES ratio(%)
500 100 PM 711 0.084958 9.2371e-13

ADPM 372 0.046376 9.6634e-13 54.59
500 200 PM 652 0.084715 8.8818e-13

ADPM 449 0.058401 9.3081e-13 68.94
1000 200 PM 1124 0.159432 9.9476e-13

ADPM 700 0.121118 9.7344e-13 75.96
1000 500 PM 1288 1.122289 9.8055e-13

ADPM 782 0.378765 9.8765e-13 33.75
2000 500 PM 1744 3.627609 9.6634e-13

ADPM 961 1.221796 9.0949e-13 33.68
2000 1000 PM 4364 20.032671 9.9476e-13

ADPM 2377 5.696365 9.0949e-13 28.42

Experiment 4.3. In this experiment, we use some test matrices with size n × n from the university of
Florida sparse matrix collection [30]. Numerical results are reported in Table 3.

Table 3. Numerical results of Experiment 4.3.

Matrix size Method IT CPU RES ratio(%)
lshp1009 1009 PM 1488 0.064107 9.9298e-13

ADPM 745 0.019718 9.9654e-13 30.76
dwt 1005 1035 PM 40 0.005109 7.2120e-13

ADPM 35 0.003844 6.2172e-13 75.24
bcsstk13 2003 PM 1519 0.511403 9.7877e-13

ADPM 842 0.174025 9.9920e-13 34.03
dwt 2680 2680 PM 514 0.070507 1.4172e-09

ADPM 239 0.046361 9.7167e-13 65.75
rw5151 5151 PM 1006 0.128023 9.8632e-13

ADPM 590 0.057257 9.7056e-13 44.72
g7jac040 11790 PM 26 0.038169 0

ADPM 17 0.012170 0 31.88
epb1 14734 PM - - - -

ADPM 6132 1.541585 9.9926e-13 -

In particular, compared with the cost of the power method, we can find that the cost of the alternating
direction power-method is discounted, up to 23.28%. The “ratio”, defined in the following, in the
Tables 1–3 can show this effectiveness.

ratio =
the CPU of the ADPM

the CPU of the PM
× 100%.

In order to show numerical behave of two methods, the cost curves of the methods are clearly given,
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which are shown in Figures 1–3.
From Tables 1–3, we can conclude that ADPM needs fewer iterations and less CPU time than the

power method. So it is feasible and is effective in some cases.
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5. Conclusions

In this study, we have proposed an alternating direction power-method for computing the largest
singular value and singular vector of a matrix, which is analogs to the power method but needs fewer
operations in the iterations since using the technique of alternating. Convergence of the alternating
direction power-method is proved under suitable conditions. Numerical experiments have shown that
the alternating direction power-method is feasible and more effective than the power method in some
cases.
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