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Without the structural (interfacial slip) damping or any other forms of damping mechanisms, we
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1. Introduction

Our objective in this present study is to consider laminated Timoshenko beams with thermoelasticity
of type III and establish an exponential stability result without structural (interfacial slip) damping or
any other internal or boundary dampings. The heat conduction governing thermoelasticity of type III
is popularly called the Green and Naghdi theory. In contrast with the classical Fourier’s law of heat
conduction, the Green and Naghdi theory propounds a finite speed of heat propagation. See [1–4] for
detailed historical reviews of the theory.

Towards the end of the nineteenth century, Hansen and Spies [5] introduced a model describing the
vibrations in a structure made up of two uniform layered beams stuck together by a thin adhesive layer
such that interfacial slip is possible when the beams are in continuous contact. Mathematically, the

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023054


1091

model comprises of the following three differential equations
ρutt +G(w − ux)x = 0,
Iρ(3vtt − wtt) − D(3vxx − wxx) −G(w − ux) = 0,
3Iρvtt − 3Dvxx + 3G(w − ux) + 4γv + 4βvt = 0.

(1.1)

The first two equations in (1.1), derived based on the assumptions of Timoshenko beam theory, are
coupled with the third equation describing the slip dynamics. The dependent variables u, v, and w
represent the transverse displacement, the proportionality to the volume of slip along the interface, and
the rotation angle. The constants ρ,G, Iρ,D, γ, and β are positive parameters representing the density,
the shear stiffness, the mass moment of inertia, the flexural rigidity, the adhesive stiffness, and the
adhesive damping, respectively.

The first stability result concerning (1.1) was carried out by Wang et al. [6]. They opined that
the structural damping is not strong enough to exponentially stabilize the system. As a result, they
only proved an exponential stability result for (1.1) by adding additional boundary damping terms.
However, the structural damping was demonstrated to stabilize the system exponentially, provided the
wave velocities of the system are equal. The result was independently established by Apalara in [7]
and Alves and Monteiro in [8]. When the three equations in System (1.1) are damped, the system is
exponentially stable regardless of the wave velocities or any other relationship between the coefficients
ρ,G, Iρ, and D of the system. In this regard, we cite, among others, Raposo [9], Liu and Zhao [10], Lo
and Tatar [11]. For other results, we invite the reader to see [12–14]. However, Mustafa [15,16] showed
that if the damping terms are only on one or two of the equations of the system, then an exponential
stability result is only possible if some relationship exists among the coefficients of the system. A
similar result can be found in [17–31] and references therein.

In the present study, we consider the laminated beams system given by (1.1) with thermoelasticity
of type III acting on the effective rotation angle, but with negligible structural damping (β = 0). That
is, 

ρutt +G(w − ux)x = 0,
Iρ(3vtt − wtt) − D(3vxx − wxx) −G(w − ux) + αΘx = 0,
3Iρvtt − 3Dvxx + 3G(w − ux) + 4γv = 0,
ρ2Θt + qx + α(3vtx − wtx) = 0.

(1.2)

The parameter α , 0 denotes the thermoelastic coefficient. The dependent variable Θ represents the
empirical temperature. The variable q denotes the heat flux with constitutive law given by

q = −κωx − kωxt, (1.3)

where ω is the thermal displacement given by (see [32])

ω(x, t) =
∫ t

0
Θ(x, s)ds + ω(x, 0). (1.4)

From (1.4), it follows that the time derivative of the thermal displacement yields the empirical
temperature, that is, ωt = Θ. The coefficients k > 0, ρ2 > 0, and κ > 0 represent thermal and elastic
properties. We differentiate the fourth equation in (1.2) with respect to time, perform simple
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computations using (1.3) while bearing in mind that ωt = Θ and then supplement the resulting system
with suitable initial and boundary conditions. Thus, we obtain the following laminated beams system
with thermoelasticity of type III

ρutt +G(w − ux)x = 0,
Iρ(3vtt − wtt) − D(3vxx − wxx) −G(w − ux) + αΘx = 0,
3Iρvtt − 3Dvxx + 3G(w − ux) + 4γv = 0,
ρ2Θtt − κΘxx − kΘtxx + α(3vttx − wttx) = 0,
u(x, 0) = u0, ut(x, 0) = u1, w(x, 0) = w0, wt(x, 0) = w1,

v(x, 0) = v0, vt(x, 0) = v1, Θ(x, 0) = Θ0, Θt(x, 0) = Θ1,

ux(0, t) = w(0, t) = v(0, t) = Θx(0, t) = 0,
u(1, t) = wx(1, t) = vx(1, t) = Θ(1, t) = 0,

(1.5)

where x ∈ (0, 1) and t ≥ 0. Liu et al. [33] considered (1.5) in the presence of structural damping
(i.e., 4βvt added to the third equation) and established exponential stability of the system provided that
the wave velocities of the system are equal and assuming a positive thermoelastic coefficient (α > 0).

Remark 1.1. (i) In the result of Liu et al. [33], the structural damping (4βvt) freely provided the
needed negative term for v2

t ; it was very crucial and unavoidable in the proof of their stability
result.

(ii) In the coupling, they assumed that α > 0.

It is very important to mention here that, as far as the coupling is concerned, in the current work α
is not necessarily positive; it is only required to be different from zero.

The novelty of this paper lies in addressing the two weaknesses presented by the result of Liu
et al. [33], as encapsulated in Remark 1.1. We consider System (1.5) without structural damping
(i.e., without the term 4βvt in the third equation) and establish an exponential stability result under
the condition of equal wave velocities of the system. The work is more challenging than that of Liu
et al. [33] due to the absence of structural damping. In other words, instead of two dampings in [33], we
have only one dissipation source via heat conduction. Furthermore, our result covers a broader range
of α; we only assumed that α is different from zero instead of applying α > 0, as in [33]. Consequently,
we extend the result obtained by Liu et al. [33] and some other results in the literature.

It is paramount to discuss the dissipative nature of System (1.5). It is not obvious at the level of the
energy that System (1.5) is dissipative. In fact, the energy functional E0(t) of System (1.5) given as

E0(t) =E0(u,w, v,Θ, t) =
1
2

[
ρ∥ut∥

2 + Iρ∥3vt − wt∥
2 + 3Iρ∥vt∥

2 + ρ2∥Θt∥
2

+ 4γ∥v∥2 + κ∥Θx∥
2 +G∥w − ux∥

2 + D∥3vx − wx∥
2 + 3D∥vx∥

2
] (1.6)

has the derivative

d
dt
E0(t) = −k∥Θtx∥

2 − αΘx(3vt − wt) + αΘtx(3vtt − wtt), t ≥ 0, (1.7)
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which is not necessarily decreasing (because α , 0 is any real number). To overcome this problem, as
in [34], we introduce a new variable

θ(x, t) =
∫ t

0
Θ(x, s)ds +

1
κ
ζ(x) (1.8)

where ζ(x) is the solution of−ζ′′ = kΘ′′0 − ρ2Θ1 − α(3v′1 − w′1) in (0, 1),
ζ′(0) = ζ(1) = 0.

(1.9)

Here, the superscripts denote the first and second derivatives in the variable x, respectively. By
integrating the fourth equation in (1.5) and using (1.8) and (1.9), System (1.5) becomes

ρutt +G(w − ux)x = 0,
Iρ(3vtt − wtt) − D(3vxx − wxx) −G(w − ux) + αθtx = 0,
3Iρvtt − 3Dvxx + 3G(w − ux) + 4γv = 0,
ρ2θtt − κθxx + α(3vtx − wtx) − kθtxx = 0,
u(x, 0) = u0, ut(x, 0) = u1, w(x, 0) = w0, wt(x, 0) = w1,

v(x, 0) = v0, vt(x, 0) = v1, θ(x, 0) = θ0, θt(x, 0) = θ1,
ux(0, t) = w(0, t) = v(0, t) = θx(0, t) = 0,
u(1, t) = wx(1, t) = vx(1, t) = θ(1, t) = 0,

(1.10)

for x ∈ (0, 1) , t ≥ 0. Using the perturbed energy method, we consider (1.10) and proceed to show an
exponential decay result provided that

G
ρ
=

D
Iρ

(1.11)

holds. Throughout this paper, ∥.∥ and ⟨·, ·⟩ represent the usual L2(0, 1)−norm and inner product,
respectively. The letter “c > 0” represents a generic constant. Concerning the well-posedness result
for (1.10), we refer the reader to [33].

2. Stability result

In this section, we state and prove our stability result using the multiplier method. To achieve this
task, we need to introduce some auxiliary functionals together with the classical energy defined by (2.2)
in order to construct a suitable Lyapunov functional (of course, equivalent to the energy). In the lemma
below, we establish the dissipativity of System (1.10) via the energy functional E.

Lemma 2.1. E(u,w, v, θ, t) is the energy given by (1.6), and it satisfies

d
dt
E(t) = −k∥θtx∥2 ≤ 0, t ≥ 0, (2.1)

where
E(t) =E(u,w, v, θ, t) =

1
2

[
ρ∥ut∥

2 + Iρ∥3vt − wt∥
2 + 3Iρ∥vt∥

2 + ρ2∥θt∥
2

+ 4γ∥v∥2 + κ∥θx∥
2 +G∥w − ux∥

2 + D∥3vx − wx∥
2 + 3D∥vx∥

2
]
.

(2.2)
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Proof. We multiply (1.10)1 by ut and integrate (by parts) over (0, 1); then, the use of the boundary
conditions leads to

1
2

d
dt

[
ρ∥ut∥

2 +G∥w − ux∥
2
]
= G⟨wt,w − ux⟩. (2.3)

Similarly, by multiplying the second, third, and fourth equations in (1.10) by 3vt − wt, vt, and θt,
respectively, we get

1
2

d
dt

[
Iρ∥3vt − wt∥

2 + D∥3vx − wx∥
2
]
= G⟨3vt − wt,w − ux⟩ + α⟨3vtx − wtx, θt⟩, (2.4)

1
2

d
dt

[
3Iρ∥vt∥

2 + 3D∥vx∥
2 + 4γ∥v∥2

]
= −3G⟨vt,w − ux⟩, (2.5)

1
2

d
dt

[
ρ2∥θt∥

2 + κ∥θx∥
2
]
= −k∥θtx∥2 − α⟨3vtx − wtx, θt⟩. (2.6)

Summing up (2.3)–(2.6), we end up with (2.1). □

The next seven lemmas have been created to produce the needed auxiliary functionals and their
derivatives.

Lemma 2.2. Let (1.11) hold; the functional

D1(t) := ρD⟨ut, 3vx − wx⟩ − IρG⟨3vt − wt,w − ux⟩, t ≥ 0,

along the solution of (1.10), satisfies for any ε1 > 0

d
dt
D1(t) ≤ −

G2

2
∥w − ux∥

2 + ε1∥vt∥
2 + c

(
1 +

1
ε1

)
∥3vt − wt∥

2 + c∥θtx∥2, t ≥ 0. (2.7)

Proof. Clearly, taking the derivative ofD1 and incorporating the boundary conditions in (1.10) yields

d
dt
D1(t) = ρD⟨utt, 3vx − wx⟩ − IρG⟨3vtt − wtt,w − ux⟩ − IρG⟨wt, 3vt − wt⟩

+ (IρG − ρD)⟨uxt, 3vt − wt⟩.

Using the first two equations in (1.10), the identity −wt = (3vt − wt) − 3vt, and Eq (1.11), we end up
with

d
dt
D1(t) = −G2∥w − ux∥

2 + IρG∥3vt − wt∥
2 − 3IρG⟨vt, 3vt − wt⟩ + αG⟨θtx,w − ux⟩. (2.8)

The last two terms on the right of Eq (2.8) is estimated using Young’s inequality; thus, for any ε1 > 0,
we have

−3IρG⟨vt, 3vt − wt⟩ ≤ ε1∥vt∥
2 +

9I2
ρG

2

4ε1
∥3vt − vt∥

2, (2.9)

αG⟨θtx,w − ux⟩ ≤
G2

2
∥w − ux∥

2 +
α2

2
∥θtx∥

2. (2.10)

Substituting (2.9) and (2.10) into (2.8) and taking δ1 =
G2

2
yields (2.7). □
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Lemma 2.3. The derivative of the functional

D2(t) := αρ2

〈
3vt − wt,

∫ x

0
θt(s, t)ds

〉
− ακ⟨3v − w, θx⟩, t ≥ 0,

along solutions of (1.10) and for any ε2, ε3 > 0, satisfies

d
dt
D2(t) ≤ −

α2

2
∥3vt − wt∥

2 + ε2∥3vx − wx∥
2 + ε3∥w − ux∥

2

+ c
(
1 +

1
ε2
+

1
ε3

)
∥θtx∥

2, t ≥ 0.
(2.11)

Proof. Performing the same routine derivative of D2, integrating by parts, and incorporating the
boundary conditions in (1.10), we get

d
dt
D2(t) = −α2∥3vt − wt∥

2 +
α2ρ2

Iρ
∥θt∥

2 + kα⟨3vt − wt, θtx⟩ + κα⟨3vx − wx, θt⟩

−
αρ2D

Iρ
⟨3vx − wx, θt⟩ +

αρ2G
Iρ

〈
w − ux,

∫ x

0
θt(s, t)ds

〉
, t ≥ 0.

(2.12)

Now, some terms on the right of Eq (2.12) will be estimated. For any ε2 > 0, we use Young’s inequality
and Poincaré’s inequality with the constant cp, to perform the estimation as follows:

kα⟨3vt − wt, θtx⟩ ≤
α2

2
∥3vt − vt∥

2 +
k2

2
∥θtx∥

2, (2.13)

κα⟨3vx − wx, θt⟩ ≤
ε2

2
∥3vx − vx∥

2 +
κ2α2cp

2ε2
∥θtx∥

2, (2.14)

−
αρ2D

Iρ
⟨3vx − wx, θt⟩ ≤

ε2

2
∥3vx − vx∥

2 +
ρ2

2α
2D2cp

2ε2I2
ρ

∥θtx∥
2. (2.15)

To estimate the last term (on the right) of Eq (2.12), using Young’s inequality for any ε3 > 0, we get

αρ2G
Iρ

〈
w − ux,

∫ x

0
θt(s, t)ds

〉
≤ε3∥w − ux∥

2 +
α2ρ2

2G
2

4ε3I2
ρ

∥∥∥∥∥∫ x

0
θt(s, t)ds

∥∥∥∥∥2

≤ε3∥w − ux∥
2 +
α2ρ2

2G
2cp

4ε3I2
ρ

∥θtx∥
2, (2.16)

where we have applied the Cauchy-Schwarz inequality and Poincaré’s inequality to have∥∥∥∥∥∫ x

0
θt(s, t)ds

∥∥∥∥∥2

≤

∥∥∥∥∥∥
∫ 1

0
θt(x, t)dx

∥∥∥∥∥∥2

≤ ∥θt∥
2 ≤ cp∥θtx∥

2.

We end up with the estimate (2.11) by merely substituting (2.13)–(2.16) into (2.12). □

Remark 2.4. The next lemma caters for the missing structural (interfacial slip) damping.
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Lemma 2.5. Let (1.11) hold; the functional

D3(t) :=
ρD
G
⟨ut, vx⟩ − Iρ⟨vt,w − ux⟩, t ≥ 0,

along the solution of (1.10) satisfies

d
dt
D3(t) ≤ −2Iρ∥vt∥

2 +
γ

2
∥v∥2 + c∥w − ux∥

2 + c∥3vt − wt∥
2, t ≥ 0. (2.17)

Proof. As done in previous lemmas, by differentiating, integrating by parts and then using boundary
conditions as usual we get

d
dt
D3(t) = −Iρ⟨vt,wt⟩ +G∥w − ux∥

2 +
4γ
3
⟨v,w − ux⟩ +

(Dρ
G
− Iρ

)
⟨ut, vtx⟩.

Using (1.11) and the identity wt = −(3vt − wt) + 3vt leads to

d
dt
D3(t) = −3Iρ∥vt∥

2 +G∥w − ux∥
2 + Iρ⟨vt, 3vt − wt⟩ +

4γ
3
⟨v,w − ux⟩. (2.18)

By Young’s inequality, we have

Iρ⟨vt, 3vt − wt⟩ ≤Iρ∥vt∥
2 +

Iρ
4
∥3vt − vt∥

2,

4γ
3
⟨v,w − ux⟩ ≤

γ

2
∥v∥2 +

8γ
9
∥w − ux∥

2.

Consequently, we arrive at (2.17). □

Lemma 2.6. The derivative of the functional

D4(t) := ρ2⟨θt, θ⟩ − α⟨θx, 3v − w⟩ +
k
2
∥θx∥

2, t ≥ 0,

along the solution of (1.10) satisfies

d
dt
D4(t) ≤ −

κ

2
∥θx∥

2 +
D
8
∥3vx − wx∥

2 + c∥θtx∥2, t ≥ 0. (2.19)

Proof. Applying the fourth equation in (1.10) with the boundary conditions, it follows that

d
dt
D4(t) = −κ∥θx∥

2 + ρ2∥θt∥
2 + α⟨θt, 3vx − wx⟩, t ≥ 0.

Indeed, applying Young’s and Poincaré’s inequalities, the estimate (2.19) is reached. □

Lemma 2.7. The functional
D5(t) := −ρ⟨ut, u⟩, t ≥ 0,

along the solution of (1.10) satisfies

d
dt
D5(t) ≤ −ρ∥ut∥

2 +
D
8
∥3vx − wx∥

2 + γ∥v∥2 + c∥w − ux∥
2, ∀t > 0. (2.20)
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Proof. After differentiating D5(t), we integrate by parts and apply boundary conditions; then, we
administer the identity ux = −(w − ux) − (3v − w) + 3v. Consequently, we deduce

d
dt
D5(t) = −ρ∥ut∥

2 +G∥w − ux∥
2 +G⟨3v − w,w − ux⟩ − 3G⟨v,w − ux⟩. (2.21)

The last two terms on the right of Eq (2.21) are estimated to get

G⟨3v − w,w − ux⟩ ≤
D
8
∥3vx − wx∥

2 +
2G2

D
∥w − ux∥

2, (2.22)

−3G⟨v,w − ux⟩ ≤γ∥v∥2 +
9G2

4γ
∥w − ux∥

2, (2.23)

courtesy of Poincaré’s and Young’s inequalities. As usual, we substitute (2.22) and (2.23) into (2.21)
to get (2.20). □

Lemma 2.8. The functional

D6(t) := Iρ⟨3v − w, 3vt − wt⟩, t ≥ 0,

along the solution of (1.10) satisfies

d
dt
D6(t) ≤ −

D
2
∥3vx − wx∥

2 + c∥3vt − wt∥
2 + c∥w − ux∥

2 + c∥θtx∥2, t ≥ 0. (2.24)

Proof. By using the second equation in (1.10), it is obvious that for all t ≥ 0,

d
dt
D6(t) = −D∥3vx − wx∥

2 + Iρ∥3vt − wt∥
2 +G⟨3v − w,w − ux⟩ − α⟨3v − w, θtx⟩.

Then, application of Young’s and Poincaré’s inequalities brings about the estimate (2.24). □

Lemma 2.9. The functional
D7(t) := 3Iρ⟨vt, v⟩, t ≥ 0,

along solutions of (1.10) satisfies

d
dt
D7(t) ≤ −3D∥vx∥

2 − 3γ∥v∥2 + 3Iρ∥vt∥
2 + c∥w − ux∥

2, t ≥ 0. (2.25)

Proof. By exploiting (1.10) together with Poincaré’s and Young’s inequalities, (2.25) is deduced. □

Having introduced all the needed auxiliary functionals, we now define

P(t) := NE(t) +N1D1(t) +N2D2(t) + 2D3(t) +D4(t) +D5(t) +D6(t) +D7(t), (2.26)

which is a Lyapunov functional, whereN > 0, N1 > 0, andN2 > 0 are constants to be carefully chosen
later. Of course, we can verify (applying Poincaré’s and Young’s inequalities) that P is equivalent to
the energy functional E given that N is sufficiently large. Summarily, for a large N ,

ℓ1E(t) ≤ P(t) ≤ ℓ2E(t), ∀t ≥ 0, (2.27)

for some ℓ1, ℓ2 > 0.

Next, our stability result is stated and proved.
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Theorem 2.10. Let (1.11) hold; then, there exist µ > 0 and ν > 0 such that

E(t) ≤ µe−νt, t ≥ 0. (2.28)

Proof. Differentiating P and incorporating (2.1), (2.7), (2.11), (2.17), (2.19), (2.20), (2.24), and (2.25),
we end up with

P′(t) ≤ −
[
kN − cN1 − cN2

(
1 +

1
ε2
+

1
ε3

)
− c

]
∥θtx∥

2 −

[
G2

2
N1 − ε3N2 − c

]
∥w − ux∥

2

−

[
α

2
N2 − cN1

(
1 +

1
ε1

)
− c

]
∥3vt − wt∥

2 −

[D
4
− ε2N2

]
∥3vx − wx∥

2 −
κ

2
∥θx∥

2

−
[
Iρ − ε1N1

]
∥vt∥

2 − ρ∥ut∥
2 − 3D∥vx∥

2 − γ∥v∥2.

It is clear that by taking

ε3 =
G2N1

4N2
, ε2 =

D
8N2
, ε1 =

Iρ
2N1
,

we obtain

P′(t) ≤ −
[
kN − cN1 − cN2

(
1 +N2 +

N2

N1

)
− c

]
∥θtx∥

2 −

[
G2

4
N1 − c

]
∥w − ux∥

2 − 3D∥vx∥
2 − γ∥v∥2

−

[
α

2
N2 − cN1 (1 +N1) − c

]
∥3vt − wt∥

2 −
D
8
∥3vx − wx∥

2 −
κ

2
∥θx∥

2 −
Iρ
2
∥vt∥

2 − ρ∥ut∥
2.

Taking N1,N2, and N large enough, sequentially, we end up with

P′(t) ≤ −ζ
[
∥3vt − wt∥

2 + ∥w − ux∥
2 + ∥ut∥

2 + ∥3vx − wx∥
2 + ∥vx∥

2 + ∥v∥2 + ∥vt∥
2

+ ∥θtx∥
2 + ∥θx∥

2
]
, t ≥ 0,

(2.29)

for some ζ > 0. Using (1.6), (2.27) and (2.29), for some ν > 0, we get

P′(t) ≤ −νP(t), ∀t ≥ 0. (2.30)

Now, (2.30) is integrated over (0, t) to get

P(t) ≤ P(0)e−νt, ∀t ≥ 0, (2.31)

which implies (2.28) with µ =
ℓ2
ℓ1
E(0) due to (2.27). □

3. Conclusions and open problems

In this work, we establish that the thermal effect exhibited by heat conduction of type III is strong
enough to exponentially stabilize the laminated beams system without any additional internal or
boundary damping mechanism. For example, instead of the two dampings used in [33], we used only
one dissipation source to achieve the exponential stability result. Furthermore, our result covers a
broader range of α, assuming that it is only different from zero instead of α > 0, as in [33]. As usual,
we assume that the system’s wave propagation velocities are equal. It is an intriguing open problem to
prove that the system has no exponential stability except that the condition of equal wave velocities is
imposed. In addition, the polynomial stability of the system when the wave velocities are not equal is
an enthralling problem to consider.
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