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1. Introduction

Let Ω = {z ∈ Rn : R1 < |z| < R2,R1,R2 > 0}. In this work we study the existence of positive radial
solutions for the following system of boundary value problems with semipositone second order elliptic
equations: 

∆ϕ + k(|z|) f (ϕ, φ) = 0, z ∈ Ω,

∆φ + k(|z|)g(ϕ, φ) = 0, z ∈ Ω,

αϕ + β
∂ϕ

∂n
= 0, αφ + β

∂φ

∂n
= 0, |z| = R1,

γϕ + δ
∂ϕ

∂n
= 0, γφ + δ

∂φ

∂n
= 0, |z| = R2,

(1.1)

where α, β, γ, δ, k, f , g satisfy the conditions:
(H1) α, β, γ, δ ≥ 0 with ρ ≡ γβ + αγ + αδ > 0;
(H2) k ∈ C([R1,R2],R+), and k is not vanishing on [R1,R2];
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(H3) f , g ∈ C(R+ × R+,R), and there is a positive constant M such that

f (u, v), g(u, v) ≥ −M, ∀u, v ∈ R+.

Elliptic equations have attracted a lot of attention in the literature since they are closely related
to many mathematical and physical problems, for instance, incineration theory of gases, solid state
physics, electrostatic field problems, variational methods and optimal control. The existence of
solutions for this type of equation in annular domains has been discussed in the literature, see for
example, [1–18] and the references therein. In [1] the authors used the fixed point index to study
positive solutions for the elliptic system:∆u + a(|x|) f (u, v) = 0,

∆v + b(|x|)g(u, v) = 0,

with one of the following boundary conditions

u = v = 0, |x| = R1, |x| = R2,

u = v = 0, |x| = R1,
∂u
∂r

=
∂v
∂r

= 0, |x| = R2,

∂u
∂r

=
∂v
∂r

= 0, |x| = R1, u = v = 0, |x| = R2.

In [2] the authors used the method of upper and lower solutions to establish the existence of positive
radial solutions for the elliptic equation{

−∆u = f (|x|, u, |∇u|), x ∈ Ω,

u|∂Ω = 0,

where Ω =
{
x ∈ RN : |x| < 1

}
,N ≥ 2, and f : [0, 1] × R+ × R+ → R is a continuous function.

However, we note that in most of the papers on nonlinear differential equations the nonlinear term
is usually assumed to be nonnegative. In recent years boundary value problems for semipositone
equations ( f (t, x) ≥ −M,M > 0) has received some attention (see [19–32]), and these equations
describe and solve many natural phenomena in engineering and technical problems in real life, for
example in mechanical systems, suspension bridge design, astrophysics and combustion theoretical
models. In [19] the authors used a fixed point theorem to study the system for HIV-1 population
dynamics in the fractional sense

Dα
0+

u(t) + λ f
(
t, u(t),Dβ

0+
u(t), v(t)

)
= 0, t ∈ (0, 1),

Dγ
0+

v(t) + λg(t, u(t)) = 0, t ∈ (0, 1),
Dβ

0+
u(0) = Dβ+1

0+
u(0) = 0,Dβ

0+
u(1) =

∫ 1

0
Dβ

0+
u(s)dA(s),

v(0) = v′(0) = 0, v(1) =
∫ 1

0
v(s)dB(s),

where Dα
0+
,Dβ

0+
,Dγ

0+
are the standard Riemann-Liouville derivatives, and f , g are two semipositone

nonlinearities. In [28] the authors used the nonlinear alternative of Leray-Schauder type and the Guo-
Krasnosel’skii fixed point theorem to study the existence of positive solutions for a system of nonlinear
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Riemann-Liouville fractional differential equations
Dα

0+
u(t) + λ f (t, v(t)) = 0, 0 < t < 1, λ > 0,

Dα
0+

v(t) + λg(t, u(t)) = 0, 0 < t < 1, λ > 0,
u( j)(0) = v( j)(0) = 0, 0 6 j 6 n − 2,

u(1) = µ
∫ 1

0
u(s)ds, v(1) = µ

∫ 1

0
v(s)ds,

where f , g satisfy some superlinear or sublinear conditions:
(HZ)1 There exist M > 0 such that lim supz→0

g(t,z)
z < M uniformly for t ∈ [0, 1] (sublinear growth

condition).
(HZ)2 There exists [θ1, θ2] ⊂ (0, 1) such that lim infz→+∞

f (t,z)
z = +∞ and lim infz→+∞

g(t,z)
z = +∞

uniformly for t ∈ [θ1, θ2] (superlinear growth condition).
Inspired by the aforementioned work, in particular [31–34], we study positive radial solutions for

(1.1) when the nonlinearities f , g satisfy the semipositone condition (H3). Moreover, some appropriate
concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.
Note that our conditions (H4) and (H6) (see Section 3) are more general than that in (HZ)1 and (HZ)2.

2. Preliminaries

Using the methods in [1, 4], we transform (1.1) into a system of ordinary differential equations

involving Sturm-Liouville boundary conditions. Let ϕ = ϕ(r), φ = φ(r), r = |z| =
√

n∑
i=1

z2
i . Then (1.1)

can be expressed by the following system of ordinary differential equations:

ϕ′′(r) +
n − 1

r
ϕ′(r) + k(r) f (ϕ(r), φ(r)) = 0, R1 < r < R2,

φ′′(r) +
n − 1

r
φ′(r) + k(r)g(ϕ(r), φ(r)) = 0, R1 < r < R2,

αϕ (R1) − βϕ′ (R1) = 0, γϕ (R2) + δϕ′ (R2) = 0,
αφ (R1) − βφ′ (R1) = 0, γφ (R2) + δφ′ (R2) = 0.

(2.1)

Then if we let s = −
∫ R2

r

(
1/tn−1

)
dt, t = (m − s)/m,m = −

∫ R2

R1

(
1/tn−1

)
dt, (2.1) can be transformed into

the system 
ϕ′′(t) + h(t) f (ϕ(t), φ(t)) = 0, 0 < t < 1,
φ′′(t) + h(t)g(ϕ(t), φ(t)) = 0, 0 < t < 1,
αϕ(0) − βϕ′(0) = 0, γϕ(1) + δϕ′(1) = 0,
αφ(0) − βφ′(0) = 0, γφ(1) + δφ′(1) = 0,

(2.2)

where h(t) = m2r2(n−1)(m(1− t))k(r(m(1− t))). Consequently, (2.2) is equivalent to the following system
of integral equations 

ϕ(t) =

∫ 1

0
G(t, s)h(s) f (ϕ(s), φ(s))ds,

φ(t) =

∫ 1

0
G(t, s)h(s)g(ϕ(s), φ(s))ds,

(2.3)
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where

G(t, s) =
1
ρ

(γ + δ − γt) (β + αs) , 0 ≤ s ≤ t ≤ 1,
(γ + δ − γs) (β + αt) , 0 ≤ t ≤ s ≤ 1,

(2.4)

and ρ is defined in (H1).

Lemma 2.1. Suppose that (H1) holds. Then
(i)

ρ

(γ + δ)(β + α)
G(t, t)G(s, s) ≤ G(t, s) ≤ G(s, s), t, s ∈ [0, 1];

(ii)
G(t, s) ≤ G(t, t), t, s ∈ [0, 1].

Proof. (i) In G(t, s), we fix the second variable s, we have

G(t, s) =
1
ρ

(γ + δ − γt) (β + αs) ≤ (γ + δ − γs) (β + αs) , 0 ≤ s ≤ t ≤ 1,
(γ + δ − γs) (β + αt) ≤ (γ + δ − γs) (β + αs) , 0 ≤ t ≤ s ≤ 1.

This implies that
G(t, s) ≤ G(s, s), t, s ∈ [0, 1].

When t ≥ s, we have

1
ρ

(γ + δ − γt) (β + αs)

ρ · 1
ρ
· 1
ρ

(γ + δ − γt) (β + αt) (γ + δ − γs) (β + αs)
≥

1
(β + α)(γ + δ)

.

When t ≤ s, we have

1
ρ

(γ + δ − γs) (β + αt)

ρ · 1
ρ
· 1
ρ

(γ + δ − γt) (β + αt) (γ + δ − γs) (β + αs)
≥

1
(β + α)(γ + δ)

.

Combining the above we obtain

G(t, s)
G(t, t)G(s, s)

≥
ρ

(β + α)(γ + δ)
.

(ii) In G(t, s) we fix the first variable t, and we obtain

G(t, s) =
1
ρ

(γ + δ − γt) (β + αs) ≤ (γ + δ − γt) (β + αt) , 0 ≤ s ≤ t ≤ 1,
(γ + δ − γs) (β + αt) ≤ (γ + δ − γt) (β + αt) , 0 ≤ t ≤ s ≤ 1.

Thus
G(t, s) ≤ G(t, t), t, s ∈ [0, 1].

�
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Lemma 2.2. Suppose that (H1) holds. Let ϑ(t) = G(t, t)h(t), t ∈ [0, 1]. Then

κ1ϑ(s) ≤
∫ 1

0
G(t, s)h(s)ϑ(t)dt ≤ κ2ϑ(s),

where

κ1 =
ρ

(γ + δ)(β + α)

∫ 1

0
G(t, t)ϑ(t)dt, κ2 =

∫ 1

0
ϑ(t)dt.

Proof. From (H1) and Lemma 2.1(i) we have∫ 1

0
G(t, s)h(s)ϑ(t)dt ≤

∫ 1

0
G(s, s)h(s)ϑ(t)dt = κ2ϑ(s)

and ∫ 1

0
G(t, s)h(s)ϑ(t)dt ≥

∫ 1

0

ρ

(γ + δ)(β + α)
G(t, t)G(s, s)h(s)ϑ(t)dt = κ1ϑ(s).

Note we study (2.3) to obtain positive solutions for (1.1). However here the nonlinear terms f , g
can be sign-changing (see (H3)). Therefore we study the following auxiliary problem:

u(t) =

∫ 1

0
G(t, s)h(s) f̃ (u(s))ds, (2.5)

where G is in (2.4) and f̃ satisfies the condition:
(H2′) f̃ ∈ C(R+,R), and there exists a positive constant M such that

f̃ (u) ≥ −M, ∀u ∈ R+.

Let w(t) = M
∫ 1

0
G(t, s)h(s)ds,∀t ∈ [0, 1]. Then w is a solution of the following boundary value

problem: u′′(t) + h(t)M = 0, 0 < t < 1,
αu(0) − βu′(0) = 0, γu(1) + δu′(1) = 0.

(2.6)

�

Lemma 2.3. (i) If u∗ satisfies (2.5), then u∗ + w is a solution of the equation:

u(t) =

∫ 1

0
G(t, s)h(s)F̃(u(s) − w(s))ds, (2.7)

where

F̃(u) =

 f̃ (u) + M, u ≥ 0,
f̃ (0) + M, u < 0.

(2.8)

(ii) If u∗∗ satisfies (2.7) with u∗∗(t) ≥ w(t), t ∈ [0, 1], then u∗∗ − w is a positive solution for (2.5).

Proof. We omit its proof since it is immediate. �

AIMS Mathematics Volume 8, Issue 1, 1072–1089.
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Let E = C[0, 1], ‖u‖ = maxt∈[0,1] |u(t)|. Then (E, ‖·‖) is a Banach space. Define a set on E as follows:

P = {u ∈ E : u(t) ≥ 0,∀t ∈ [0, 1]},

and note P is a cone on E. Note, E2 = E×E is also a Banach space with the norm: ‖(u, v)‖ = ‖u‖+ ‖v‖,
and P2 = P×P a cone on E2. In order to obtain positive radial solutions for (1.1), combining with (2.5)–
(2.7), we define the following operator equation:

A(ϕ, φ) = (ϕ, φ), (2.9)

where A(ϕ, φ) = (A1, A2)(ϕ, φ), Ai(i = 1, 2) are
A1(ϕ, φ)(t) =

∫ 1

0
G(t, s)h(s)F1(ϕ(s) − w(s), φ(s) − w(s))ds,

A2(ϕ, φ)(t) =

∫ 1

0
G(t, s)h(s)F2(ϕ(s) − w(s), φ(s) − w(s))ds,

(2.10)

and

F1(ϕ, φ) =


f (ϕ, φ) + M, ϕ, φ ≥ 0,
f (0, φ) + M, ϕ < 0, φ ≥ 0,
f (ϕ, 0) + M, ϕ ≥ 0, φ < 0,
f (0, 0) + M, ϕ, φ < 0,

F2(ϕ, φ) =


g(ϕ, φ) + M, ϕ, φ ≥ 0,
g(0, φ) + M, ϕ < 0, φ ≥ 0,
g(ϕ, 0) + M, ϕ ≥ 0, φ < 0,
g(0, 0) + M, ϕ, φ < 0.

Lemma 2.4. Define P0 =
{
ϕ ∈ P : ϕ(t) ≥ ρ

(γ+δ)(β+α)G(t, t)‖ϕ‖, t ∈ [0, 1]
}
. Then Ai(P × P) ⊂ P0, i = 1, 2.

Proof. We only prove it for A1. If ϕ, φ ∈ P, note the non-negativity of F1(denoted by F1(·, ·)), from
Lemma 2.1(i) we have∫ 1

0

ρ

(γ + δ)(β + α)
G(t, t)G(s, s)h(s)F1(·, ·)ds ≤ A1(ϕ, φ)(t) ≤

∫ 1

0
G(s, s)h(s)F1(·, ·)ds.

This implies that

A1(ϕ, φ)(t) ≥
∫ 1

0

ρ

(γ + δ)(β + α)
G(t, t)G(s, s)h(s)F1(·, ·)ds ≥

ρ

(γ + δ)(β + α)
G(t, t)‖A1(ϕ, φ)‖.

�

Remark 2.1. (i) w(t) = M
∫ 1

0
G(t, s)h(s)ds ∈ P0;

(ii) Note (see Corollary 1.5.1 in [35]):
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If k(x, y, u) : G̃ × G̃ × R → R is continuous (G̃ is a bounded closed domain in Rn), then K is a
completely continuous operator from C(G̃) into itself, where

Kψ(x) =

∫
G̃

k(x, y, ψ(y))dy.

Note that G(t, s), h(s),Fi(i = 1, 2) are continuous, and also Ai, A are completely continuous
operators,i = 1, 2.

From Lemma 2.3 if there exists (ϕ, φ) ∈ P2\{(0, 0)} such that (2.9) holds with (ϕ, φ) ≥ (w,w), then
ϕ(t), φ(t) ≥ w(t), t ∈ [0, 1], and (ϕ − w, φ − w) is a positive solution for (2.3), i.e., we obtain positive
radial solutions for (1.1). Note that ϕ, φ ∈ P0, and from Lemma 2.1(ii) we have

ϕ(t) − w(t) ≥
ρ

(γ + δ)(β + α)
G(t, t)‖ϕ‖ − M

∫ 1

0
G(t, t)h(s)ds,

φ(t) − w(t) ≥
ρ

(γ + δ)(β + α)
G(t, t)‖φ‖ − M

∫ 1

0
G(t, t)h(s)ds.

Hence, if

‖ϕ‖, ‖φ‖ ≥
M(γ + δ)(β + α)

ρ

∫ 1

0
h(s)ds,

we have (ϕ, φ) ≥ (w,w). As a result, we only need to seek fixed points of (2.9), when their norms are
greater than M(γ+δ)(β+α)

ρ

∫ 1

0
h(s)ds.

Let E be a real Banach space. A subset X ⊂ E is called a retract of E if there exists a continuous
mapping r : E → X such that r(x) = x, x ∈ X. Note that every cone in E is a retract of E. Let X
be a retract of real Banach space E. Then, for every relatively bounded open subset U of X and every
completely continuous operator A : U → X which has no fixed points on ∂U, there exists an integer
i(A,U, X) satisfying the following conditions:

(i) Normality: i(A,U, X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U.
(ii) Additivity: i(A,U, X) = i (A,U1, X) + i (A,U2, X) whenever U1 and U2 are disjoint open subsets

of U such that A has no fixed points on U\ (U1 ∪ U2).
(iii) Homotopy invariance: i(H(t, ·),U, X) is independent of t (0 ≤ t ≤ 1) whenever H : [0, 1]×U →

X is completely continuous and H(t, x) , x for any (t, x) ∈ [0, 1] × ∂U.
(iv) Permanence: i(A,U, X) = i(A,U ∩ Y,Y) if Y is a retract of X and A(U) ⊂ Y .
Then i(A,U, X) is called the fixed point index of A on U with respect to X.

Lemma 2.5. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that Ω ⊂ E is a
bounded open set and that A : Ω∩ P→ P is a continuous compact operator. If there exists ω0 ∈ P\{0}
such that

ω − Aω , λω0,∀λ ≥ 0, ω ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 0, where i denotes the fixed point index on P.

Lemma 2.6. (see [35, 36]). Let E be a real Banach space and P a cone on E. Suppose that Ω ⊂ E is
a bounded open set with 0 ∈ Ω and that A : Ω ∩ P→ P is a continuous compact operator. If

ω − λAω , 0,∀λ ∈ [0, 1], ω ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 1.

AIMS Mathematics Volume 8, Issue 1, 1072–1089.
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3. Main results

Denote OM,h =
M(γ+δ)(β+α)

ρ

∫ 1

0
h(s)ds, Bζ = {u ∈ E : ‖u‖ < ζ}, ζ > 0, B2

ζ = Bζ × Bζ . We list our
assumptions as follows:

(H4) There exist p, q ∈ C(R+,R+) such that
(i) p is a strictly increasing concave function on R+;
(ii) lim infv→∞

f (u,v)
p(v) ≥ 1, lim infu→∞

g(u,v)
q(u) ≥ 1;

(iii) there exists e1 ∈ (κ−2
1 ,∞) such that lim infz→∞

p(LG,hq(z))
z ≥ e1LG,h, where LG,h =

maxt,s∈[0,1] G(t, s)h(s).
(H5) There exists Qi ∈

(
0, OM,h

κ2

)
such that

Fi(u − w, v − w) ≤ Qi, u, v ∈ [0,OM,h], i = 1, 2.

(H6) There exist ζ, η ∈ C(R+,R+) such that
(i) ζ is a strictly increasing convex function on R+;
(ii) lim supv→∞

f (u,v)
ζ(v) ≤ 1, lim supu→∞

g(u,v)
η(u) ≤ 1;

(iii) there exists e2 ∈ (0, κ−2
2 ) such that lim supz→∞

ζ(LG,hη(z))
z ≤ e2LG,h.

(H7) There exists Q̃i ∈
(
OM,h

κ2LG
,∞

)
such that

Fi(u − w, v − w) ≥ Q̃i, u, v ∈ [0,OM,h], i = 1, 2,

where LG = maxt∈[0,1]
ρ

(γ+δ)(β+α)G(t, t).

Remark 3.1. Condition (H4) implies that f grows p(v)-superlinearly at ∞ uniformly on u ∈ R+,
g grows q(u)-superlinearly at ∞ uniformly on v ∈ R+; condition (H6) implies that f grows ζ(v)-
sublinearly at∞ uniformly on u ∈ R+, g grows η(u)-sublinearly at∞ uniformly on v ∈ R+.

Theorem 3.1. Suppose that (H1)–(H5) hold. Then (1.1) has at least one positive radial solution.

Proof. Step 1. When ϕ, φ ∈ ∂BOM,h ∩ P, we have

(ϕ, φ) , λA(ϕ, φ), λ ∈ [0, 1]. (3.1)

Suppose the contrary i.e., if (3.1) is false, then there exist ϕ0, φ0 ∈ ∂BOM,h ∩ P and λ0 ∈ [0, 1] such that

(ϕ0, φ0) = λ0A(ϕ0, φ0).

This implies that
ϕ0, φ0 ∈ P0 (3.2)

and
‖ϕ0‖ ≤ ‖A1(ϕ0, φ0)‖, ‖φ0‖ ≤ ‖A2(ϕ0, φ0)‖. (3.3)

From (H5) we have

Ai(ϕ0, φ0)(t) =

∫ 1

0
G(t, s)h(s)Fi(ϕ0(s) − w(s), φ0(s) − w(s))ds ≤

∫ 1

0
ϑ(s)Qids < OM,h, i = 1, 2.

AIMS Mathematics Volume 8, Issue 1, 1072–1089.
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Thus
‖A1(ϕ0, φ0)‖ + ‖A2(ϕ0, φ0)‖ < 2OM,h = ‖ϕ0‖ + ‖φ0‖(ϕ0, φ0 ∈ ∂BOM,h ∩ P),

which contradicts (3.3), and thus (3.1) holds. From Lemma 2.6 we have

i(A, B2
OM,h
∩ P2, P2) = 1. (3.4)

Step 2. There exists a sufficiently large R > OM,h such that

(ϕ, φ) , A(ϕ, φ) + λ(%1, %1), ϕ, φ ∈ ∂BR ∩ P, λ ≥ 0, (3.5)

where %1 ∈ P0 is a given element. Suppose the contrary. Then there are ϕ1, φ1 ∈ ∂BR ∩ P, λ1 ≥ 0 such
that

(ϕ1, φ1) = A(ϕ1, φ1) + λ1(%1, %1). (3.6)

This implies that

ϕ1(t) = A1(ϕ1, φ1)(t) + λ1%1(t), φ1(t) = A2(ϕ1, φ1)(t) + λ1%1(t), t ∈ [0, 1].

From Lemma 2.4 and %1 ∈ P0 we have
ϕ1, φ1 ∈ P0. (3.7)

Note that ‖ϕ1‖ = ‖φ1‖ = R > OM,h, and thus ϕ1(t) ≥ w(t), φ1(t) ≥ w(t), t ∈ [0, 1].
By (H4)(ii) we obtain

lim inf
φ→∞

F1(ϕ, φ)
p(φ)

= lim inf
φ→∞

f (ϕ, φ) + M
p(φ)

≥ 1, lim inf
ϕ→∞

F2(ϕ, φ)
q(ϕ)

= lim inf
ϕ→∞

g(ϕ, φ) + M
q(ϕ)

≥ 1.

This implies that there exist c1, c2 > 0 such that

F1(ϕ, φ) ≥ p(φ) − c1, F2(ϕ, φ) ≥ q(ϕ) − c2, ϕ, φ ∈ R
+.

Therefore, we have
ϕ1(t) = A1(ϕ1, φ1)(t) + λ1%1(t)

≥ A1(ϕ1, φ1)(t)

≥

∫ 1

0
G(t, s)h(s)[p(φ1(s) − w(s)) − c1]ds

≥

∫ 1

0
G(t, s)h(s)p(φ1(s) − w(s))ds − c1κ2

(3.8)

and
φ1(t) = A2(ϕ1, φ1)(t) + λ1%1(t)

≥ A2(ϕ1, φ1)(t)

≥

∫ 1

0
G(t, s)h(s)[q(ϕ1(s) − w(s)) − c2]ds

≥

∫ 1

0
G(t, s)h(s)q(ϕ1(s) − w(s))ds − c2κ2.

(3.9)
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Consequently, we have

φ1(t) − w(t) ≥
∫ 1

0
G(t, s)h(s)q(ϕ1(s) − w(s))ds − c2κ2 − w(t)

≥

∫ 1

0
G(t, s)h(s)q(ϕ1(s) − w(s))ds − (c2 + M)κ2.

From (H4)(iii), there is a c3 > 0 such that

p(LG,hq(z)) ≥ e1LG,hz − LG,hc3, z ∈ R+.

Combining with (H4)(i), we have

p(φ1(t) − w(t)) ≥ p(φ1(t) − w(t) + (c2 + M)κ2) − p((c2 + M)κ2)

≥ p
(∫ 1

0
G(t, s)h(s)q(ϕ1(s) − w(s))ds

)
− p((c2 + M)κ2)

= p
(∫ 1

0

G(t, s)h(s)
LG,h

LG,hq(ϕ1(s) − w(s))ds
)
− p((c2 + M)κ2)

≥

∫ 1

0
p
(
G(t, s)h(s)
LG,h

LG,hq(ϕ1(s) − w(s))
)

ds − p((c2 + M)κ2)

≥

∫ 1

0

G(t, s)h(s)
LG,h

p
(
LG,hq(ϕ1(s) − w(s))

)
ds − p((c2 + M)κ2)

≥

∫ 1

0

G(t, s)h(s)
LG,h

(e1LG,h(ϕ1(s) − w(s)) − LG,hc3)ds − p((c2 + M)κ2)

≥ e1

∫ 1

0
G(t, s)h(s)(ϕ1(s) − w(s))ds − p((c2 + M)κ2) − c3κ2.

Substituting this inequality into (3.8) we have

ϕ1(t) − w(t) ≥
∫ 1

0
G(t, s)h(s)

[
e1

∫ 1

0
G(s, τ)h(τ)(ϕ1(τ) − w(τ))dτ − p((c2 + M)κ2) − c3κ2

]
ds

− (c1 + M)κ2

≥ e1

∫ 1

0

∫ 1

0
G(t, s)h(s)G(s, τ)h(τ)(ϕ1(τ) − w(τ))dτds

− p((c2 + M)κ2)κ2 − c3κ
2
2 − (c1 + M)κ2.

Multiply by ϑ(t) on both sides of the above and integrate over [0, 1] and use Lemma 2.2 to obtain∫ 1

0
(ϕ1(t) − w(t))ϑ(t)dt ≥ e1

∫ 1

0
ϑ(t)

∫ 1

0

∫ 1

0
G(t, s)h(s)G(s, τ)h(τ)(ϕ1(τ) − w(τ))dτdsdt

− p((c2 + M)κ2)κ2
2 − c3κ

3
2 − (c1 + M)κ2

2

≥ e1κ
2
1

∫ 1

0
(ϕ1(t) − w(t))ϑ(t)dt − p((c2 + M)κ2)κ2

2 − c3κ
3
2 − (c1 + M)κ2

2.
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From this inequality we have∫ 1

0
(ϕ1(t) − w(t))ϑ(t)dt ≤

p((c2 + M)κ2)κ2
2 + c3κ

3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

and thus ∫ 1

0
ϕ1(t)ϑ(t)dt ≤

p((c2 + M)κ2)κ2
2 + c3κ

3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+

∫ 1

0
w(t)ϑ(t)dt

≤
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+ Mκ2
2.

Note that (3.7), ϕ1 ∈ P0, and we have

‖ϕ1‖ ≤
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

κ1(e1κ
2
1 − 1)

+
Mκ2

2

κ1
.

On the other hand, multiply by ϑ(t) on both sides of (3.8) and integrate over [0, 1] and use Lemma 2.2
to obtain

κ1

∫ 1

0
ϑ(t)p(φ1(t) − w(t))dt ≤

∫ 1

0
ϕ1(t)ϑ(t)dt + c1κ

2
2

≤
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+ Mκ2
2 + c1κ

2
2.

From Remark 2.1 we have w ∈ P0, note that ‖φ1‖ = R > M(γ+δ)(β+α)
ρ

∫ 1

0
h(s)ds ≥ ‖w‖ and φ1 ∈ P0, then

φ1 − w ∈ P0. By the concavity of p we have

‖φ1 − w‖ ≤ κ−1
1

∫ 1

0
(φ1(t) − w(t))ϑ(t)dt =

‖φ1 − w‖
κ1 p(‖φ1 − w‖)

∫ 1

0

φ1(t) − w(t)
‖φ1 − w‖

p(‖φ1 − w‖)ϑ(t)dt

≤
‖φ1 − w‖

κ1 p(‖φ1 − w‖)

∫ 1

0
p
(
φ1(t) − w(t)
‖φ1 − w‖

‖φ1 − w‖
)
ϑ(t)dt

≤
‖φ1 − w‖

κ2
1 p(‖φ1 − w‖)

[
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+ Mκ2
2 + c1κ

2
2

]
.

This implies that

p(‖φ1 − w‖) ≤
1
κ2

1

[
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+ Mκ2
2 + c1κ

2
2

]
.

From (H4)(i) we have

p(‖φ1‖) = p(‖φ1 − w + w‖) ≤ p(‖φ1 − w‖ + ‖w‖) ≤ p(‖φ1 − w‖) + p(‖w‖)

≤
1
κ2

1

[
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+ Mκ2
2 + c1κ

2
2

]
+ p(‖w‖)

≤
1
κ2

1

[
p((c2 + M)κ2)κ2

2 + c3κ
3
2 + (c1 + M)κ2

2

e1κ
2
1 − 1

+ Mκ2
2 + c1κ

2
2

]
+ p(Mκ2)

< +∞.
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Therefore, there exists Oφ1 > 0 such that ‖φ1‖ ≤ Oφ1 .
We have prove the boundedness of ϕ1, φ1 when (3.6) holds, i.e., when ϕ1, φ1 ∈ ∂BR ∩ P, there exist

a positive constant to control the norms of ϕ1, φ1. Now we choose a sufficiently large

R1 > max
{
OM,h,Oφ1 ,

p((c2 + M)κ2)κ2
2 + c3κ

3
2 + (c1 + M)κ2

2

κ1(e1κ
2
1 − 1)

+
Mκ2

2

κ1

}
.

Then when ϕ1, φ1 ∈ ∂BR1 ∩ P, (3.6) is not satisfied, and thus (3.5) holds. From Lemma 2.5 we have

i(A, B2
R1
∩ P2, P2) = 0. (3.10)

Combining (3.4) with (3.10) we have

i(A, (B2
R1
\B

2
OM,h

) ∩ P2, P2) = i(A, B2
R1
∩ P2, P2) − i(A, B2

OM,h
∩ P2, P2) = 0 − 1 = −1.

Then the operator A has at least one fixed point (denoted by (ϕ∗, φ∗)) on (B2
R1
\B

2
OM,h

) ∩ P2 with
ϕ∗(t), φ∗(t) ≥ w(t), t ∈ [0, 1]. Therefore, (ϕ∗ − w, φ∗ − w) is a positive solution for (2.2), and (1.1)
has at least one positive radial solution. �

Theorem 3.2. Suppose that (H1)–(H3), (H6) and (H7) hold. Then (1.1) has at least one positive radial
solution.

Proof. Step 1. When ϕ, φ ∈ ∂BOM,h ∩ P, we have

(ϕ, φ) , A(ϕ, φ) + λ(%2, %2), λ ≥ 0, (3.11)

where %2 ∈ P is a given element. Suppose the contrary. Then there exist ϕ2, φ2 ∈ ∂BOM,h ∩ P, λ2 ≥ 0
such that

(ϕ2, φ2) = A(ϕ2, φ2) + λ2(%2, %2).

This implies that

‖ϕ2‖ ≥ ϕ2(t) ≥ A1(ϕ2, φ2)(t) + λ2%2(t) ≥ A1(ϕ2, φ2)(t), t ∈ [0, 1],

‖φ2‖ ≥ φ2(t) ≥ A2(ϕ2, φ2)(t) + λ2%2(t) ≥ A2(ϕ2, φ2)(t), t ∈ [0, 1].

Then we have
‖ϕ2‖ + ‖φ2‖ ≥ ‖A1(ϕ2, φ2)‖ + ‖A2(ϕ2, φ2)‖. (3.12)

From (H7) we have

‖Ai(ϕ2, φ2)‖ = max
t∈[0,1]

Ai(ϕ2, φ2)(t)

≥ max
t∈[0,1]

ρ

(γ + δ)(β + α)
G(t, t)

∫ 1

0
G(s, s)h(s)Fi(ϕ2(s) − w(s), φ2(s) − w(s))ds

≥ LG

∫ 1

0
G(s, s)h(s)Q̃ids = Q̃iκ2LG, i = 1, 2.
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By the condition on Q̃i we have

‖A1(ϕ2, φ2)‖ + ‖A2(ϕ2, φ2)‖ > 2OM,h = ‖ϕ2‖ + ‖φ2‖,

and this contradicts (3.12), so (3.11) holds. By Lemma 2.5 we have

i(A, B2
OM,h
∩ P2, P2) = 0. (3.13)

Step 2. There exists a sufficiently large R > OM,h such that

(ϕ, φ) , λA(ϕ, φ), ϕ, φ ∈ ∂BR ∩ P, λ ∈ [0, 1]. (3.14)

Suppose the contrary. Then there exist ϕ3, φ3 ∈ ∂BR ∩ P, λ3 ∈ [0, 1] such that

(ϕ3, φ3) = λ3A(ϕ3, φ3). (3.15)

Combining with Lemma 2.4 we have
ϕ3, φ3 ∈ P0. (3.16)

Note that ϕ3, φ3 ∈ ∂BR ∩ P, and then ϕ3(t)−w(t), φ3(t)−w(t) ≥ 0, t ∈ [0, 1]. Hence, from (H6) we have

lim sup
φ→∞

F1(ϕ, φ)
ζ(φ)

= lim sup
φ→∞

f (ϕ, φ) + M
ζ(φ)

≤ 1, lim sup
ϕ→∞

F2(ϕ, φ)
η(ϕ)

= lim sup
ϕ→∞

g(ϕ, φ) + M
η(ϕ)

≤ 1.

This implies that there exists M̃ > 0 such that

F1(ϕ, φ) ≤ ζ(φ), F2(ϕ, φ) ≤ η(ϕ), ϕ, φ ≥ M̃. (3.17)

By similar methods as in Theorem 3.1, choosing R > M̃, and from (3.15) we obtain

ϕ3(t) = λ3A1(ϕ3, φ3)(t) ≤
∫ 1

0
G(t, s)h(s)ζ(φ3(s) − w(s))ds (3.18)

and

φ3(t) = λ3A2(ϕ3, φ3)(t) ≤
∫ 1

0
G(t, s)h(s)η(ϕ3(s) − w(s))ds. (3.19)

From (H6)(iii), there exists c4 > 0 such that

ζ(LG,hη(z)) ≤ e2LG,hz + c4LG,h, z ∈ R+.

By the convexity of ζ we have

ζ(φ3(t) − w(t)) ≤ ζ
(∫ 1

0
G(t, s)h(s)η(ϕ3(s) − w(s))ds

)
≤

∫ 1

0
ζ
[
G(t, s)h(s)η(ϕ3(s) − w(s))

]
ds

=

∫ 1

0
ζ

[
G(t, s)h(s)
LG,h

LG,hη(ϕ3(s) − w(s))
]

ds

≤

∫ 1

0

G(t, s)h(s)
LG,h

ζ
[
LG,hη(ϕ3(s) − w(s))

]
ds

≤

∫ 1

0

G(t, s)h(s)
LG,h

[e2LG,h(ϕ3(s) − w(s)) + c4LG,h]ds

≤

∫ 1

0
G(t, s)h(s)[e2(ϕ3(s) − w(s)) + c4]ds.

(3.20)
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Substituting this inequality into (3.18) we have

ϕ3(t) ≤
∫ 1

0
G(t, s)h(s)

∫ 1

0
G(s, τ)h(τ)[e2(ϕ3(τ) − w(τ)) + c4]dτds

≤ e2

∫ 1

0

∫ 1

0
G(t, s)h(s)G(s, τ)h(τ)(ϕ3(τ) − w(τ))dτds + c4κ

2
2.

(3.21)

Consequently, we have

ϕ3(t) − w(t) ≤
∫ 1

0
G(t, s)h(s)

∫ 1

0
G(s, τ)h(τ)[e2(ϕ3(τ) − w(τ)) + c4]dτds

≤ e2

∫ 1

0

∫ 1

0
G(t, s)h(s)G(s, τ)h(τ)(ϕ3(τ) − w(τ))dτds + c4κ

2
2.

(3.22)

Multiply by ϑ(t) on both sides of (3.22) and integrate over [0, 1] and use Lemma 2.2 to obtain∫ 1

0
(ϕ3(t) − w(t))ϑ(t)dt ≤ e2κ

2
2

∫ 1

0
(ϕ3(t) − w(t))ϑ(t)dt + c4κ

3
2,

and we have ∫ 1

0
(ϕ3(t) − w(t))ϑ(t)dt ≤

c4κ
3
2

1 − e2κ
2
2

.

Note that (3.16), w ∈ P0, and

‖ϕ3 − w‖ ≤
c4κ

3
2

κ1(1 − e2κ
2
2)
.

By the triangle inequality we have

‖ϕ3‖ = ‖ϕ3 − w + w‖ ≤ ‖ϕ3 − w‖ + ‖w‖ ≤
c4κ

3
2

κ1(1 − e2κ
2
2)

+ Mκ2.

On the other hand, from (3.20) we have

ζ(φ3(t) − w(t)) ≤
∫ 1

0
G(t, s)h(s)[e2(ϕ3(s) − w(s)) + c4]ds

≤

∫ 1

0
ϑ(s)[e2(ϕ3(s) − w(s)) + c4]ds

≤
c4e2κ

3
2

1 − e2κ
2
2

+ c4κ2.

Note that c4e2κ
3
2

1−e2κ
2
2

+ c4κ2 is independent to R, and using (H6)(i) there exists Oφ3 > 0 such that

‖φ3 − w‖ ≤ Oφ3 ,

and then
‖φ3‖ = ‖φ3 − w + w‖ ≤ ‖φ3 − w‖ + ‖w‖ ≤ Oφ3 + Mκ2.
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Therefore, when ϕ3, φ3 ∈ ∂BR ∩ P, we obtain there is a positive constant to control the norms of ϕ3, φ3.
Then if we choose

R2 >

{
OM,h,Oφ3 + Mκ2, M̃,

c4κ
3
2

κ1(1 − e2κ
2
2)

+ Mκ2

}
,

then (3.14) holds, and from Lemma 2.6 we have

i(A, B2
R2
∩ P2, P2) = 1. (3.23)

From (3.13) and (3.23) we have

i(A, (B2
R2
\B

2
OM,h

) ∩ P2, P2) = i(A, B2
R2
∩ P2, P2) − i(A, B2

OM,h
∩ P2, P2) = 1 − 0 = 1.

Then the operator A has at least one fixed point (denoted by (u∗∗, v∗∗)) on (B2
R2
\B

2
OM,h

) ∩ P2 with
u∗∗(t), v∗∗(t) ≥ w(t), t ∈ [0, 1]. Therefore, (u∗∗ −w, v∗∗ −w) is a positive solution for (2.2), and (1.1) has
at least one positive radial solution.

We now provide some examples to illustrate our main results. Let α = β = γ = δ = 1, and
k(|z|) = e|z|, z ∈ Rn. Then (H1) and (H2) hold. �

Example 3.1. Let p(φ) = φ
4
5 , q(ϕ) = ϕ2, ϕ, φ ∈ R+. Then lim infz→∞

p(LG,hq(z))
z = lim infz→∞

L
4
5
G,hz

8
5

z ≥ ∞,
and (H4)(i), (iii) hold. If we choose

f (ϕ, φ) =
1

β1κ2(| sinϕ| + 1)
φ − M, g(ϕ, φ) =

O
1−β3
M,h

β2κ2(| cos φ| + 1)
ϕβ3 − M, β1, β2 > 1, β3 > 2,

then (H3) holds, and when ϕ, φ ∈ [0,OM,h], we have

F1(ϕ, φ) = f (ϕ, φ) + M ≤
OM,h

β1κ2
:= Q1, F2(ϕ, φ) = g(ϕ, φ) + M ≤

O
1−β3
M,h

β2κ2
O
β3
M,h =

OM,h

β2κ2
:= Q2.

Hence, (H5) holds. Also we have

lim inf
φ→∞

f (ϕ, φ)
p(φ)

= lim inf
φ→∞

1
β1κ2(| sinϕ|+1)φ − M

φ
4
5

= ∞, lim inf
ϕ→∞

g(ϕ, φ)
q(ϕ)

= lim inf
ϕ→∞

O
1−β3
M,h

β2κ2(| cos φ|+1)ϕ
β3 − M

ϕ2 = ∞.

Then (H4)(ii) holds. As a result, all the conditions in Theorem 3.1 hold, and (1.1) has at least one
positive radial solution.

Example 3.2. Let ζ(φ) = φ2, η(ϕ) = ϕ
2
5 , ϕ, φ ∈ R+. Then lim supz→∞

ζ(LG,hη(z))
z = lim supz→∞

L2
G,hz

4
5

z =0 ≤
e2LG,h, and (H7)(i), (iii) hold. If we choose

f (ϕ, φ) = Q̃1 + (φ + | cosϕ|)α1 − M, g(ϕ, φ) = Q̃2 + (| sin φ| + ϕ)α2 − M, ϕ, φ ∈ R+,

where α1 ∈ (0, 2), α2 ∈
(
0, 2

5

)
. Then (H3) holds. Moreover, we have

F1(ϕ, φ) = f (ϕ, φ) + M ≥ Q̃1, F2(ϕ, φ) = g(ϕ, φ) + M ≥ Q̃2,
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and

lim sup
φ→∞

Q̃1 − M + (φ + | cosϕ|)α1

φ2 = 0, lim sup
ϕ→∞

Q̃2 − M + (| sin φ| + ϕ)α2

ϕ
2
5

= 0.

Therefore, (H6) and (H7) (ii) hold. As a result, all the conditions in Theorem 3.2 hold, and (1.1) has
at least one positive radial solution.

Remark 3.2. Note that condition (HZ)2 is often used to study various kinds of semipositone boundary
value problems (for example, see [19, 22, 23, 26, 28–30]). However, in Example 3.1 we have

lim inf
φ→+∞

f (ϕ, φ)
ϕ

= lim inf
φ→+∞

1
β1κ2(| sinϕ|+1)φ − M

φ
=

1
2β1κ2

,∀ϕ ∈ R+.

Comparing with (HZ)2 we see that our theory gives new results for boundary value problem with
semipositone nonlinearities.
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