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1. Introduction

LetQ={zeR": Ry <|zl < Ry,R;,R, > 0}. In this work we study the existence of positive radial
solutions for the following system of boundary value problems with semipositone second order elliptic
equations:

Ap + k(|2 f(g,¢) =0, z € Q,
A¢ + k(|zDg(p, ) = 0, z € Q,

o 0
ao+B =0, ap+ 8L =0, 11 = R., (1.1
on on
0 0
yo+62L 20, yp+622 =0, 14 = R,
on on

where @, 3,7, 0, k, f, g satisfy the conditions:
(H1) a,B,y,6 2 0 withp = yB8+ ay + ad > 0;
(H2) k € C([R, R,],R"), and k is not vanishing on [R}, R;];
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(H3) f,g € CR* x R",R), and there is a positive constant M such that
f,v), gu,v) > —M, Yu,v € R*.

Elliptic equations have attracted a lot of attention in the literature since they are closely related
to many mathematical and physical problems, for instance, incineration theory of gases, solid state
physics, electrostatic field problems, variational methods and optimal control. The existence of
solutions for this type of equation in annular domains has been discussed in the literature, see for
example, [1-18] and the references therein. In [1] the authors used the fixed point index to study
positive solutions for the elliptic system:

Au + a(|x]) f(u,v) = 0,
Av + b(|x])g(u,v) =0,

with one of the following boundary conditions

M:V:O,|X|:R1,|X|:R2,
0 0
M:V:O,Lxl:Rl,—u:—v:0,|x|:R27

or Oor
ou Ov
5 = E :O,|X| :Rl,M:V:0,|X| :R2'
In [2] the authors used the method of upper and lower solutions to establish the existence of positive
radial solutions for the elliptic equation

{ —Au = f(|x|,u,|Vul), x € Q,
ulso =0,

where Q = {x eRN: |x| < 1} ,N>2 and f :[0,1] X R* Xx R* — R is a continuous function.

However, we note that in most of the papers on nonlinear differential equations the nonlinear term
is usually assumed to be nonnegative. In recent years boundary value problems for semipositone
equations (f(t,x) > —M,M > 0) has received some attention (see [19-32]), and these equations
describe and solve many natural phenomena in engineering and technical problems in real life, for
example in mechanical systems, suspension bridge design, astrophysics and combustion theoretical
models. In [19] the authors used a fixed point theorem to study the system for HIV-1 population
dynamics in the fractional sense

Dy, u(®) + Af (£ u(t), Dy,u(®), v(1)) = 0,1 € (0, 1),

D} () + Ag(t, u(r)) = 0,1 € (0, 1),

Df u(0) = DI 'u(0) = 0, D5 u(1) = fo‘ D} u(s)dA(s),
v(0) = v(0) = 0,v(1) = [ v(s)dB(s),

where Dy, Dg +,Dg . are the standard Riemann-Liouville derivatives, and f, g are two semipositone
nonlinearities. In [28] the authors used the nonlinear alternative of Leray-Schauder type and the Guo-

Krasnosel’skii fixed point theorem to study the existence of positive solutions for a system of nonlinear
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Riemann-Liouville fractional differential equations

Dj u(t) + Af(t,v() =0,0<r<1, 1>0,
Dy v(t) + Ag(t,u(r)) =0,0<r<1, 1>0,
uP(0) =vP(0)=0,0< j<n-2,

1 1
u(1) = p [ u(s)ds, v(1) = p [ v(s)ds,

where f, g satisfy some superlinear or sublinear conditions:

(HZ), There exist M > 0 such that limsup__,, %’Z) < M uniformly for ¢ € [0, 1] (sublinear growth
condition).

(HZ), There exists [6;,6,] c (0, 1) such that liminf, f(;’Z) = +oo and liminf,_, @ = +00
uniformly for ¢ € [0, 6,] (superlinear growth condition).

Inspired by the aforementioned work, in particular [31-34], we study positive radial solutions for
(1.1) when the nonlinearities f, g satisfy the semipositone condition (H3). Moreover, some appropriate
concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.

Note that our conditions (H4) and (H6) (see Section 3) are more general than that in (HZ), and (HZ),.

2. Preliminaries

Using the methods in [1, 4], we transform (1.1) into a system of ordinary differential equations
involving Sturm-Liouville boundary conditions. Let ¢ = ¢(r),¢ = ¢(r),r = |z| = / D zl.z. Then (1.1)
i=1

can be expressed by the following system of ordinary differential equations:

-1
@ (r) + /(1) + k(") f(e(r), 4() = 0, Ry <7 < R,

~1
8" (r) + =g (r) + k(F)g(e(r). (r) = 0, Ry < r < Ry, 51
- @.1)

ag (R;) — B¢’ (R) =0, yo (Ry) +0¢" (Ry) = 0,
¢ (R)) — B¢ (Ry) =0, yp(Ry) +5¢" (R,) = 0.

Then if we let s = — erz (l/t”‘l)dt,t =(m-s)/mm=— f: (l/t”‘l)dt, (2.1) can be transformed into
the system

@' () + h(f (), ¢(1) =0, 0<r1<1,

¢" (1) + h(g(p(n), (1)) =0, 0<r<1,

ap(0) — Be"(0) =0, yp(l) +6¢'(1) =0,

ad(0) —Bg'(0) =0, ygp(1) +0¢'(1) =0,
where a(t) = m*r*"Y(m(1 - £))k(r(m(1 —1))). Consequently, (2.2) is equivalent to the following system
of integral equations

(2.2)

1
(1) = f G(t, $)h(s) f(¢(s), p(s))ds,
0 (2.3)

1
P(1) = fo G(t, )h(s)g(p(s), p(s))ds,
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where
1 +0—vyt)(B+ , 0<s<r<,
G@Q:_(y v (B + as) s
plly+s—-ys)(B+at), 0<tr<s<l,
and p is defined in (H1).
Lemma 2.1. Suppose that (H1) holds. Then
(i)
o,
——G(t,)G(s, 5) < G(t,5) < G(s,5), t,s € [0,1];
(y+6)B+a)
(ii)

G(t,s) <G(t,1), t,s €[0,1].
Proof. (1) In G(¢, s), we fix the second variable s, we have

1{@+5—ynw+mgs@+5—ygw+a9,05ssr

<
G(t,s) = — -
pPlly+o—-ys)B+at)<(y+d—ys)(B+as), 0<t<s<

This implies that
G(t,s) <G(s,9),t,s €[0,1].

When ¢ > s, we have

Sy+s—yn(B+as) N 1
-ﬁ(7+(5—W)(,3+C¥l)(7+5—75)(,3+05) T (Bra)y+9o)

=

p .
When ¢ < s, we have

Sy+s—ys)(B+an N 1
To+s-mBrany+6-ys)Bras) Bray+o)

p .

=

Combining the above we obtain

G(t, ) S Jol
G(t,0G(s,s)  B+a)y+0)

(i1) In G(z, s) we fix the first variable ¢, and we obtain

Glt,s) =

{@+5—ygw+mgs@+5—ygw+aﬂ,0§sszsL
P

(y+o—-ys)B+at) <(y+o—-yH(B+at), 0<t<s<l1.

Thus
G, s) <G(t,0),t, s €]0,1].

(2.4)

O
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Lemma 2.2. Suppose that (H1) holds. Let 9(t) = G(t,t)h(t),t € [0, 1]. Then

1
k19(s) < f G(t, $)h(s)9()dt < kU(s),
0

where

1 1
T s
KKE=—"—"6Z--—— G(t,Hd(r)de, «, = f J(r)de.
o+ oBra) s o
Proof. From (H1) and Lemma 2.1(i) we have

1 1
f G(t, s)h(s)P(t)dr < f G(s, $)h(s)9(r)dr = Kk 9(s)
0 0

and

1 1
fo G(t, $)h(s)0()dt > f(; mG(t’ NG(s, $)h(s)H)dt = k1 9(s).

Note we study (2.3) to obtain positive solutions for (1.1). However here the nonlinear terms f, g
can be sign-changing (see (H3)). Therefore we study the following auxiliary problem:

1
u(t):f G(t, s)h(s)f(u(s))ds, (2.5)
0

where G 1Ps‘ in (2.4) and fsatisﬁes the condition:
(H2) f € C(R",R), and there exists a positive constant M such that

fuw) > —M, Yu € R*.

Let w(t) = M fol G(t, s)h(s)ds,Vt € [0,1]. Then w is a solution of the following boundary value
problem:

u’'@+h(M =0,0<t< 1, 2.6)
au(0) —Bu’(0) =0, yu(l)+ou'(1)=0. .
O
Lemma 2.3. (i) If u” satisfies (2.5), then u* + w is a solution of the equation:
1
u(t) = f G(t, s)h(s)f(u(s) —w(s))ds, 2.7)
0
where .
B - { flu)+ M, >0, 08)
fO)+ M,u<O0.

(ii) If u*™* satisfies (2.7) with u™(t) > w(t),t € [0, 1], then u™* — w is a positive solution for (2.5).

Proof. We omit its proof since it is immediate. O
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Let E = C[0, 1], ||ull = max,e(o, 1) [u(?)|. Then (E, ||-||) is a Banach space. Define a set on E as follows:
P={uekE:u()>0,Yte[0,1]},

and note P is a cone on E. Note, E? = E X E is also a Banach space with the norm: ||(, v)|| = ||ul| + |||,
and P> = PxP acone on E*. In order to obtain positive radial solutions for (1.1), combining with (2.5)—
(2.7), we define the following operator equation:

where A(p, ) = (A1, A2)(@, 9), Ai(i = 1,2) are

1
Ai(p, 9)(1) = f G(1, $)h($)F1((s) — w(s), d(s) — w(s))ds,
0 (2.10)

1
Ay, 9)(1) = f G(t, Hh($)F2(p(s) — w(s), p(s) — w(s))ds,

0

and

flp. )+ M,0,¢ 20,
f0,¢)+ M,p<0,¢ >0,
f(,0) + M, >0,¢ <0,
f0,0) + M,p,¢ <0,

7:1(50’ ¢) =

8p,9) + M, p,¢ >0,
g0,0)+M,0 <0,¢ >0,
g, 0)+M,0p>0,¢ <0,
g(0,0)+ M,p,¢ <O0.

7:2(% ¢) =

Lemma 2.4. Define Py = {p € P : (1) > s G g, 1 € [0, 11}. Then A(P x P) c Po,i = 1,2.

Proof. We only prove it for A;. If ¢,¢ € P, note the non-negativity of #;(denoted by 71(:,)), from
Lemma 2.1(i) we have

1 1
fo mG(t,t)G(s,s)h(s)ﬁ(.,.)ds5A1(¢,¢)(;)S fo G(s. $)h(s)F (-, -)ds.

This implies that

P G(t, )G (s, )h(s)Fi (-, )ds >

P
v +0)(B+a) mG(L DA (e, D).

1
mmwwzﬁ

Remark 2.1. (i) w(t) = M [ G(t, s)h(s)ds € Py;
(ii) Note (see Corollary 1.5.1 in [35]):
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If k(x,y,u) : GxGXR - Ris continuous ( G is a bounded closed domain in R"), then K is a
completely continuous operator from C(G) into itself, where

wa=i¥umw®My

Note that G(t,s),h(s),F:(i = 1,2) are continuous, and also A;, A are completely continuous
operators,i = 1,2.

From Lemma 2.3 if there exists (¢, ¢) € P?\{(0,0)} such that (2.9) holds with (¢, ¢) > (w,w), then
o(t), p(t) > w(t),t € [0,1], and (¢ — w, d — w) is a positive solution for (2.3), i.e., we obtain positive
radial solutions for (1.1). Note that ¢, ¢ € Py, and from Lemma 2.1(ii) we have

1
P

(1) —w(t) > mG(L Dllell - Mj(; G(t,D)h(s)ds,
!

¢(t) —w(t) > mG(I, t)||¢|| - Mj(; G(t,0)h(s)ds.

Hence, if 1
M 1)
gl il > ”+;w“”£hmm,

we have (¢, ¢) > (w,w). As a result, we only need to seek fixed points of (2.9), when their norms are
greater than w fol h(s)ds.

Let E be a real Banach space. A subset X C E is called a retract of E if there exists a continuous
mapping r : E — X such that (x) = x, x € X. Note that every cone in E is a retract of E. Let X
be a retract of real Banach space E. Then, for every relatively bounded open subset U of X and every
completely continuous operator A : U — X which has no fixed points on dU, there exists an integer
i(A, U, X) satistying the following conditions:

(i) Normality: i(A, U,X) = 1 if Ax = yy € U forany x € U.

(i1) Additivity: i(A, U, X) = i(A, U, X) + i (A, U,, X) whenever U, and U, are disjoint open subsets
of U such that A has no fixed points on U\ (U, U U,).

(ii1)) Homotopy invariance: i(H(t, -), U, X) is independent of 7 (0 < t < 1) whenever H : [0, 1] xU —
X is completely continuous and H(t, x) # x for any (¢, x) € [0, 1] X dU.

(iv) Permanence: i(A, U, X) = i(A,U N Y, Y) if Y is a retract of X and A(U) C Y.

Then i(A, U, X) 1s called the fixed point index of A on U with respect to X.

Lemma 2.5. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that QQ C E is a
bounded open set and that A - QN P — P is a continuous compact operator. If there exists wy € P\{0}
such that

w-—Aw # Awy, Y1 > 0,w € IQN P,

then i(A,Q N P, P) = 0, where i denotes the fixed point index on P.

Lemma 2.6. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that Q C E is
a bounded open set with 0 € Q and that A : QN P — P is a continuous compact operator. If

w—AAw #0,Y1€[0,1],w e dQNP,
theni(A,QNP,P)=1.

AIMS Mathematics Volume 8, Issue 1, 1072—-1089.
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3. Main results

Denote Oy, = 2 ) h(s)ds, B; = {u € E : ull < ¢}, > 0,B% = B, x B;. We list our
assumptions as follows:

(H4) There exist p,g € C(R*,R*) such that

(i) p is a strictly increasing concave function on R*;

(ii) liminf,_« f(? ;) > 1, liminf,_ g(‘(’ ;) >1;

(iii) there exists e; € (Kl_ ,00) such that liminf,_.
max; seo,1] G(#, $)h(s).
(H5) There exists Q; € ( , on ”) such that

P(L6.nq(@)
z

\%

e1Lcn where Lg, =

7:;(” —W,V—W) < Q[,I/l,v € [OaOM,h]ai = 1’2

(H6) There exist £, € C(R*,R") such that
() ¢ is a strictly increasing convex function on R™;

N fu,y) . J{CAD) .
(ii) limsup, ., 7o < 1, limsup,_,, o5 < 1;

(ii1) there exists e; € (0, K22) such that lim sup__,,
(H7) There exists Q; € (I?M ’G ) such that

Lo
4( G;U(Z)) < eZLG,h-

Filuw—w,v—w) = Qi u,v € [0,044],0 = 1,2,

where L = max,eo.1] ==-—G(,1).

0.1] (y+6)(ﬁ+(t)

Remark 3.1. Condition (H4) implies that f grows p(v)-superlinearly at co uniformly on u € R”,
g grows q(u)-superlinearly at oo uniformly on v € R*; condition (H6) implies that f grows {(v)-
sublinearly at oo uniformly on u € R*, g grows n(u)-sublinearly at co uniformly on v € R™.

Theorem 3.1. Suppose that (HI)—(HS) hold. Then (1.1) has at least one positive radial solution.
Proof. Step 1. When ¢, ¢ € 0By,,, N P, we have

(¢, ) # 1A(p, ¢), 1 € [0, 1]. (3.1

Suppose the contrary i.e., if (3.1) is false, then there exist ¢, ¢y € dBo,,, N P and A, € [0, 1] such that

(@0, $0) = AoA(po, Po).
This implies that
@0, Po € Py (3.2)

and
lleoll < 1A 1(@0, @)l lldoll < [|A2(p0, Po)ll. (3.3)

From (HS5) we have
1

1
Ai(@o, ¢0)(1) = fo G(t, Hh($)Fi(@o(s) — w(s), po(s) — w(s))ds < f H($)Qids < Oy, i = 1,2.

0
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Thus
1A 1(®0, oIl + |A2(¢0, PNl < 20u4 = ll@oll + ll¢oll(¢o, b0 € 0Bo,,, N P),

which contradicts (3.3), and thus (3.1) holds. From Lemma 2.6 we have
i(A,B NP,P)=1. (3.4)
Step 2. There exists a sufficiently large R > Oy, such that

(0, 9) # Alp, ¢) + A(01,01), 9,4 € OBR NP, 1 >0, (3.5)

where o, € Py is a given element. Suppose the contrary. Then there are ¢, ¢, € dBx N P, 4; > 0 such
that

(¢1, 1) = A1, d1) + (o1, 01) (3.6)
This implies that

@1(8) = A1(e1, $1)(0) + 101(0), ¢1(1) = Asr(p1, ¢1)(@) + 2101(0), 1 € [0, 1].
From Lemma 2.4 and o, € Py, we have
¢1, 91 € Po. (3.7)

Note that [l¢1]| = [|§1]l = R > Oy, and thus ¢ () > w(?), 1(2) > w(1), 1 € [0, 1].
By (H4)(i1) we obtain

timinf 22 i LD My i OO i DMy
g0 p(P) g0 p(P) goo q(p) 00 q(p)
This implies that there exist ¢y, c; > 0 such that
File, ®) = p(¢) — c1, Fale,¢) 2 q(p) — 2, 0, ¢ €RT.
Therefore, we have
e1(1) = Ai(@1, d1)(D) + 2101(0)
> Ai(p1,$1)(1)
1
> f G(t, )h(s)[p(¢1(s) — w(s)) — c1ds (3.8)
0
1
> f G(t, $)h(s)p(¢1(s) — w(s))ds — cik,
0
and
$1(1) = As(p1, ¢1)() + 2101(F)
> As(p1,91)()
1
> f G(t, $)h()[q(g1(s) — w(s)) — c2]ds (3.9)
0

1
2 f G(1, $)h(s)q(p1(s) — w(s))ds — caks.
0
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Consequently, we have

1
b1(0) = w(D) > fo G(t, h(5)qr(s) — w(s)ds — cas — w(d)
1

2 L G(t, $)h(s5)g(p1(s) — w(s))ds — (c2 + M)ks.
From (H4)(iii), there is a ¢3 > O such that
P(Lonq(2) = e1Lonz — Loncs, 2 €RT.
Combining with (H4)(i), we have
P(1(1) =w(®) 2 p(¢1(1) = w(t) + (¢2 + M)k2) — p((c2 + M)k2)

1
2p ( f G(t, $)h(s)q(p1(s) — W(S))dS) — p((c2 + M)ky)
0

L' G(t, s)h
=p ( f (’;) S onaon(s) - w(s))ds) ~ pl(er + M)
0 G,h

1
2 f P (G(t’ S)h(S)LG,hCI(Sol(S) - W(S))) ds — p((c2 + M)kz)
0

Le.n

1 G , h
N f (t.E O (L6ag(@1(s) — w(s)) ds — p((cs + M)k)
0 G,h

IG , h
S f (t.z: ) (1 Lo n(1(5) = w(s)) = Lapes)ds — p((ca + M)
0

G.h

1
> e [ Gt s)p1(5) = W) = ple + M) = e
0

Substituting this inequality into (3.8) we have

1 1
@1(0) —w(t) 2 f G(t, $)h(s) [61 f G(s, Dh(T)(@1(T) = w(D)d7 = p((c2 + M)K2) — c3K2 | ds
0 0

—(c1 + M)k,

S|
> e f f G(t, $H)h(s)G(s, T)h(T)(¢1(T) — w(T))drds
o Jo
— p((c2 + M)ia)ka — ¢365 — (¢1 + M)ks.

Multiply by #(¢) on both sides of the above and integrate over [0, 1] and use Lemma 2.2 to obtain

1 1 1 1
[ -womonse |00 [ [ Gemo6e e - wodrdsa
0 0 0 0

— p((ca + M)k — c3k; — (1 + M)K;

1
> ek} f (@1(1) = w(@®)I()dt — p((ca + M)Kky)K5 — c3k5 — (¢1 + M)KG;.
0
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From this inequality we have

pl(cy + M)Kg)K% + C3K§ + (c) + M)K%

1
f (@1(1) — w@)(1)dt <
0

ekt — 1

and thus
p((c2 + M)ko)K3 + ¢365 + (1 + M)k;

1 1
f @1 (9(Ddi < . ¥ f W(HO(r)dr
0 eky — 1 0

- pl(c; + M)Kz)K% + C3K% + (¢ + M)K%

2
K.

elkf -1

Note that (3.7), ¢ € Py, and we have

Cr + MDK)K? + 3K + (¢ + M)Kk> Mk?
||901||Sp((2 )2)2 3K,y (l )2+ 2.

K] (elkf -1 K1

On the other hand, multiply by ¥(¢) on both sides of (3.8) and integrate over [0, 1] and use Lemma 2.2
to obtain

1

1
Ki f HO)p(¢1 (1) —w(n)dr < f @1 (H(1)d1 + €143
0 0

B p((c2 + M)k)K3 + ¢365 + (1 + M)k;

+ MK + cii5.
2
erk; — 1

From Remark 2.1 we have w € Py, note that ||¢;|| = R > w fol h(s)ds > ||w|| and ¢; € Py, then
¢, —w € Py. By the concavity of p we have

e e —wll (" di(t) - w(t)
— 1 — Hdt =
s =wll < x4 fo(¢‘(’) A = e —wi) Jo 1l =l

llpr — wll ! (¢1(t) —w(?) )
k1 p(lldr — wl) ————|¢p; — wl|| H(D)d
— kip(lldr —wll) Jo T |y — wl| | 9 (r)dt

li¢1 — wll [P((Cz + M)Ko)K3 + ¢363 + (¢ + M)K3
~ x5p(ligr = wi

This implies that

p(li¢r = wihd(n)dz

2 2
- +MK2+C1K2].
€1K1 -

p((cy + M)Kg)K% + c3/<§ + (1 + M)K%

2 2
+ Mxk; + C]Kz] .

1
pllgr —wl) < = [
Ky

elkf -1
From (H4)(i) we have

U1l = pllgr —w + wll) < p(llgr — wil + [wl) < p(llgr — wiD) + p(lIwll)
1 [ p((c2 + M)kx)K5 + c3k3 + (¢1 + M)k,

=
K

+ p(lwl)

2 2
+ Mi; + ci1Kk;

elkf -1

<= + MK% + C1K% + p(M«k>)

B 1 [p((cz + M)k)K5 + ¢35 + (¢ + M)k;
Ky

elK%—l
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Therefore, there exists Oy, > 0 such that ||¢|| < Oy,.
We have prove the boundedness of ¢, ¢; when (3.6) holds, i.e., when ¢y, ¢; € dBg N P, there exist
a positive constant to control the norms of ¢y, ¢;. Now we choose a sufficiently large

Cr + M)K)K? + ¢33 + (¢ + M)k Mk?
R, >maX{OM,h,O¢,,p(( 2 KK, + €3K5 + (€ )2+ 2}‘

Kl(elK% -1 K1
Then when ¢y, ¢, € 0Bg, N P, (3.6) is not satisfied, and thus (3.5) holds. From Lemma 2.5 we have
i(A, Bz, N P*,P*) = 0. (3.10)
Combining (3.4) with (3.10) we have

i(A, (qul\Ef)M,h) NP’ P’ =i(A, By NP, P)—i(A,B; NP, P)=0-1=-1

Then the operator A has at least one fixed point (denoted by (¢*,¢*)) on (Bzzel \Eéw) N P? with
e (), 9" (t) = w(t),t € [0,1]. Therefore, (¢* — w,¢" — w) is a positive solution for (2.2), and (1.1)
has at least one positive radial solution. O

Theorem 3.2. Suppose that (HI)—(H3), (H6) and (H7) hold. Then (1.1) has at least one positive radial
solution.

Proof. Step 1. When ¢, ¢ € 0By,,, N P, we have

(@, 9) # Ap, §) + A(02,02), 4 2 0, (3.1

where 0, € P is a given element. Suppose the contrary. Then there exist ¢,,¢, € 0Bp,,, N P,A4, > 0
such that

(2, $2) = A2, P2) + A2(02, 02).

This implies that
llpall = @a(t) = A1(2, $2)(1) + A202(1) = A1 (2, $2)(1), 1 € [0, 1],

lpall = Pa(2) = Ar(p2, §2)(1) + A202(2) = As(p2, 2)(1), 1 € [0, 1].

Then we have
llpall + llg2ll = [|A1 (@2, Pl + [|A2(p2, P2)II. (3.12)

From (H7) we have

1Ai(@2, d2)Il = max Ai(@2, $2)(1)

> max*
[0.1] (y + 0)(B + @)

1
> L6 f G(s, $)h(s)0ids = Qi L, i = 1,2.
0

1
G(t,1) f G(s, HM()F i(p2(s) — w(s), ha(s) — w(s))ds
0
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By the condition on Q; we have

A1 (@2, Gl + |A2(02, $)II > 20u1 = llpall + I2ll,
and this contradicts (3.12), so (3.11) holds. By Lemma 2.5 we have

i(A, By, NP, P?) =0, (3.13)
Step 2. There exists a sufficiently large R > Oy, such that
(¢, 9) # AA(@, @), p, 0 € 0B N P, A1 € [0, 1]. (3.14)
Suppose the contrary. Then there exist ¢3, ¢35 € dBg N P, A3 € [0, 1] such that
(@3, 93) = 13A(g3, h3). (3.15)
Combining with Lemma 2.4 we have
3, 3 € Py. (3.16)
Note that 3, ¢35 € dBg N P, and then ¢3(1) — w(t), ¢3(t) —w(t) > 0,¢ € [0, 1]. Hence, from (H6) we have
lim sup Filpd) lim sup fed+ M <1, limsup e d) lim su 8.0+ M <l
oo L(B) g0 {(9) goo (@) o0 1n(e)
This implies that there exists M > 0 such that
Fi(e: 9) < L(9), Fal, ¢) < 1(@), 0,6 2 M. (3.17)
By similar methods as in Theorem 3.1, choosing R > M, and from (3.15) we obtain
1
@3(1) = BA1(g3, 93)(1) < fo G(1, $)h(5){(¢3(s) — w(s))ds (3.18)
and |
$3(1) = LA (3, $3)(1) < fo G (1, $)h(s)n(ps(s) — w(s))ds. (3.19)

From (H6)(iii), there exists ¢4 > 0 such that
{( L) < exLopz + calepz € R

By the convexity of { we have

1
{(@3() —w(1) < ¢ ( fo G(t, s)h(s)n(gs(s) — W(S))dS)

1
< fo LG, 9)h(s)n(ps(s) — w(s))] ds

! h
- f {[MLG,hn<so3(s)—w<s)>] ds
0

el )1}:;(;,,1) (320
< f T [Loan(ia(s) = wis)] ds
0 G,h
1
h
Sf M[é’z-ﬁc,h(%(s)—W(S))+C4-£G,h]d5
0 LG,h

1
< f G(t, )h(s)[ex(03(s) — w(s)) + c4]ds.
0
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Substituting this inequality into (3.18) we have

1 1
@3(1) < f G(t, s)h(s) f G(s, Dh(1)[ex(p3(T) — w(1)) + c4]drds
0 0 (3.21)

1 pl
<e f f G(t, s)h(s)G(s, T)h(T)(@3(T) — w(T))drds + c4/<§.
0o Jo

Consequently, we have

1 1
@3() —w(?) < f G(t, s)h(s) f G(s, Dh(T)[e2(p3(T) — w(1)) + c4]drds
0 0
1 pl (3.22)
<e f f G(t, s)h(s)G(s, T)h(T)(@3(T) — w(T))drds + c4/<%.
0o Jo

Multiply by #(#) on both sides of (3.22) and integrate over [0, 1] and use Lemma 2.2 to obtain

1 1
f (ip3(1) = w(D)H(D)dt < es5 f (ip3(5) = w(O)H(D)dt + cak3,
0 0

and we have

cak;
— K3

1
f(; (p3(1) — w(t))9(r)dr < -

Note that (3.16), w € Py, and
3

s = wll < ——2
p3-—wlils ——.
k(1 — ex3)
By the triangle inequality we have
C4K§
llosll = lls —w + wll < llgs — wil + [[w]] < — + Mia.
k(1 — exx;

On the other hand, from (3.20) we have
1
L(pa(1) —w()) < f G(1, )h(s)[ex(p3(s) — w(s)) + calds
0

1
< f H(5)lea(@3(s) — w(s)) + cslds
0

C4€2K5
5 + C4Kr
I —e5
3
Note that 161222,:(22 + ¢4k, is independent to R, and using (H6)(i) there exists Oy, > 0 such that
2
llgs — wil < Oy,
and then

651l = ll¢s — w + wil < s — wll + [IWll < Oy, + Mks.
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Therefore, when 3, ¢3 € dBg N P, we obtain there is a positive constant to control the norms of ¢3, ¢5.
Then if we choose

— cak;
Ry > {Oump, Oy, + My, M, ————~ + Mk, ¢,
k(1= €2K2)
then (3.14) holds, and from Lemma 2.6 we have
i(A, By, N P*,P*) = 1. (3.23)

From (3.13) and (3.23) we have
i(A, (B,%Z\EZMJQ) NP> P)=i(A By, NP P)—i(A,B; NP P)=1-0=1.

Then the operator A has at least one fixed point (denoted by (u™,v**)) on (Bfez \E?)M’h) N P? with
u” (1), v (t) = w(t), t € [0, 1]. Therefore, (u** — w, v*™ —w) is a positive solution for (2.2), and (1.1) has
at least one positive radial solution.

We now provide some examples to illustrate our main results. Leta = 8 =y = 6 = 1, and

k(|z]) = e¥, z € R". Then (H1) and (H2) hold. o
48
Example 3.1. Let p(¢) = %, (©) = ¢*, ¢, ¢ € R*. Then liminf,_, PLGID) _ [ip inf oo Lo? > oo,
p P(@) = ¢35,q(¢0) = ¢", 0, ¢ z . z .
and (H4)(i), (iii) hold. If we choose
1 —ﬁz
s = . - M, 5 M N 1 2
flp.¢) Bralsmal ¥ ¢ ge.¢) = ﬁzkz(lcos¢|+ 1)905 Bi.B>> 1,85 >
then (H3) holds, and when ¢, ¢ € [0, Oy ], we have
1-85
Ou. o) Ou
Filp.9) = flg. ) + M < 22 1= Q1. Talp.9) = g(p.9) + M < 20, = 2 = 0y,
Bikz Baka Baka
Hence, (H5) holds. Also we have
1 ﬁ3 goﬂ
K sin ¢ M K COos M
lim inf X _ liminf 2 z(l ) _ oo, liminf g(p, @) ~ liminf 2 eos 3T .
Pp—00 p(¢) ¢—>oo ¢§ @p—00 q(gp) <p—>oo (p

Then (H4)(ii) holds. As a result, all the conditions in Theorem 3.1 hold, and (1.1) has at least one
positive radial solution.

2 3

. L, 23
= limsup__,, ~#—=0 <

Example 3.2. Let £(¢) = ¢%,1(¢) = ¢3, ¢, ¢ € R*. Then limsup,_,_,
e, L.y, and (H7)(i), (iii) hold. If we choose

{Lom@)
Z

@, ) = 01 + (¢ +|cos )™ — M, g(g,$) = Q» + (Ising| + ) — M, ¢, ¢ € R,

where ay € (0,2),a, € (0, %) Then (H3) holds. Moreover, we have

Fi(p, 8) = f(@,¢) + M > Q1, Fa(p,9) = g(p, ) + M > O,
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and

0O -M a] -M : @
Jim sup O -M+ (¢2+ [coseD™ _ 6 tim sup 0 -M+( Sin ¢+ _
$—00 ¢ p—00 (,05
Therefore, (H6) and (H7) (ii) hold. As a result, all the conditions in Theorem 3.2 hold, and (1.1) has
at least one positive radial solution.

0.

Remark 3.2. Note that condition (HZ), is often used to study various kinds of semipositone boundary
value problems (for example, see [19, 22,23, 26, 28-30]). However, in Example 3.1 we have

1
ot — M
liminf f(‘,O, ¢) — liminf Bika(|singl+1) 1

= , Yo e R*.
p—+00 © $—+00 1) 2ﬁ1K2 ¢

Comparing with (HZ), we see that our theory gives new results for boundary value problem with
semipositone nonlinearities.
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