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1. Introduction

As one of the generalizations of metric space, by introducing the conception of metric-like space
in 2000, Hitzler [1] gives a valuable contribution to fixed point theory, permitting self-distance to
be nonzero, as that can not be possible in metric space. During his studies at the time, he explored
the metric-like space under the name “dislocated metric space.” Amini-Harandi [2] was the one who
renamed the dislocated metric space as metric-like space. Several researchers developed the concept
of metric space in many types see [3–7].

In 2017, Gordji et al. [8] introduced the concept of an orthogonality and presented several
fixed-point theorems in an orthogonal metric space. Furthermore, Gordji and Habibi extended more

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023050


1023

results in generalized orthogonal metric space and ε-connected orthogonal metric space; see [9, 10].
Hamid Baghain et al. [11] proved fixed-point theorem in orthogonal space via orthogonal
F-contraction. In 2018, Senapati [12] initiated the concept of w-distance and proved fixed point
results in orthogonal metric space. In 2018, Yamaod et al. [13] came up with the concept of
s-orthogonal contraction in b-metric space. In 2019, Gungor et al. [14] changed the distance functions
to show more results in orthogonal metric space. Sawangsup and Sintunavarat extended this to an
orthogonal concept in O-complete metric space, see [15, 16]. The notion of multivalued orthogonal
(τ, FT )-contraction in O-complete orthogonal metric space was introduced by Sumit Chandok
et al. [17]. Also, Ismat Beg et al. [18] extended the notion of a generalized orthogonal F-Suzuki
contraction mapping in O-complete b-metric space. The notion of F-contraction introduced by
Wardowski [19] who has proved a fixed point theorem in generalized Banach contraction principle.

This article, introduces some new concepts of an O-generalized F-contraction and proves fixed
point theorems such as new F-contractions in b-metric-like space. Our results primarily generalize
and improve the related results in the literature. Moreover, an example and application to the integral
equation are given to exhibit the utility of the obtained results.

Definition 1.1. [19] Let (H , ℘) be a metric space . A self mappingP onH is said to be a F-contraction
if % > 0 exists such that

℘(P~,Pγ) > 0 =⇒ % + F(℘(P~,Pγ)) ≤ F(℘(~, γ)), for all ~, γ ∈ H , (1.1)

where F : [0,∞)→ R is a map which holds the following axioms:

(F1) F is strictly increasing; that is, for all ξ, η ∈ [0,∞) such that ξ < η, F(ξ) < F(η);

(F2) for every sequence {ξn} of non-negative numbers,

lim
n→∞

ξn = 0 ⇐⇒ lim
n→∞
F(ξn) = −∞;

(F3) there exists s ∈ [0, 1] such that lim
ξ→0+

ξsF(ξ) = 0.

Let us remember from [2], some facts and definitions about b-metric-like space.

Definition 1.2. [2] A nonempty set H and a function ℘ : H × H → [0,∞) satisfies the following
conditions holds for all h, k, l ∈ H and a constant s > 1:

(℘1) If ℘(h, k) = 0 then h = k;

(℘2) ℘(h, k) = ℘(k, h);

(℘3) ℘(h, l) ≤ s(℘(h, k) + ℘(k, l)).

The pair of (H , ℘) is called a b-metric-like space.

Example 1.3. [7] LetH = R. Define a mapping ℘ : R × R→ [0,∞) by

℘(h, k) = (h + k)2

for all h, k ∈ R. Then (R, ℘) is a b-metric-like space with the coefficient s = 2.
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Definition 1.4. [2] Each b-metric-like ℘ on H generalizes a topology %℘ on H whose base is the
family of open ℘-balls B℘(h, δ) = {k ∈ H : |℘(h, k) − ℘(h, h)| < δ} for all h ∈ H and δ > 0.

Definition 1.5. [2] Suppose that (H , ℘) be a b-metric-like space. A map P : H → H is called
continuous at h ∈ H , if for every ε > 0 ∃ δ > 0 such that P(B℘(h, δ)) ⊆ B℘(Ph, ε). We say that P is
continuous onH if P is continuous at all h ∈ H .

Definition 1.6. [7] Let (H , ℘) be a b-metric-like space, {ξn} be a sequence in H and ξ ∈ H . Then a
sequence {ξn} ⊂ H is said to be converge to a point ξ ∈ H if, for every ε > 0 there exists n0 ∈ N such
that ℘(ξn, ξ) < ε for all n > n0. The convergence is also represented as

lim
n→∞

ξn = ξ or ξn → ξ, as n→ ∞.

2. Orthogonal metric spaces

The concept of an orthogonality was introduced by Gordji, Ramezani, De La Sen and Cho [8] as
follows:

Definition 2.1. [8] Let H , φ and ⊥⊆ H × H be a binary relation. If ⊥ satisfies the following
condition:

∃ h0 ∈ H : (∀ h ∈ H , h ⊥ h0) or (∀ h ∈ H , h0 ⊥ h),

then (H ,⊥) is called an O-set.

Example 2.2. [8] Let us make a famous fractal called the Sierpinski Triangle.
Sierpinski’s triangle starts as a shaded triangle of equal lengths in page R × R with vertices (-1, 0),

(1, 0) and (0,
√

3). We split the triangle into four same triangles by connecting the centers of each side
together and remove this central triangle. We then repeat this process on the 3 newly created smaller
triangles. This process is repeated several times on each newly created smaller triangle to arrive at the
displayed picture. A Sierpinski’s triangle is created by infinitely repeating this construction process.

LetH be the set of all (infinite) removed triangles. Define the binary relation ⊥ onH by a ⊥ b, for
all a, b ∈ H if there exists a ∈ H , {k : (h, k) ∈ a for some h ∈ R} give to {k : (h, k) ∈ b for some h ∈ R}.
According to Figure 1 if {k0 : (h0, k0) ∈ a0 for some h0 ∈ R}, then a0 ⊥ b for all b ∈ H . Proceeding this
way, we get

inf{k : (h, k) ∈ a f or some h ∈ R} ≤ inf{k : (h, k) ∈ b f or some h ∈ R}.

Then (H ,⊥) is an O-set.

Example 2.3. [8] Let (H , ℘) be a metric space and P : H → H be a Picard operator, that is,H has a
unique fixed point h∗ ∈ H and lim

n→∞
Pn(k) = h∗ for all k ∈ H . We define the binary relation ⊥ on H by

h ⊥ k if

lim
n→∞

℘(h,Pn(k)) = 0.

Then (H ,⊥) is an O-set.
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Figure 1. Sierpinski triangle.

Definition 2.4. [8] Let (H ,⊥) be an O-set. A sequence {hn}n∈N is called an orthogonal sequence
(shortly, O-sequence) if

(∀ n ∈ H , hn ⊥ hn+1) or (∀ n ∈ H , hn+1 ⊥ hn).

Example 2.5. LetH = R and suppose that h ⊥ k if

h, k ∈

(
n +

1
5
, n +

2
5

)
,

for some n ∈ Z or h = 0.
It is easy to see that (H ,⊥) is an O-set. Define P : H → H by P(h) = [h]. Then P is ⊥ continuous

on H . Because if {hn} is an arbitrary O-sequence in H such that {hn} converges to h ∈ H , then the
below cases hold:

Case 1: If hk = 0 for all k, then h = 0 and P(hk) = 0 = P(h).
Case 2: If hk0 , 0 for some k0, then there exists m ∈ Z such that hk ∈ (m + 1

5 ,m + 2
5 ) for all k ≥ k0.

Thus h ∈ [m + 1
5 ,m + 2

5 ] and P(hk) = m = P(h).
This means that P is ⊥-continuous onH while it is not continuous onH .

Definition 2.6. [8] Let (H ,⊥, ℘) be an orthogonal set with the metric ℘. Then H is called an
orthogonal complete (shortly, O-complete) if every Cauchy O-sequence is convergent.

Example 2.7. LetH = [0, 1) and suppose that

h ⊥ k ⇐⇒

h ≤ k ≤ 1
5 ,

or h = 0.

Then (H ,⊥) is an O-set. Clearly, H with the Euclidian metric is not complete metric space, but it
is O-complete. In fact, if {xk} is an arbitrary Cauchy O-sequence inH , then there exists a subsequence
{hkn} of {hk} for which {hkn} = 0 for all n ≥ 1 or there exists a monotone subsequence {hkn} of {hk} for
which {hkn} ≤

1
5 for all n ≥ 1. It follows that {hkn} converges to a point h ∈ [0, 1

5 ] ⊂ H .
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Definition 2.8. [8] Let (H ,⊥ ℘) be an orthogonal metric space and 0 < λ < 1. A mapping P : H →
H is called an orthogonal contraction (shortly O-contraction) with Lipschitz constant λ if, ∀ h, k ∈ H
with h ⊥ k,

℘(Ph,Pk) ≤ λ℘(h, k).

It is verify that every contraction is O-contraction, but the converse is not true. See the following
example:

Example 2.9. [8] LetH = [0, 1) and let the metric H onH be the euclidian metric. Define h ⊥ k if
h, k ∈ {h, k}, for all h, k ∈ H . Let P : H → H be a mapping defined by

P(h) =


h

2
, h ∈ H ∩H ,

0, h ∈ Hc ∩H .

Then, it is easy to show that P is an O-contraction onH , but it is not a contraction.

Definition 2.10. [8] Let (H ,⊥) be an orthogonal metric space. A map P : H → H is said to be
⊥-preserving if Ph ⊥ Pk whenever h ⊥ k.

3. Main results

In this section, we present an O-generalized F-contraction of type-(1) and type-(2) and prove fixed
point theorem for an O-generalized F-contraction of type-(1) and type-(2) maps in an O-b-metric-like
space.

Definition 3.1. Let (H ,⊥, ℘) be an O-b-metric-like space. A mapping P : H → H is called an
O-generalized F-contraction of type-(1) if ∃ % > 0 and F ∈ Λ(be a family of function) such that

∀ h, k ∈ H with h ⊥ k ℘(Ph,Pk) > 0[
1
2s
℘(h,Ph) < ℘(h, k) =⇒ % + F(℘(Ph,Pk)) ≤ tF(℘(Ph,Pk)) + aF(℘(h,Ph))

+ cF(℘(k,Pk)) +mF
(℘(h,Pk))

2s
+ =F

(℘(k,Ph))
2s

]
, (3.1)

where t, a, c,m,= ∈ [0, 1] such that t + a + c +m + = = 1 and 1 −m − c > 0.

Definition 3.2. Let (H ,⊥, ℘) be an O-b-metric-like space. A self-mapping P : H → H is called an
O-generalized F-contraction of type-(2) if ∃ % > 0 and F ∈ Λ such that

∀ h, k ∈ H with h ⊥ k ℘(Ph,Pk) > 0 =⇒[
% + F(℘(Ph,Pk)) ≤ tF(℘(h, k)) + aF(℘(h,Ph)) + cF(℘(k,Pk))

+mF(
℘(h,Pk)

2s
) + =F(

℘(k,Ph)
2s

)
]
, (3.2)

where n ∈ [0, 1) and t, a,m,= ∈ [0, 1], such that t + a + c +m + = = 1, 1 − c −m > 0.
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Theorem 3.3. Let (H ,⊥, ℘) be an O-complete b-metric-like space with an orthogonal element h0 and
a map P : H → H satisfying the following conditions:

(i) P is ⊥ preserving,

(ii) P is an O-generalized F-contraction of type-(1).

Then, P has a unique fixed point .

Proof. Since (H ,⊥) is an O-set,

∃ h0 ∈ H : (∀ h ∈ H , h ⊥ h0) or (∀ h ∈ H , h0 ⊥ h).

It follows that h0 ⊥ Ph0 or Ph0 ⊥ h0. Let

h1 := Ph0, h2 := Ph1 = P2
h0......, hn+1 := Phn = Pn+1

h0, (3.3)

for all n ∈ N ∪ {0}. If there exists n0 ∈ N such that ℘(hn0 , hn0+1) = 0, then h = hn0 is the desired
fixed point of H which completes the proof. Consequently, we suppose that 0 < ℘(hn, hn+1) for all
n ∈ N ∪ {0}. SinceH is ⊥-preserving, we have

hn ⊥ hn+1 or hn+1 ⊥ hn. (3.4)

This implies that {hn} is an O-sequence. We have

1
2s
℘(hn,Phn) < ℘(hn,Phn), ∀ n ∈ N. (3.5)

By (3.1), we get

% + F(℘(Phn,P2
hn)) ≤ tF(℘(hn,Phn)) + aF(℘(hn,Phn)) + cF(℘(Phn,P2

hn))

+mF
(℘(hn,P2hn))

2s
+ =F

(℘(Phn,Phn))
2s

, ∀ n ∈ N. (3.6)

Now, we prove that

℘(hn+1,Phn+1) < ℘(hn,Phn), ∀ n ∈ N. (3.7)

Suppose, on the contrary, that there exists n0 ∈ N such that ℘(hn0+1,Phn0+1) ≥ ℘(hn0 ,Phn0), due to
(3.6), we have

% + F(℘(Phn0 ,P
2
hn0)) ≤ tF(℘(hn0 ,Phn0)) + aF(℘(hn ,Phn0)) + cF(℘(Phn0 ,P

2
hn0))

+mF
(℘(hn0 ,P

2hn0))
2s

+ =F
(℘(Phn0 ,Phn0))

2s
≤ tF(℘(hn0 ,Phn0)) + aF(℘(hn ,Phn0)) + cF(℘(Phn0 ,P

2
hn0))

+mF
(s℘(hn0 ,Phn0) + (s℘(Phn0 ,P

2hn0)
2s

+ =F
2s(℘(Phn0 , hn0))

2s
≤ tF(℘(hn0 ,Phn0)) + aF(℘(hn ,Phn0)) + cF(℘(Phn0 ,P

2
hn0))

+mF℘(Phn0 ,P
2
hn0) + =F(℘(Phn0 , hn0)),
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which yields

% + (1 − c −m)F(℘(Phn0 ,P
2
hn0)) ≤ (t + a + =)F(℘(Phn0 , hn0))

=⇒ F(℘(Phn0 ,P
2
hn0)) ≤ F(℘(Phn0 , hn0)) −

%

(1 − c −m)
,

which together with (F1) implies ℘(Phn0 ,P
2hn0) < ℘(Phn0 , hn0) , that is,

℘(hn0+1,Phn0+1) < ℘(Phn0 , hn0). It is a contradiction to ℘(hn0+1,Phn0+1) ≥ ℘(hn0 ,Phn0), so (3.7) holds.
Therefore, {℘(hn,Phn)} is a decreasing sequence of real numbers which is boundary below. Suppose

that ∃ A > 0 such that

lim
n→∞+

℘(hn,Phn) = A = in f {℘(hn,Phn) : n ∈ N}.

Now, we prove A = 0. Suppose, conversely A > 0. For every ε > 0, there exists ψ ∈ N such that

℘(hψ,Phψ) = A + ε.

By (F1), we get

F(℘(hψ,Phψ)) = F(A + ε). (3.8)

From (3.5), we get

1
2s
℘(hψ,Phψ) < ℘(hψ,Phψ).

Since P is an O-generalized F-contraction of type-(1), we get

% + F(℘(Phψ,P2
hψ)) ≤ tF(℘(hψ,Phψ)) + aF(℘(hψ,Phψ)) + cF(℘(Phψ,P2

hψ))

+mF
(℘(hψ,P2hψ))

2s
+ =F

(℘(Phψ,Phψ))
2s

≤ tF(℘(hψ,Phψ)) + aF(℘(hψ,Phψ)) + cF(℘(Phψ,P2
hψ))

+mF
(s℘(hψ,Phψ)) + (s℘(Phψ,P2hψ))

2s
+ =F

2s(℘(Phψ, hψ))
2s

≤ tF(℘(hψ,Phψ)) + aF(℘(hψ,Phψ)) + cF(℘(Phψ,P2
hψ))

+mF℘(hψ,Phψ) + =F(℘(Phψ, hψ)),

which implies

(1 − c)F(℘(Phψ,P2
hψ)) ≤ (t + a +m + =)F℘(hψ,Phψ) − %. (3.9)

Taking

c + t + a +m + = = 1 =⇒ F(℘(Phψ,P2
hψ)) ≤ F(℘(hψ,Phψ)) −

%

(1 − c)
.

Since

1
2s
F(℘(Phψ,P2

hψ)) ≤ F℘(hψ,Phψ),
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from (3.1), we have

% + F(℘(P2
hψ,P

3
hψ)) ≤ tF(℘(Phψ,P2

hψ)) + aF(℘(Phψ,P2
hψ)) + cF(℘(P2

hψ,P
3
hψ))

+mF
(℘(Phψ,P3hψ))

2s
+ =F

(℘(P2hψ,P
2hψ))

2s
≤ tF(℘(Phψ,P2

hψ)) + aF(℘(Phψ,P2
hψ)) + cF(℘(P2

hψ,P
3
hψ))

+mF
(s℘(Phψ,P2hψ) + (s℘(P2hψ,P

3hψ)
2s

+ =F
2s(℘(P2hψ,Phψ))

2s
≤ tF(℘(Phψ,P2

hψ)) + aF(℘(Phψ,P2
hψ)) + cF(℘(P2

hψ,P
3
hψ))

+mF℘(Phψ,P2
hψ) + =F(℘(P2

hψ,Phψ)).

This yields

F(℘(P2
hψ,P

3
hψ)) ≤ F℘(Phψ,P2

hψ) −
%

(1 − c)
.

Continuing the above process and (3.8), we get

F(℘(Pnhψ,P
n+1hψ)) ≤ F℘(Pn−1hψ,P

nhψ) −
%

(1 − c)

≤ F℘(Pn−2hψ,P
n−1hψ) −

2%
(1 − c)

.

.

.

.

≤ F℘(hψ,Phψ) −
n%

(1 − c)
,

F(℘(Pn
hψ,P

n+1
hψ)) < F(A + ε) −

n%
(1 − c)

. (3.10)

Letting n → +∞ in (3.10), we get lim
n→+∞

F(℘(Pnhψ,P
n+1hψ)) = −∞, which together with (F2)

implies lim
n→+∞

℘(Pnhψ,P
n+1hψ) = 0. So, ∃ N1 ∈ N such that ℘(Pnhψ,P

n+1hψ) < A, ∀ n > N1, that is,
℘(hψ+n, hψ+n) < A, ∀ n > N1, which is a contradiction of A, therefore,

lim
n→+∞

℘(hn,Phn) = 0. (3.11)

Now, we prove that

lim
n,ψ→+∞

℘(hn, hψ) = 0. (3.12)

Suppose, conversely, ∃ ε > 0 and {p(n)} and {q(n)} of natural numbers such that

p(n) > q(n) > n, ℘(hp(n), hq(n)) ≥ ε and ℘(hp(n)−1, hq(n)) < ε, ∀ n ∈ N. (3.13)
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Applying the triangle inequality, we get

℘(hp(n), hq(n)) ≤ s℘(hp(n), hp(n)−1) + s℘(hp(n)−1, hq(n))
< s℘(hp(n), hp(n)−1) + sε

= s℘(Php(n)−1, hp(n)−1) + sε,

which implies that

℘(hp(n), hq(n)) < s℘(Php(n)−1, hp(n)−1) + sε, ∀ n ∈ N. (3.14)

Owing to (3.11), there exists N2 ∈ N such that

℘(Php(n)−1, hp(n)−1) < ε, ℘(Php(n), hp(n)) < ε, ℘(Phq(n), hq(n)) < ε, ∀n > N2, (3.15)

which together with (3.14) shows

℘(hp(n), hq(n)) < 2sε, ∀n > N2, (3.16)

hence

F℘(hp(n), hq(n)) < F(2sε), ∀n > N2. (3.17)

From (3.13) and (3.15), we get

1
2s
℘(hp(n),Php(n)) <

ε

2s
< ℘(hp(n), hq(n)), ∀n > N2. (3.18)

Using the triangle inequality, we have

ε ≤ ℘(hp(n), hp(n)) ≤ s℘(hp(n), hp(n)+1) + s2℘(hp(n)+1, hq(n)+1)
+ s2℘(hq(n)+1, hq(n)). (3.19)

Letting n → +∞ in (3.23), by (3.11), we obtain
ε

s2
≤ lim

n→+∞
inf ℘(hp(n)+1, hq(n)+1), hence, there exists

N3 ∈ N, such that ℘(hp(n)+1, hq(n)+1) > 0 for n > N3 that is, ℘(hp(n), hq(n)) > 0 for n > N3. By (1.1) and
(3.17), we have

% + F(℘(Php(n),Phq(n))) ≤ tF(℘(hp(n), hq(n)) + aF℘(hp(n),Php(n)) + cF(℘(hq(n),Phq(n)))

+mF
(hp(n),Phq(n))

2s
) + =F

(hq(n),Php(n))
2s

≤ tF(℘(hp(n), hq(n))) + aF℘(hp(n),Php(n)) + cF(℘(hq(n),Phq(n)))

+mF
(℘(hp(n), hq(n))) + (℘(hq(n),Phq(n)))

2

+ =F
(℘(hq(n), hp(n))) + (℘(hp(n),Php(n)))

2
, (3.20)

for n > max{N2,N3}.

Taking (3.15)–(3.17) into account, (3.20) yields
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% + F(℘(Php(n),Phq(n))) < tF(2sε) + aF℘(hp(n),Php(n)) + cF(℘(hq(n),Phq(n))

+mF(
2sε + ε

2
) + =F(

2sε + ε

2
), (3.21)

for n > max{N2,N3}.

Letting n→ +∞ in (3.21), we obtain

lim
n,→+∞

F(℘(Php(n),Phq(n))) = −∞,

which yields lim
n,→+∞

F(℘(Php(n),Phq(n)) = 0, which together with

℘(hp(n), hq(n)) ≤ s℘(hp(n), hp(n)+1) + s2℘(hp(n)+1, hq(n)+1) + s2℘(hq(n)+1, hq(n)),

shows lim
n,→+∞

℘(hp(n), hq(n)) = 0,which is contradiction to (3.13), so (3.5) holds, therefore {hn} is a Cauchy

O-sequence inH . Since (H , ℘) is an O-complete, there exists γ ∈ H such that

℘(γ, γ) = lim
n→+∞

℘(hn, γ) = lim
n,ψ→+∞

℘(hn, hψ) = 0. (3.22)

It is easy to prove the fact satisfies,

℘(hn,Phn)
2s

< ℘(hn, γ) or
℘(Phn,P2hn)

2s
< ℘(Phn, γ). (3.23)

Suppose, conversely that there exists ψ0 ∈ N such that

℘(hψ0 ,Phψ0)
2s

≥ ℘(hψ0 , γ) and
℘(Phψ0 ,P

2hψ0)
2s

≥ ℘(Phψ0 , γ). (3.24)

By (3.7) and (3.24), we get

℘(hψ0 ,Phψ0)
2s

≤ s℘(hψ0 , γ) + s℘(γ,Phψ0)

≤
℘(hψ0 ,Phψ0)

2
+
℘(Phψ0 ,P

2hψ0)
2

<
℘(hψ0 ,Phψ0)

2
+
℘(Phψ0 ,P

2hψ0)
2

= ℘(hψ0 ,Phψ0).

This is a contradiction. Hence (3.23) holds and there exists γ ∈ H such that

% + F(℘(Phn,Pγ)) ≤ tF(℘(hn, γ)) + aF(℘(hn,Phn)) + cF(℘(γ,Pγ))

+mF(
℘(hn,Pγ)

2s
) + =F(

℘(γ,Phn)
2s

), (3.25)

or

% + F(℘(P2
hn,Pγ)) ≤ tF(℘(Phn, γ)) + aF(℘(Phn,P2

hn)) + cF(℘(γ,Pγ)

+mF(
℘(Phn,Pγ)

2s
) + =F(

℘(γ,P2hn)
2s

). (3.26)
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Now, we discuss the below cases.
Case 1: Suppose that (3.25) holds. From (3.25), we have

% + F(℘(Phn,Pγ)) ≤ tF(℘(hn, γ)) + aF(℘(hn,Phn)) + cF(℘(γ,Pγ)

+mF(
℘(hn, γ) + ℘(γ,Pγ)

2
) + =F(

℘(γ, hn) + ℘(hn,Phn)
2

). (3.27)

Owing to (3.11) and (3.22), for some ε0 > 0, there exists N4 ∈ N such that

℘(γ, hn) < ε0 and ℘(hn,Phn) < ε0, (3.28)

for N > N4.

With the help of (3.27) and (3.28), we get

% + F(℘(Phn,Pγ)) ≤ tF(℘(hn, γ)) + aF(℘(hn,Phn)) + cF(℘(γ,Pγ))

+mF(
ε0 + ℘(γ,Pγ)

2
) + =F(ε0),

for N > N4. Taking n→ +∞ in the above equation, we have lim
n→+∞

F(℘(Phn,Pγ)) = −∞ which yields

lim
n→+∞

℘(Phn,Pγ) = 0. (3.29)

On the other hand, we have

℘(γ,Pγ) ≤ s℘(γ,Phn) + s℘(Phn,Pγ) = s℘(γ, hn+1) + s℘(Phn,Pγ).

By letting n → +∞ in the above inequality, by (3.22) and (3.29), we get ℘(γ,Pγ) = 0, it means
γ = Pγ. Thus γ is a fixed point of P.

Case 2: Let (3.26) hold. From (3.26), we have

F(℘(P2
hn,Pγ)) < % + F(℘(P2

hn,Pγ))
≤ tF(℘(Phn, γ)) + aF(℘(Phn,P2

hn)) + cF(℘(γ,Pγ))

+mF(
℘(Phn,Pγ)

2s
) + =F(

℘(γ,P2hn)
2s

)

≤ tF(℘(hn, γ)) + aF(℘(hn,Phn)) + cF(℘(γ,Pγ))

+mF(
℘(Phn, γ) + ℘(γ,Pγ)

2
) + =F(

℘(γ,Phn) + ℘(Phn,P2hn)
2

)

= tF(℘(hn+1, γ)) + aF(℘(hn+1,Phn+1)) + cF(℘(γ,Pγ)

+mF
(℘(hn+1, γ) + ℘(γ,Pγ)

2

)
+ =F

(℘(γ, hn+1) + ℘(hn+1,Phn+1)
2

)
. (3.30)

From (3.28) and (3.30) yield

F(℘(P2
hn,Pγ)) < tF(℘(hn+1, γ)) + aF(℘(hn+1,Phn+1)) + cF(℘(γ,Pγ))

+mF(
ε0 + ℘(γ,Pγ)

2
) + =F(ε0),

for N > N4.
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Taking n→ +∞ in the above equation, we get lim
n,→+∞

F(℘(P2hn,Pγ)) = −∞ which yields

lim
n,→+∞

(℘(P2
hn,Pγ)) = 0. (3.31)

On the other way, we have

℘(γ,Pγ) ≤ s℘(γ,P2
hn) + s℘(P2

hn,Pγ) = s℘(γ, hn+2) + s℘(P2
hn,Pγ).

By letting n → +∞ in the above inequality, by (3.22) and (3.31), we get ℘(γ,Pγ) = 0, it means
γ = Pγ. Thus γ is the fixed point of P and the proof is over.

Let P have two fixed points are h, k ∈ H and suppose that Pnh = h , k = Pnk, ∀ n ∈ N. By choice
of h0 we obtain

(h0 ⊥ h and h0 ⊥ k) or (k ⊥ h0 and h ⊥ h0).

SinceH is ⊥- preserving, we have

(Pn
h0 ⊥ P

n
h and Pn

h0 ⊥ P
n
k) or (Pn

k ⊥ Pn
h0 and Pn

h ⊥ Pn
h0), ∀ n ∈ N.

Now

℘(h, k) = ℘(Pn
h,Pn
k) ≤ ℘(Pn

h,Pn
h0) + ℘(Pn

h0,P
n
k).

As n→ ∞, we obtain ℘(h, k) ≤ 0. Thus h = k. Hence P has a unique fixed point. �

Theorem 3.4. Let (H , ℘) be an O-complete b-metric-like space and a map P : H → H satisfying the
following conditions:

(i) P is ⊥ preserving,

(ii) P is an O-generalized F-contraction of type-(2),

(iii) if ℘(Ph,Ph) ≤ ℘(h, h).

Then P has a unique fixed point.

Proof. As in the proof of Theorem 3.3, choosing h0 ∈ H , we construct sequence {hn} by hn = Phn =

Pnh0 and we can suppose

0 < ℘(hn,Phn) = ℘(Phn−1,Phn), ∀ n ∈ N. (3.32)

From (3.31) and (3.2), we have

% + F(℘(Phn−1,Phn)) ≤ tF(℘(hn−1, hn)) + aF(℘(hn−1,Phn−1)) + cF(℘(hn,Phn))

+mF(
℘(hn−1,Phn)

2s
) + =F(

℘(hn,Phn−1)
2s

). (3.33)

We claim

℘(hn,Phn) < ℘(hn−1,Phn−1), ∀ n ∈ N+. (3.34)
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Suppose, conversely that ∃ n0 ∈ N such that ℘(hn0 ,Phn0) ≥ ℘(hn0−1,Phn0−1), which together with
(3.32) yields

% + F(℘(hn0 ,Phn0)) = % + F(℘(Phn0−1,Phn0))
≤ tF(℘(hn0−1, hn0)) + aF(℘(hn0−1,Phn0−1)) + cF(℘(hn0 ,Phn0))

+mF(
℘(hn0−1,Phn0)

2s
+ =F(

℘(hn0 ,Phn0−1)
2s

)

≤ tF(℘(hn0−1, hn0)) + aF(℘(hn0−1,Phn0−1)) + cF(℘(hn0 ,Phn0))

+mF(
s℘(hn0−1, hn0) + s℘(hn0 ,Phn0)

2s

+ =F(
s℘(hn0 , hn0−1) + s℘(hn0−1,Phn0−1)

2s
)

= tF(℘(hn0−1,Phn0−1)) + aF(℘(hn0−1,Phn0−1)) + cF(℘(hn0 ,Phn0))

+mF
(s℘(hn0−1,Phn0−1) + s℘(hn0 ,Phn0)

2s

+ =F(
s℘(Phn0−1, hn0−1) + s℘(hn0−1,Phn0−1)

2s
)

≤ tF(℘(hn0−1,Phn0−1)) + aF(℘(hn0−1,Phn0−1)) + cF(℘(hn0 ,Phn0))
+mF(℘(hn0 ,Phn0)) + =F(℘(hn0−1,Phn0−1)). (3.35)

By (3.35) which implies that

% + (1 − c −m)F(℘(hn0 ,Phn0)) ≤ (t + a + =)F(℘(hn0−1,Phn0−1)),

which shows

F(℘(hn0 ,Phn0)) ≤ F(℘(hn0−1,Phn0−1)) −
%

(1 − c −m)
. (3.36)

Applying (3.36) and F(1), we have ℘(hn0 ,Phn0) < ℘(hn0−1,Phn0−1), this is a contradiction. Hence,
(3.34) holds.

Applying(3.2) and (3.34), we obtain

% + F(℘(hn,Phn)) = % + F(℘(Phn−1,Phn))
≤ tF(℘(hn−1, hn)) + aF(℘(hn−1,Phn−1)) + cF(℘(hn,Phn))

+mF(
℘(hn−1,Phn)

2s
) + =F(

℘(hn,Phn−1)
2s

)

≤ tF(℘(hn−1, hn)) + aF(℘(hn−1,Phn−1)) + cF(℘(hn,Phn))
+mF(℘(hn−1, hn)) + =F(℘(hn, hn−1))

= tF(℘(hn−1,Phn−1)) + aF(℘(hn−1,Phn−1)) + cF(℘(hn,Phn))
+mF(℘(hn−1,Phn−1)) + =F(℘(Phn−1, hn−1)),

which yields

F(℘(hn,Phn)) ≤ F(℘(hn−1,Phn−1)) −
%

(1 − c)
.
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Continuing this process, we get

F(℘(hn,Phn)) ≤ F(℘(h0,Ph0)) −
n %

(1 − c)
. (3.37)

Letting n→ +∞, (3.37) shows lim
n→+∞

F(℘(hn,Phn)) = −∞, hence

lim
n→+∞

(℘(hn,Phn)) = 0. (3.38)

Now, we prove

lim
n,ψ→+∞

(℘(hn, hψ)) = 0. (3.39)

Suppose, conversely, ∃ ε > 0 and sequences {p(n)} and {q(n)} of natural numbers such that

p(n) > q(n) > n, ℘(hp(n), hq(n)) ≥ ε and ℘(hp(n)−1, hq(n)) < ε, ∀ n ∈ N. (3.40)

Applying the triangle inequality, we get

℘(hp(n)−1, hq(n)−1) ≤ s℘(hp(n)−1, hq(n)) + s℘(hq(n), hq(n)−1)
< s℘(hq(n), hq(n)−1) + sε

= s℘(Phq(n)−1, hq(n)−1) + sε,

which implies that

℘(hp(n)−1, hq(n)−1) < s℘(Phq(n)−1, hq(n)−1) + sε, ∀ n > N. (3.41)

Owing to (3.38), there exists N1 ∈ N such that

℘(hp(n)−1,Php(n)−1) < ε, ℘(hq(n)−1,Phq(n)−1) < ε, ∀ n > N1, (3.42)

which together with (3.41) shows

℘(hp(n)−1, hq(n)−1) < 2sε, ∀ n > N1, (3.43)

hence

F(℘(hp(n)−1, hq(n)−1)) < F(2sε), ∀ n > N1. (3.44)

From (3.40), we get

ε ≤ ℘(hp(n), hq(n)) = ℘(Php(n)−1,Phq(n)−1), ∀ n > N1,

which together with (3.2) yields

% + F(℘(Php(n)−1,Phq(n)−1)) ≤ tF(℘(hp(n)−1, hq(n)−1)) + aF(℘(hp(n)−1,Php(n)−1))

+ cF(℘(hq(n)−1,Phq(n)−1)) +mF(
(hp(n)−1,Phq(n)−1)

2s
)

+ =F(
(hq(n)−1,Php(n)−1)

2s
)
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≤ tF(℘(hp(n)−1, hq(n)−1)) + aF(℘(hp(n)−1,Php(n)−1))
+ cF(℘(hq(n)−1,Phq(n)−1))

+mF
(℘(hp(n)−1, hq(n)−1) + ℘(hq(n)−1,Phq(n)−1)

2

)
+ =F

( (℘(hq(n)−1, hp(n)−1) + ℘(hp(n)−1,Php(n)−1))
2

)
, (3.45)

for all n > N1.

Taking (3.42)–(3.44) into account, (3.45) yields

% + F(℘(Php(n)−1,Phq(n)−1)) < tF(2sε) + aF℘(hp(n)−1,Php(n)−1)
+ cF℘(hq(n)−1,Phq(n)−1)

+mF(
2sε + ε

2
) + =F(

2sε + ε

2
). (3.46)

Taking n→ +∞ in (3.46) , we get

lim
n→+∞

F(℘(Php(n)−1,Phq(n)−1)) = −∞,

which yields lim
n→+∞

(℘(Php(n)−1,Phq(n)−1)) = 0, by F(2), that is, lim
n→+∞

℘(hp(n), hq(n)) = 0, which is

contradiction to (3.40), so (3.39) holds, therefore, {hn} is a Cauchy O-sequence in H . Since (H , ℘) is
an O-complete, there exists γ ∈ H such that

℘(γ, γ) = lim
n→+∞

℘(hn, γ) = lim
n,ψ→+∞

℘(hn, hψ) = 0. (3.47)

Since P is O-continuous, we have

℘(Pγ,Pγ) = lim
n→+∞

℘(Phn,Pγ) = lim
n→+∞

℘(hn+1,Pγ). (3.48)

Due to ℘(Pγ,Pγ) ≤ ℘(γ, γ), from (3.47) and (3.48), we have

lim
n→+∞

℘(hn,Pγ) = 0. (3.49)

Since ℘(γ,Pγ) ≤ ℘(γ, hn) + ℘(hn,Pγ), by (3.49), we get ℘(γ,Pγ) = 0, which gives γ = Pγ,
therefore, P has a fixed point.

Let h, k ∈ H be two fixed point of P and suppose that Pnh = h , k = Pnk, ∀n ∈ N. By choice of
h0 ∈ H we obtain

(h0 ⊥ h and h0 ⊥ k) or (k ⊥ h0 and h ⊥ h0).

SinceH is ⊥- preserving, we have

(Pn
h0 ⊥ P

n
h and Pn

h ⊥ Pn
k) or (Pn

k ⊥ Pn
h and Pn

h ⊥ Pn
h), ∀ n ∈ N.

Now

℘(h, k) = ℘(Pn
h,Pn
k) ≤ ℘(Pn

h,Pn
h) + ℘(Pn

h,Pn
k).

As n→ ∞, we get ℘(h, k) ≤ 0. Thus h = k. Hence, P has a unique fixed point. �
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4. Application to an integral equation

Let H = [0, D]. Let Q = C(H ,R) be the real valued continuous functions with H . Consider the
following equation

ζ(Q) =

∫ D

0
i(Q, β)Ω(β, ζ(β))dβ, Q ∈ [0, D], (4.1)

where

(a) Ω : H × R→ R is continuous;

(b) i : H ×H is continuous and measurable at β ∈ H , ∀ Q ∈ H ;

(c) i(Q, β) ≥ 0, ∀ Q, β ∈ H and
∫ D

0
i(Q, β)dβ ≤ 1, ∀ Q ∈ H .

Theorem 4.1. Assume that the conditions (a) − (c) hold. Suppose that there exists ι > 0 such that

Ω(v, ζ(Q)) + Ω(v, ξ(Q)) ≤ e−ι(ζ(Q) + ξ(Q)),

for every Q ∈ H and ∀ ζ, ξ ∈ C(H ,R). Then (4.1) has a unique solution in C(H ,R).

Proof. Let Q = {w ∈ C(H ,R) : w(h) > 0, ∀ h ∈ H}. Define the orthogonal relation ⊥ on Q by

ζ ⊥ ξ ⇐⇒ ζ(h)ξ(h) ≥ ζ(h) or ζ(h)ξ(h) ≥ ξ(h), ∀ h ∈ H .

Define a function ℘ : Q × Q→ [0,∞) by

℘(ζ, ξ) = ζ(Q) + ξ(Q),

∀ ζ, ξ ∈ Q. Thus, (Q, ℘) is a O-b-metric-like space and also a O-complete O-b-metric-like space. Define
D : C(H ,R)→ C(H ,R) by

Dζ(Q) =

∫ D

0
i(Q, β)Ω(β, ζ(Q)), Q ∈ [0, D].

Now, we show that Q is ⊥-preserving. For each ζ, ξ ∈ Q with ζ ⊥ ξ and h ∈ I, we have

Dζ(Q) =

∫ D

0
i(Q, β)Ω(β, ζ(Q)) ≥ 1.

It follows that [(Dζ)(h)][(Dξ)(h)] ≥ (Dξ)(h) and so (Dζ)(h) ⊥ (Dξ)(h). Then, Q is ⊥-preserving.
Now, to show that Q is O-generalized F-contraction of type-(1). Let ζ, ξ ∈ Q with ζ ⊥ ξ. Suppose

that D(ζ) , D(ξ). For every ζ ∈ [0, D], we have

℘(Dζ,Dξ) = Dζ(Q) + Dξ(Q) =

∫ D

0
i(Q, β)

(
Ω(β, ζ(β)) + Ω(β, ξ(β))

)
dβ

≤

∫ D

0
i(Q, β)

(
Ω(β, ζ(β)) + Ω(β, ξ(β))

)
dβ
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≤

∫ D

0
i(Q, β)e−ł(ζ(Q) + ξ(Q)

)
dβ

≤ e−ι
(
ζ(Q) + ξ(Q)

) ∫ D

0
i(Q, β)dβ

≤ e−ι
(
ζ(Q) + ξ(Q)

)
= e−ι℘(ζ, ξ).

Therefore,

ι + ln(℘(Dζ,Dξ)) ≤ ln
(
℘(ζ, ξ)

)
.

Letting F(Q) = ln(Q), we get

ι + F(℘(Dζ,Dξ)) ≤ F
(
℘(ζ, ξ)

)
,

for all ζ, ξ ∈ Q. Therefore, by Theorem 3.3, Q has a unique fixed point. Hence, there is a unique
solution for (4.1). �

5. Conclusions

In this paper, we proved fixed point theorems for an O-generalized F-contraction of types in an
O-complete b-metric like space. We also given an example to manifest the authenticity of the obtained
results. As application of our main results, we looked into the solution to the integral equation.
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