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Abstract: In this paper, we are concerned with the existence of positive solutions for boundary value
problems of nonlinear fourth-order differential equations

u(4) + c(x)u = λa(x) f (u), x ∈ (0, 1),
u(0) = u(1) = u′′(0) = u′′(1) = 0,

where a(x) may change signs. The proof of main results is based on Leray-Schauder’s fixed point
theorem and the properties of Green’s function of the fourth-order differential operator Lcu = u(4) +

c(x)u.
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1. Introduction

Nonlinear mathematical models [1,2] were widely used in many fields. In particular, boundary value
problems of nonlinear differential equations have received extensive attention and have been intensively
studied in the past thirty years, see [3, 4]. We point out that boundary value problems for second order
differential equations, see, for example [5–9] and the references therein. While studies about boundary
value problems of nonlinear fourth-order differential equations are much more less. One of the earliest
papers about boundary value problems of nonlinear fourth-order differential operator is [10] from R.
Ma and H. Wang, there they concerned the following problem

y(4) − h(x) f (y(x)) = 0, x ∈ (0, 1)
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with boundary condition
y(0) = y(1) = y′′(0) = y′′(1) = 0

or
y(0) = y′(1) = y′′(0) = y′′′(1) = 0.

By the fixed point theorem in cone, they proved the existence of positive solutions under the conditions
that f is either superlinear or sublinear. In another paper [11], the author obtained the positive solution
of the following problem

u(4) + βu′′ − αu = f (t, u), x ∈ (0, 1)
u(0) = u(1) = u′′(0) = u′′(1) = 0

by the fixed point theorem in cone. R.Vrabel [12] studied the upper solution and lower solution of the
problem

y(4)(x) + λy′′(x) = h(x, y(x)), x ∈ (0, 1)
y(0) = y(1) = y′′(0) = y′′(1) = 0.

There are many other papers we will not list but we find that they have a common point, that is, the
fourth-order differential operators they dealt with can be resolved into composition of two second-
order positive linear operators. And therefore, the corresponding Green’s function for fourth-order
linear operator is the form of the product of two Green’s functions for second-order linear operators.

In a recently paper [13], Drábet discussed the existence of positive solutions for the following
fourth-order linear problem

u(4) + c(x)u = h(x), x ∈ (0, 1),
u(0) = u(1) = u′′(0) = u′′(1) = 0.

Obviously, the fourth-order differential operator can not be resolution into composition of two
second-order positive linear operators. For more results on nonlinear fourth-order differential operator
problems we can refer to [14, 15].

Based on the above literature inspiration. We now consider the fourth-order nonlinear equation with
Dirichlet boundary conditions

u(4) + c(x)u = λa(x) f (u), (1.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

where c(x), a(x) satisfy some conditions that we will give bellow, especially, a(x) may change signs.
We make the following assumptions throughout the paper:

(A1) −π4 < c(x) < c0,
(A2) f : R+ → R is continuous, and f (0) > 0,
(A3) a : [0, 1]→ R is continuous with a(x) . 0, and there exists a constant K > 0 such that∫ 1

0
G(x, y)a+(y)dy ≥ K

∫ 1

0
G(x, y)a−(y)dy
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for every x ∈ (0, 1), where a+(resp. a−) is the positive (resp. negative) part of a, c0 is the constant given
in [13], and G(x, y) is the Green’s function of Lc with boundary conditions (1.2).

Our main result is as follows:

Theorem 1.1. Let (A1)–(A3) hold. Then there exists a positive number λ∗ such that (1.1) and (1.2)
have a positive solution for 0 < λ < λ∗.

Remark 1.1. Since the fourth-order differential operator can not be resolution into composition of two
second-order positive linear operators, as a result, the Green’s function have no explicit expression.
So the method or technic used in [10–12] does not work. To deal with the new case and the difficult
it brings, we are inspired by the method to second-order elliptic boundary value problems in [8], and
the result that the fourth-order operator u(4) + c(x)u is strictly inverse positive in [13, 16]. Thanks to
the existence and its properties of the Green’s function given in [17–19], we obtain the existence of a
positive solution to the problems (1.1) and (1.2).

2. Preliminaries

In this section we present two important lemmas. The main method we use is the fixed point
theorem of Leray-Schauder type. We refer interested readers to the literature [20, 21].

Set
W = {u ∈ C4([0, 1]) : u(0) = u(1) = u′′(0) = u′′(1) = 0},

and let the linear operator Lc : W → C([0, 1]) defined by

Lcu = u(4) + c(x)u.

Then the boundary value problems (1.1) and (1.2) are equivalent to the operator equation

Lcu = λa(x) f (u).

Lemma 2.1. Let (A1) hold. Then Lc is strictly inverse positive, and therefore it has a positive Green’s
function.

Proof. Lc is strictly inverse positive, we can refer to [13, 16] and the reference therein. From the
definition of Lc is strictly inverse positive there and the well-known truth that

Lcu = h(x)

is equivalent to

u(x) =
∫ 1

0
G(x, y)h(y))dy,

we can get the positiveness of the Green’s function G(x, y) immediately.

Lemma 2.2. Let (A1)–(A3) hold, and let 0 < δ < 1. Then there exists a positive number λ̄ such that,
for 0 < λ < λ̄, the problem
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u(4) + c(x)u = λa(x)+ f (u) (2.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0 (2.2)

has a positive solution ũλ with |ũλ| → 0 as λ→ 0, and

ũλ(x) ≥ λδ f (0)p(x), x ∈ (0, 1),

where p(x) =
∫ 1

0
G(x, y)a+(y)dy.

Proof. It follows from Lemma 2.1 that Lc is strictly inverse positive, and therefore it has a positive
Green’s function G(x, y). For each u ∈ C([0, 1]), let

Au(x) = λ
∫ 1

0
G(x, y)a+(y) f (u(y))dy, x ∈ [0, 1].

Then the fixed points of A are solutions of problems (2.1) and (2.2). We now verify the condition of
Leray-Schauder fixed point theorem to show that A has a fixed point for λ small.

Firstly, A : C([0, 1]) → C([0, 1]) is completely continuous by the assumptions and Arzela-Ascoli
theorem.

Secondly, we find a bounded open set Ω with 0 ∈ Ω in C([0, 1]), such that for u ∈ C(Ω̄) and
θ ∈ (0, 1), if u = θAu, then u∈̄∂Ω.

By (A2), the function g(s) = f (s)
f (0) is continuous and g(0) = 1, since 0 < δ < 1, we can choose ε > 0

such that

f (s) > δ f (0) s ∈ [0, ε].

Also we have
|Au|0 ≤ λ|p|0 f̃ (|u|0) ≤ λ|p|0 f̃ (ε), u ∈ [0, ε],

where f̃ (t) = max0≤s≤t f (s), and | · |0 is the usual norm in C([0, 1]).
Suppose λ < 1

2|p|0 f̃ (ε) =: λ̄, then there exists a Aλ ∈ (0, ε) such that

f̃ (Aλ)
Aλ

=
1

2λ|p|0
.

Let Ω = {u ∈ C([0, 1]) : |u|0 < Aλ} and θ ∈ (0, 1) such that u = θAu. Then we have

|u|0 ≤ |Au|0 ≤ λ|p|0 f̃ (|u|0),

or
f̃ (|u|0)
|u|0

≥
1
λ|p|0
.

So u , Aλ, which means u∈̄∂Ω.
By the Leray-Schauder fixed point theorem, A has a fixed point ũλ in Ω for 0 < λ < λ̄, that is,

problems (2.1) and (2.2) have a positive solution ũλ with ũλ ≤ Aλ < ε. Notice that Aλ → 0 as λ → 0,
|ũλ| → 0 as λ→ 0 and

ũλ(x) = Aũλ(x) ≥ λδ f (0)p(x), x ∈ (0, 1).

The proof is completed.
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let q(x) =
∫ 1

0
G(x, y)a−(y)dy, recall that p(x) =

∫ 1

0
G(x, y)a+(y)dy. By (A2),

q(x) ≤
1
K

p(x).

From the proof of Lemma 2.2 that g(0) = 1, there is a α ∈ (0, 1) and we can choose 1 < σ < K, such
that f (s) < σ f (0), and γ = σK ∈ (0, 1), then we have

q(x) f (s) ≤ γ f (0)p(x) (3.1)

for s ∈ [0, α], x ∈ (0, 1). Fix δ ∈ (0, 1) and let λ∗ > 0 be such that

|ũλ|0 + λδ f (0)|p|0 ≤ α (3.2)

for 0 < λ < λ∗, where ũλ is the solution of (2.1) and (2.2) given by Lemma 2.2, and

| f (s) − f (t)| ≤
δ − γ

2
· f (0) (3.3)

for s, t ∈ [−α, α] with |s − t| ≤ λ∗δ f (0)|p|0.
Let 0 < λ < λ∗, we look for a solution uλ = ũλ + vλ. Since ũλ is the solution of (2.1) and (2.2), then

vλ solves

Lcvλ = λa+[ f (ũλ + vλ) − f (ũλ)] − λa− f (ũλ + vλ), x ∈ (0, 1),
vλ(0) = vλ(1) = v′′λ (0) = v′′λ (1) = 0.

For each w ∈ C([0, 1]), let v = Aw be the solution of

Lcv = λa+[ f (ũλ + w) − f (ũλ)] − λa− f (ũλ + w), x ∈ (0, 1),
v(0) = v(1) = v′′(0) = v′′(1) = 0,

where the operator A is as in Lemma 2.2, we have

Aw(x) = λ
∫ 1

0
G(x, y)a+(y)[ f (ũλ(y) + w(y)) − f (ũλ(y))]dy

−λ

∫ 1

0
G(x, y)a−(y) f (ũλ(y) + w(y))dy, x ∈ [0, 1],

and A is completely continuous.
Let

Ω̄′ = {v ∈ C([0, 1]); |v|0 ≤ λδ f (0)|p|0},

if v ∈ C(Ω̄′) and θ ∈ (0, 1), such that v = θAv, that is
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v(x) = λθ
∫ 1

0
G(x, y)a+(y)[ f (ũλ(y) + v(y)) − f (ũλ(y))]dy

−λθ

∫ 1

0
G(x, y)a−(y) f (ũλ(y) + v(y))dy, x ∈ [0, 1],

we are going to show that
|v|0 , λδ f (0)|p|0.

Suppose the contrary that |v|0 = λδ f (0)|p|0. Then by (3.2) and (3.3), we get

|ũλ + v|0 ≤ |ũλ|0 + |v|0 ≤ α,

and
| f (ũλ + v) − f (ũλ)|0 ≤

δ − γ

2
· f (0),

together with (3.1) implies that

|v(x)| ≤ λ ·
δ − γ

2
· f (0)p(x) + λγ f (0)p(x)

= λ ·
δ + γ

2
· f (0)p(x), x ∈ [0, 1], (3.4)

and
|v|0 ≤ λ ·

δ + γ

2
· f (0)|p|0 < λδ f (0)|p|0,

a contradiction.
By the Leray-Schauder fixed point theorem, A has a fixed point vλ in Ω̄′ with |vλ|0 ≤ λδ f (0)|p|0.

Hence vλ satisfies (3.4), and using Lemma 2.2, we obtain

uλ(x) = ũλ(x) + vλ(x) ≥ ũλ(x) − |vλ(x)|

≥ λδ f (0)p(x) − λ ·
δ + γ

2
· f (0)p(x) = λ ·

δ − γ

2
· f (0)p(x) > 0.

We have proved that uλ is a positive solution of (1.1) and (1.2).

4. Conclusions

In this paper, we mainly study the existence of solutions to a class of nonlinear fourth-order
Dilrichlet boundary value problems through Leray-Schauder’s fixed point theorem, and show the
asymptotic behavior of the solution as λ changes. In the future, we can try to construct such solutions,
give the properties of the solutions, or study numerical solutions for such problems.
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