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Abstract: In this paper, we investigate the existence of standing wave solutions to the following
perturbed fractional p-Laplacian systems with critical nonlinearityεps(−∆)s

pu + V(x)|u|p−2u = K(x)|u|p
∗
s−2u + Fu(x, u, v), x ∈ RN ,

εps(−∆)s
pv + V(x)|v|p−2v = K(x)|v|p

∗
s−2v + Fv(x, u, v), x ∈ RN .

Under some proper conditions, we obtain the existence of standing wave solutions (uε, vε) which tend
to the trivial solutions as ε → 0. Moreover, we get m pairs of solutions for the above system under
some extra assumptions. Our results improve and supplement some existing relevant results.
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1. Introduction

In this paper, we discuss the existence and multiplicity of standing wave solutions for the following
perturbed fractional p-Laplacian systems with critical nonlinearity

εps(−∆)s
pu + V(x)|u|p−2u = K(x)|u|p

∗
s−2u + Fu(x, u, v), x ∈ RN ,

εps(−∆)s
pv + V(x)|v|p−2v = K(x)|v|p

∗
s−2v + Fv(x, u, v), x ∈ RN ,

(1.1)
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where ε is a positive parameter, N > ps, s ∈ (0, 1), p∗s =
N p

N−ps and (−∆)s
p is the fractional p-Laplacian

operator, which is defined as

(−∆)s
pu(x) = lim

ε→0

∫
RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps dy, x ∈ RN ,

where Bε(x) = {y ∈ RN : |x − y| < ε}. The functions V(x),K(x) and F(x, u, v) satisfy the following
conditions:

(V0) V ∈ C(RN ,R),min
x∈RN

V(x) = 0 and there is a constant b > 0 such that the set

Vb := {x ∈ RN : V(x) < b} has finite Lebesgue measure;
(K0) K ∈ C(RN ,R), 0 < inf K ≤ sup K < ∞;
(F1) F ∈ C1(RN × R2,R) and Fs(x, s, t), Ft(x, s, t) = o(|s|p−1 + |t|p−1) uniformly in x ∈ RN

as |s| + |t| → 0;
(F2) there exist C0 > 0 and p < κ < p∗s such that

|Fs(x, s, t)|, |Ft(x, s, t)| ≤ C0(1 + |s|κ−1 + |t|κ−1);
(F3) there exist l0 > 0, d > p and µ ∈ (p, p∗s) such that F(x, s, t) ≥ l0(|s|d + |t|d) and

0 < µF(x, s, t) ≤ Fs(x, s, t)s + Ft(x, s, t)t for all (x, s, t) ∈ RN × R2;
(F4) Fs(x,−s, t) = −Fs(x, s, t) and Ft(x, s,−t) = −Ft(x, s, t) for all (x, s, t) ∈ RN × R2.

Conditions (V0), (K0), suggested by Ding and Lin [11] in studying perturbed Schrödinger equations
with critical nonlinearity, and then was used in [28, 32, 33].

In recent years, a great deal of attention has been focused on the study of standing wave solutions
for perturbed fractional Schrödinger equation

ε2s(−∆)su + V(x)u = f (u) in RN , (1.2)

where s ∈ (0, 1), N > 2s and ε > 0 is a small parameter. It is well known that the solution of (1.2) is
closely related to the existence of solitary wave solutions for the following eqation

iεωt − ε
2(−∆)sω − V(x)ω + f (ω) = 0, (x, t) ∈ RN × R,

where i is the imaginary unit. (−∆)s is the fractional Laplacian operator which arises in many areas
such as physics, phase transitions, chemical reaction in liquids, finance and so on, see [1, 6, 18, 22, 27].
Additionally, Eq (1.2) is a fundamental equation of fractional quantum mechanics. For more details,
please see [17, 18].

Equation (1.2) was also investigated extensively under various hypotheses on the potential and
the nonlinearity. For example, Floer and Weinstein [12] first considered the existence of single-peak
solutions for N = 1 and f (t) = t3. They obtained a single-peak solution which concentrates around
any given nondegenerate critical point of V . Jin, Liu and Zhang [16] constructed a localized bound-
state solution concentrating around an isolated component of the positive minimum point of V , when
the nonlinear term f (u) is a general critical nonlinearity. More related results can be seen in [5, 7,
10, 13, 14, 26, 43] and references therein. Recently, Zhang and Zhang [46] obtained the multiplicity
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and concentration of positive solutions for a class of fractional unbalanced double-phase problems
by topological and variational methods. Related to (1.2) with s = 1, see [31, 39] for quasilinear
Schrödinger equations.

On the other hand, fractional p-Laplacian operator can be regarded as an extension of fractional
Laplacian operator. Many researchers consider the following equation

εps(−∆)s
pu + V(x)|u|p−2u = f (x, u). (1.3)

When f (x, u) = A(x)|u|p
∗
s−2u+h(x, u), Li and Yang [21] obtained the existence and multiplicity of weak

solutions by variational methods. When f (x, u) = λ f (x)|u|q−2u+g(x)|u|r−2u, under suitable assumptions
on nonlinearity and weight functions, Lou and Luo [19] established the existence and multiplicity of
positive solutions via variational methods. With regard to the p-fractional Schrödinger-Kirchhoff, Song
and Shi [29] considered the following equation with electromagnetic fieldsεpsM([u]p

s , Aε)(−∆)s
p,Aεu + V(x)|u|p−2u = |u|p

∗
s−2u + h(x, |u|p)|u|p−2u, x ∈ RN ,

u(x)→ 0, as → ∞.
(1.4)

They obtained the existence and multiplicity solutions for (1.4) by using the fractional version of
concentration compactness principle and variational methods, see also [24, 25, 34, 35, 38, 41] and
references therein. Related to (1.3) with s = 1, see [15, 23].

Recently, from a mathematical point of view, (fractional) elliptic systems have been the focus for
many researchers, see [2, 8, 9, 20, 30, 37, 42, 44, 45]. As far as we know, there are few results
concerned with the (fractional) p-Laplacian systems with a small parameter. In this direction, we cite
the work of Zhang and Liu [40], who studied the following p-Laplacian elliptic systems − εp∆pu + V(x)|u|p−2u = K(x)|u|p

∗−2u + Hu(u, v), x ∈ RN ,

− εp∆pv + V(x)|v|p−2v = K(x)|v|p
∗−2v + Hv(u, v), x ∈ RN .

(1.5)

By using variational methods, they proved the existence of nontrivial solutions for (1.5) provided that
ε is small enough. In [36], Xiang, Zhang and Wei investigated the following fractional p-Laplacian
systems without a small parameter(−∆)s

pu + a(x)|u|p−2u = Hu(x, u, v), x ∈ RN ,

(−∆)s
qv + b(x)|v|p−2v = Hv(x, u, v), x ∈ RN .

(1.6)

Under some suitable conditions, they obtained the existence of nontrivial and nonnegative solutions
for (1.6) by using the mountain pass theorem.

Motivated by the aforementioned works, it is natural to ask whether system (1.5) has a nontrivial
solution when the p-Laplacian operator is replaced by the fractional p-Laplacian operator. As far as
we know, there is no related work in this direction so far. In this paper, we give an affirmative answer
to this question considering the existence and multiplicity of standing wave solutions for (1.1).

Now, we present our results of this paper.
Theorem 1.1. Assume that (V0), (K0) and (F1)–(F3) hold. Then for any τ > 0, there is Γτ > 0 such
that if ε < Γτ, system (1.1) has at least one solution (uε, vε)→ (0, 0) in W as ε→ 0, where W is stated
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later, satisfying:
µ − p
µp

[ ∫ ∫
R2N

εps
( |uε(x) − uε(y)|p

|x − y|N+ps +
|vε(x) − vε(y)|p

|x − y|N+ps

)
dxdy

+

∫
RN

V(x)(|uε|p + |vε|p)dx
]
≤ τεN

and

s
N

∫
RN

K(x)(|uε|p
∗
s + |vε|p

∗
s )dx +

µ − p
p

∫
RN

F(x, uε, vε)dx ≤ τεN .

Theorem 1.2. Let (V0), (K0) and (F1)–(F4) hold. Then for any m ∈ N and τ > 0 there is Γmτ > 0
such that if ε < Γmτ, system (1.1) has at least m pairs of solutions (uε, vε), which also satisfy the above
estimates in Theorem 1.1. Moreover, (uε, vε)→ (0, 0) in W as ε→ 0.
Remark 1.1. On one hand, our results extend the results in [40], in which the authors considered
the existence of solutions for perturbed p-Laplacian system, i.e., system (1.1) with s = 1. On the
other hand, our results also extend the results in [21] to a class of perturbed fractional p-Laplacian
system (1.1).
Remark 1.2. Compared with the results obtained by [12–16], when ε → 0, the solutions of
Theorems 1.1 and 1.2 are close to trivial solutions.

In this paper, our goal is to prove the existence and multiplicity of standing wave solutions for (1.1)
by variational approach. The main difficulty lies on the lack of compactness of the energy functional
associated to system (1.1) because of unbounded domain RN and critical nonlinearity. To overcome
this difficulty, we adopt some ideas used in [11] to prove that (PS )c condition holds.

The rest of this article is organized as follows. In Section 2, we introduce the working space and
restate the system in a equivalent form by replacing ε−ps with λ. In Section 3, we study the behavior of
(PS )c sequence. In Section 4, we complete the proof of Theorems 2.1 and 2.2, respectively.

2. Preliminaries

To obtain the existence and multiplicity of standing wave solutions of system (1.1) for small ε, we
rewrite (1.1) in a equivalent form. Let λ = ε−ps, then system (1.1) can be expressed as(−∆)s

pu + λV(x)|u|p−2u = λK(x)|u|p
∗
s−2u + λFu(x, u, v), x ∈ RN ,

(−∆)s
pv + λV(x)|v|p−2v = λK(x)|v|p

∗
s−2v + λFv(x, u, v), x ∈ RN ,

(2.1)

for λ→ +∞.
We introduce the usual fractional Sobolev space

W s,p(RN) := {u ∈ Lp(RN) : [u]s,p < ∞}

equipped with the norm
||u||s,p = (|u|p + [u]p

s,p)
1
p ,

where | · |p is the norm in Lp(RN) and

[u]s,p =
( ∫ ∫

R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy
) 1

p
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is the Gagliardo seminorm of a measurable function u : RN → R. In this paper, we continue to work
in the following subspace of W s,p(RN) which is defined by

Wλ := {u ∈ W s,p(RN) :
∫
RN
λV(x)|u|pdx < ∞, λ > 0}

with the norm
||u||λ = ([u]p

s,p +

∫
RN
λV(x)|u|pdx)

1
p .

Notice that the norm || · ||s,p is equivalent to || · ||λ for each λ > 0. It follows from (V0) that Wλ

continuously embeds in W s,p(RN). For the fractional system (2.1), we shall work in the product space
W = Wλ ×Wλ with the norm ||(u, v)||p = ||u||pλ + ||v||pλ for any (u, v) ∈ W.

We recall that (u, v) ∈ W is a weak solution of system (2.1) if∫ ∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))
|x − y|N+ps dxdy + λ

∫
RN

V(x)|u|p−2uφdx

+

∫ ∫
R2N

|v(x) − v(y)|p−2(v(x) − v(y))(ψ(x) − ψ(y))
|x − y|N+ps dxdy + λ

∫
RN

V(x)|v|p−2vψdx

= λ

∫
RN

K(x)(|u|p
∗
s−2uφ + |v|p

∗
s−2vψ)dx + λ

∫
RN

(Fu(x, u, v)φ + Fv(x, u, v)ψ)dx

for all (φ, ψ) ∈ W.
Note that the energy functional associated with (2.1) is defined by

Φλ(u, v) =
1
p

∫ ∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy +
1
p

∫
RN
λV(x)|u|pdx +

1
p

∫ ∫
R2N

|v(x) − v(y)|p

|x − y|N+ps dxdy

+
1
p

∫
RN
λV(x)|v|pdx −

λ

p∗s

∫
RN

K(x)(|u|p
∗
s + |v|p

∗
s )dx − λ

∫
RN

F(x, u, v)dx

=
1
p
||(u, v)||p −

λ

p∗s

∫
RN

K(x)(|u|p
∗
s + |v|p

∗
s )dx − λ

∫
RN

F(x, u, v)dx.

Clearly, it is easy to check that Φλ ∈ C1(W,R) and its critical points are weak solution of system (2.1).
In order to prove Theorem 1.1 and 1.2, we only need to prove the following results.

Theorem 2.1. Assume that (V0), (K0) and (F1)–(F3) hold. Then for any τ > 0, there is Λτ > 0 such
that if λ ≥ Λτ, system (2.1) has at least one solution (uλ, vλ)→ (0, 0) in W as λ→ ∞, satisfying:

µ − p
µp

[ ∫ ∫
R2N

( |uλ(x) − uλ(y)|p

|x − y|N+ps +
|vλ(x) − vλ(y)|p

|x − y|N+ps

)
dxdy

+

∫
RN
λV(x)(|uλ|p + |vλ|p)dx

]
≤ τλ1− N

ps

(2.2)

and

s
N

∫
RN

K(x)(|uλ|p
∗
s + |vλ|p

∗
s )dx +

µ − p
p

∫
RN

F(x, uλ, vλ)dx ≤ τλ−
N
ps . (2.3)

Theorem 2.2. Assume that (V0), (K0) and (F1)–(F4) hold. Then for any m ∈ N and τ > 0 there is
Λmτ > 0 such that if λ ≥ Λmτ, system (2.1) has at least m pairs of solutions (uλ, vλ), which also satisfy
the estimates in Theorem 2.1. Moreover, (uλ, vλ)→ (0, 0) in W as λ→ ∞.
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3. Behaviors of (PS )c sequences

In this section, we are focused on the compactness of the functional Φλ.
Recall that a sequence {(un, vn)} ⊂ W is a (PS )c sequence at level c, if Φλ(un, vn) → c and

Φ′λ(un, vn) → 0. Φλ is said to satisfy the (PS )c condition if any (PS )c sequence contains a convergent
subsequence.
Proposition 3.1. Assume that the conditions (V0), (K0) and (F1)–(F3) hold. Then there exists a constant
α > 0 independent of λ such that, for any (PS )c sequence {(un, vn)} ⊂ W for Φλ with (un, vn) ⇀ (u, v),
either (un, vn)→ (u, v) or c − Φλ(u, v) ≥ αλ1− N

ps .
Corollary 3.1. Under the assumptions of Proposition 3.1, Φλ satisfies the (PS )c condition for all
c < αλ1− N

ps .
The proof of Proposition 3.1 consists of a series of lemmas which will occupy the rest of this section.

Lemma 3.1. Assume that (V0), (K0) and (F3) are satisfied. Let {(un, vn)} ⊂ W be a (PS )c sequence for
Φλ. Then c ≥ 0 and {(un, vn)} is bounded in W.
Proof. Let {(un, vn)} be a (PS )c sequence for Φλ, we obtain that

Φλ(un, vn)→ c, Φ′λ(un, vn)→ 0, n→ ∞.

By (K0) and (F3), we deduce that

c + o(1)||(un, vn)|| = Φλ(un, vn) −
1
µ
〈Φ′λ(un, vn), (un, vn)〉

= (
1
p
−

1
µ

)||(un, vn)||p + λ(
1
µ
−

1
p∗s

)
∫
RN

K(x)(|u|p
∗
s + |v|p

∗
s )dx

+ λ

∫
RN

[1
µ

(
Fu(x, un, vn)un + Fv(x, un, vn)vn

)
− F(x, un, vn)

]
dx

≥ (
1
p
−

1
µ

)||(un, vn)||p,

(3.1)

which implies that there exists M > 0 such that

||(un, vn)||p ≤ M.

Thus, {(un, vn)} is bounded in W. Taking the limit in (3.1), we show that c ≥ 0. This completes the
proof. �

From the above lemma, there exists (u, v) ∈ W such that (un, vn) ⇀ (u, v) in W. Furthermore,
passing to a subsequence, we have un → u and vn → v in Lγloc(R

N) for any γ ∈ [p, p∗s) and un(x)→ u(x)
and vn(x)→ v(x) a.e. in RN . Clearly, (u, v) is a critical point of Φλ.
Lemma 3.2. Let {(un, vn)} be stated as in Lemma 3.1 and γ ∈ [p, p∗s). Then there exists a subsequence
{(un j , vn j)} such that for any ε > 0, there is rε > 0 with

lim sup
j→∞

∫
B j\Br

|un j |
γdx ≤ ε, lim sup

j→∞

∫
B j\Br

|vn j |
γdx ≤ ε,

for all r ≥ rε, where, Br := {x ∈ RN : |x| ≤ r}.

AIMS Mathematics Volume 8, Issue 1, 997–1013.



1003

Proof. The proof is similar to the one of Lemma 3.2 of [11]. We omit it here. �
Let σ : [0,∞) → [0, 1] be a smooth function satisfying σ(t) = 1 if t ≤ 1, σ(t) = 0 if t ≥ 2. Define

u j(x) = σ(2|x|
j )u(x), v j(x) = σ( 2|x|

j )v(x). It is clear that

||u − u j||λ → 0 and ||v − v j||λ → 0 as j→ ∞. (3.2)

Lemma 3.3. Let {(un j , vn j)} be stated as in Lemma 3.2, then

lim
j→∞

∫
RN

[
Fu(x, un j , vn j) − Fu(x, un j − u j, vn j − v j) − Fu(x, u j, v j)

]
φdx = 0

and
lim
j→∞

∫
RN

[
Fv(x, un j , vn j) − Fv(x, un j − u j, vn j − v j) − Fv(x, u j, v j)

]
ψdx = 0

uniformly in (φ, ψ) ∈ W with ||(φ, ψ)|| ≤ 1.
Proof. By (3.2) and the local compactness of Sobolev embedding, we know that for any r > 0,

lim
j→∞

∫
Br

[
Fu(x, un j , vn j) − Fu(x, un j − u j, vn j − v j) − Fu(x, u j, v j)

]
φdx = 0, (3.3)

uniformly for ||φ|| ≤ 1. For any ε > 0, there exists rε > 0 such that

lim sup
j→∞

∫
B j\Br

|u j|
γdx ≤

∫
RN\Br

|u|γdx ≤ ε,

for all r ≥ rε, see [Lemma 3.2, 11]. From (F1) and (F2), we obtain

|Fu(x, u, v)| ≤ C0(|u|p−1 + |v|p−1 + |u|κ−1 + |v|κ−1). (3.4)

Thus, from (3.3), (3.4) and the Hölder inequality, we have

lim sup
j→∞

∫
RN

[
Fu(x, un j , vn j) − Fu(x, un j − u j, vn j − v j) − Fu(x, u j, v j)

]
φdx

≤ lim sup
j→∞

∫
B j\Br

[
Fu(x, un j , vn j) − Fu(x, un j − u j, vn j − v j) − Fu(x, u j, v j)

]
φdx

≤ C1lim sup
j→∞

∫
B j\Br

[
(|un j |

p−1 + |u j|
p−1 + |vn j |

p−1 + |v j|
p−1)

]
φdx

+ ≤ C2lim sup
j→∞

∫
B j\Br

[
(|un j |

κ−1 + |u j|
κ−1 + |vn j |

κ−1 + |v j|
κ−1)

]
φdx

≤ C1lim sup
j→∞

[
|un j |

p−1
Lp(B j\Br) + |u j|

p−1
Lp(B j\Br) + |vn j |

p−1
Lp(B j\Br) + |v j|

p−1
Lp(B j\Br)

]
|φ|p

+ C2lim sup
j→∞

[
|un j |

κ−1
Lκ(B j\Br) + |u j|

κ−1
Lκ(B j\Br) + |vn j |

κ−1
Lκ(B j\Br) + |v j|

κ
Lκ(B j\Br)

]
|φ|κ

≤ C3ε
p−1

p + C4ε
κ−1
κ ,

where C1,C2,C3 and C4 are positive constants. Similarly, we can deduce that the other equality also
holds. �
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Lemma 3.4. Let {(un j , vn j)} be stated as in Lemma 3.2, the following facts hold:

(i) Φλ(un j − u j, vn j − v j)→ c − Φλ(u, v);
(ii) Φ′λ(un j − u j, vn j − v j)→ 0 in W−1 (the dual space of W).

Proof. (i) We have

Φλ(un j − u j, vn j − v j)
= Φλ(un j , vn j) − Φλ(u j, v j)

+
λ

p∗s

∫
RN

K(x)
(
|un j |

p∗s − |un j − u j|
p∗s − |u j|

p∗s + |vn j |
p∗s − |vn j − v j|

p∗s − |v j|
p∗s
)
dx

+ λ

∫
RN

(
F(x, un j , vn j) − F(x, un j − u j, vn j − v j) − F(x, u j, v j)

)
dx.

Using (3.2) and the Brézis-Lieb Lemma [4], it is easy to get

lim
j→∞

∫
RN

K(x)
(
|un j |

p∗s − |un j − u j|
p∗s − |u j|

p∗s + |vn j |
p∗s − |vn j − v j|

p∗s − |v j|
p∗s
)
dx = 0

and

lim
j→∞

∫
RN

(
F(x, un j , vn j) − F(x, un j − u j, vn j − v j) − F(x, u j, v j)

)
dx = 0.

Using the fact that Φλ(un j , vn j)→ c and Φλ(u j, v j)→ Φλ(u, v) as j→ ∞, we have

Φλ(un j − u j, vn j − v j)→ c − Φλ(u, v).

(ii) We observe that for any (φ, ψ) ∈ W satisfying ||(φ, ψ)|| ≤ 1,

〈Φ′λ(un j − u j, vn j − v j), (φ, ψ)〉
= 〈Φ′λ(un j , vn j), (φ, ψ)〉 − 〈Φ′λ(u j, v j), (φ, ψ)〉

+ λ

∫
RN

K(x)
[(
|un j |

p∗s−2un j − |un j − u j|
p∗s−2(un j − u j) − |u j|

p∗s−2u j

)
φ

+
(
|vn j |

p∗s−2vn j − |vn j − v j|
p∗s−2(vn j − v j) − |v j|

p∗s−2v j

)
ψ
]
dx

+ λ

∫
RN

[(
Fu(x, un j , vn j) − Fu(x, un j − u j, vn j − v j) − Fu(x, u j, v j)

)
φ

+
(
Fv(x, un j , vn j) − Fv(x, un j − u j, vn j − v j) − Fv(x, u j, v j)

)
ψ
]
dx.

It follows from a standard argument that

lim
j→∞

∫
RN

K(x)
(
|un j |

p∗s−2un j − |un j − u j|
p∗s−2(un j − u j) − |u j|

p∗s−2u j

)
φdx = 0

and

lim
j→∞

∫
RN

K(x)
(
|vn j |

p∗s−2vn j − |vn j − v j|
p∗s−2(vn j − v j) − |v j|

p∗s−2v j

)
ψdx = 0
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uniformly in ||(φ, ψ)|| ≤ 1. By Lemma 3.3, we obtain Φ′λ(un j − u j, vn j − v j) → 0. We complete this
proof. �

Set u1
j = un j − u j, v1

j = vn j − v j, then un j − u = u1
j + (u j − u), vn j − v = v1

j + (v j − v). From (3.2),
we have (un j , vn j)→ (u, v) if and only if (u1

j , v
1
j)→ (0, 0). By Lemma 3.4, one has along a subsequence

that Φλ(u1
j , v

1
j)→ c − Φλ(u, v) and Φ′λ(u

1
j , v

1
j)→ 0.

Note that 〈Φ′λ(u
1
j , v

1
j), (u

1
j , v

1
j)〉 = 0, by computation, we get∫ ∫

R2N

|u1
j(x) − u1

j(y)|p

|x − y|N+ps dxdy +

∫
RN
λV(x)|u1

j |
pdx +

∫ ∫
R2N

|v1
j(x) − v1

j(y)|p

|x − y|N+ps dxdy

+

∫
RN
λV(x)|v1

j |
pdx − λ

∫
RN

K(x)(|u1
j |

p∗s + |v1
j |

p∗s )dx − λ
∫
RN

F(x, u1
j , v

1
j)dx = 0

(3.5)

Hence, by (F3) and (3.5), we have

Φλ(u1
j , v

1
j) −

1
p
〈Φ′λ(u

1
j , v

1
j), (u

1
j , v

1
j)〉

= (
1
p
−

1
p∗s

)λ
∫
RN

K(x)(|u1
j |

p∗s + |v1
j |

p∗s )dx

+ λ

∫
RN

[1
p

(
Fu(x, u1

j , v
1
j)u

1
j + Fu(x, u1

j , v
1
j)v

1
j

)
− F(x, u1

j , v
1
j)
]
dx

≥
λsKmin

N

∫
RN

(
|u1

j |
p∗s + |v1

j |
p∗s
)
dx,

where Kmin = infx∈RN K(x) > 0. So, it is easy to see that

|u1
j |

p∗s
p∗s

+ |v1
j |

p∗s
p∗s
≤

N(c − Φλ(u, v))
λsKmin

+ o(1). (3.6)

Denote Vb(x) = max{V(x), b}, where b is the positive constant from assumption of (V0). Since the
set Vb has finite measure and (u1

j , v
1
j)→ (0, 0) in Lp

loc × Lp
loc, we obtain∫

RN
V(x)(|u1

j |
p + |v1

j |
p)dx =

∫
RN

Vb(x)(|u1
j |

p + |v1
j |

p)dx + o(1). (3.7)

By (K0), (F1) and (F2), we can find a constant Cb > 0 such that∫
RN

K(x)(|u1
j |

p∗s + |v1
j |

p∗s )dx +

∫
RN

(Fu(x, u1
j , v

1
j)u

1
j + Fv(x, u1

j , v
1
j)v

1
j)dx

≤ b(|u1
j |

p
p + |v1

j |
p
p) + Cb(|u1

j |
p∗s
p∗s

+ |v1
j |

p∗s
p∗s

).
(3.8)

Let S is fractional Sobolev constant which is defined by

S |u|pp∗s ≤
∫ ∫

R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy for all u ∈ W s,p(RN). (3.9)

Proof of Proposition 3.1. Assume that (un j , vn j) 9 (u, v), then lim inf j→∞ ||(u1
j , v

1
j)|| > 0 and c −

Φλ(u, v) > 0.
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From (3.5), (3.7), (3.8) and (3.9), we deduce

S (|u1
j |

p
p∗s

+ |v1
j |

p
p∗s

) ≤
∫ ∫

R2N

|u1
j(x) − u1

j(y)|p

|x − y|N+ps dxdy +

∫
RN
λV(x)|u1

j |
pdx +

∫ ∫
R2N

|v1
j(x) − v1

j(y)|p

|x − y|N+ps dxdy

+

∫
RN
λV(x)|v1

j |
pdx −

∫
RN
λV(x)(|u1

j |
p + |v1

j |
p)dx

= λ

∫
RN

K(x)(|u1
j |

p∗s + |v1
j |

p∗s )dx + λ

∫
RN

(Fu(x, u1
j , v

1
j)u

1
j + Fv(x, u1

j , v
1
j)v

1
j)dx

− λ

∫
RN

Vb(x)(|u1
j |

p + |v1
j |

p)dx

≤ λCb(|u1
j |

p∗s
p∗s

+ |v1
j |

p∗s
p∗s

) + o(1).

Thus, by (3.6), we have

S ≤ λCb

(
|u1

j |
p∗s
p∗s

+ |v1
j |

p∗s
p∗s

) p∗s−p
p∗s + o(1) ≤ λCb

(N(c − Φλ(u, v))
λsKmin

) s
N

+ o(1),

or equivalently

αλ1− N
ps ≤ c − Φλ(u, v),

where α = sKmin
N ( S

Cb
)

N
ps . The proof is complete. �

4. Proof of the main results

Lemma 4.1. Suppose that (V0), (K0), (F1), (F2) and (F3) are satisfied, then the functional Φλ satisfies
the following mountain pass geometry structure:

(i) there exist positive constants ρ and a such that Φλ(u, v) ≥ a for ||(u, v)|| = ρ;
(ii) for any finite-dimensional subspace Y ⊂ W,

Φλ(u, v)→ −∞, as (u, v) ∈ W, ||(u, v)|| → +∞.

(iii) for any τ > 0 there exists Λτ > 0 such that each λ ≥ Λτ, there exists ω̃λ ∈ Y with ||ω̃λ|| > ρ,
Φλ(ω̃λ) ≤ 0 and

max
t≥0

Φλ(tω̃λ) ≤ τλ1− N
ps .

Proof. (i) From (F1), (F2), we have for any ε > 0, there is Cε > 0 such that

1
p∗s

∫
RN

K(x)(|u|p
∗
s + |v|p

∗
s )dx +

∫
RN

F(x, u, v)dx ≤ ε|(u, v)|pp + Cε|(u, v)|p
∗
s

p∗s
. (4.1)

Thus, combining with (4.1) and Sobolev inequality, we deduce that

Φλ(u, v) =
1
p
||(u, v)||p −

λ

p∗s

∫
RN

K(x)(|u|p
∗
s + |v|p

∗
s )dx − λ

∫
RN

F(x, u, v)dx
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≥
1
p
||(u, v)||p − λεC5||(u, v)||p − λC6Cε||(u, v)||p

∗
s ,

where ε is small enough and C5,C6 > 0, thus (i) is proved because p∗s > p.
(ii) By (F3), we define the functional Ψλ ∈ C1(W,R) by

Ψλ(u, v) =
1
p
||(u, v)||p − λl0

∫
RN

(|u|d + |v|d)dx.

Then

Φλ(u, v) ≤ Ψλ(u, v), for all (u, v) ∈ W.

For any finite-dimensional subspace Y ⊂ W, we only need to prove

Ψλ(u, v)→ −∞, as (u, v) ∈ Y, ||(u, v)|| → +∞.

In fact, we have

Ψλ(u, v) =
1
p
||(u, v)||p − λl0|(u, v)|dd.

Since all norms in a finite dimensional space are equivalent and p < d < p∗s, thus (ii) holds.
(iii) From Corollary 3.1, for λ large and c small enough, Φλ satisfies (PS )c condition. Thus, we will

find a special finite dimensional-subspace by which we construct sufficiently small minimax levels for
Φλ when λ large enough.

Recall that

inf
{ ∫
R2N

|ϕ(x) − ϕ(y)|p

|x − y|N+ps dxdy : ϕ ∈ C∞0 (RN), |ϕ|d = 1
}

= 0, p < d < p∗s,

see [40] for this proof. For any 0 < ε < 1, we can take ϕε ∈ C∞0 (RN) with |ϕε|d = 1, supp ϕε ⊂ Brε(0)
and [ϕε]

p
p,s < ε.

Let

ωλ(x) := (ωλ(x), ωλ(x)) = (ϕε(λ
1
ps x), ϕε(λ

1
ps x)).

For t ≥ 0, (F3) imply that

Φλ(tωλ) ≤
2tp

p

∫ ∫
R2N

|ωλ(x) − ωλ(y)|p

|x − y|N+ps dxdy +
2tp

p

∫
RN
λV(x)|ωλ|

pdx − λ
∫
RN

F(x, tωλ, tωλ)dx

≤ λ1− N
ps
{2tp

p

∫ ∫
R2N

|ϕε(x) − ϕε(y)|p

|x − y|N+ps dxdy +
2tp

p

∫
RN

V(λ−
1
ps x)|ϕε|pdx − 2l0td

∫
RN
|ϕε|

ddx
}

≤ λ1− N
ps

2l0(d − p)
p

(∫ ∫
R2N

|ϕε(x)−ϕε(y)|p

|x−y|N+ps dxdy +
∫
RN V(λ−

1
ps x)|ϕε|pdx

l0d

) d
d−p
.

Indeed, for t > 0, define

g(t) =
2tp

p

∫ ∫
R2N

|ϕε(x) − ϕε(y)|p

|x − y|N+ps dxdy +
2tp

p

∫
RN
λV(λ−

1
ps x)|ϕε|pdx − 2l0td

∫
RN
|ϕε|

ddx.
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It is easy to show that t0 = (
∫ ∫
R2N

|ϕε(x)−ϕε(y)|p

|x−y|N+ps dxdy+
∫
RN V(λ−

1
ps x)|ϕε |pdx

l0d )
1

d−p is a maximum point of g and

max
t≥0

g(t) = g(t0) =
2l0(d − p)

p

(∫ ∫
R2N

|ϕε(x)−ϕε(y)|p

|x−y|N+ps dxdy +
∫
RN V(λ−

1
ps x)|ϕε|pdx

l0d

) d
d−p
.

Since V(0) = 0 and supp ϕε ⊂ Brε(0), there exists Λε > 0 such that

V(λ−
1
ps x) <

ε

|ϕε|
p
p
, ∀|x| ≤ rε, λ > Λε.

Hence, we have

max
t≥0

Φλ(tωλ) ≤
2l0(d − p)

p
(

1
l0d

)
d

d−p (2ε)
d

d−pλ1− N
ps ,∀λ > Λε.

Choose ε > 0 such that

2l0(d − p)
p

(
1

l0d
)

d
d−p (2ε)

d
d−p ≤ τ,

and taking Λτ = Λε, from (ii), we can take t large enough and define ω̃λ = tωλ, then we have

Φλ(ω̃λ) < 0 and max
0≤t≤1

Φλ(tω̃λ) ≤ τλ1− N
ps .

�
Proof of Theorem 2.1. From Lemma 4.1, for any 0 < τ < α, there exists Λτ > 0 such that for λ ≥ Λτ,
we have

c = inf
η∈Γλ

max
t∈[0,1]

Φλ(η(t)) ≤ τλ1− N
ps ,

where Γλ = {η ∈ C([0, 1],W) : η(0) = 0, η(1) = ω̃λ}. Furthermore, in virtue of Corollary 3.1, we obtain
that (PS )c condition hold for Φλ at c. Therefore, by the mountain pass theorem, there is (uλ, vλ) ∈ W
such that Φ′λ(uλ, vλ) = 0 and Φλ(uλ, vλ) = c.

Finally, we prove that (uλ, vλ) satisfies the estimates in Theorem 2.1.
Since (uλ, vλ) is a critical point of Φλ, there holds for θ ∈ [p, p∗s]

τλ1− N
ps ≥ Φλ(uλ, vλ) −

1
θ
〈Φ′λ(uλ, vλ), (uλ, vλ)〉

≥ (
1
p
−

1
θ

)||(uλ, vλ)||p + λ(
1
θ
−

1
p∗s

)
∫
RN

K(x)(|uλ|p
∗
s + |vλ|p

∗
s )dx + λ(

µ

θ
− 1)

∫
RN

F(x, uλ, vλ)dx.

Taking θ = µ, we get the estimate (2.2) and taking θ = p yields the estimate (2.3). �
To obtain the multiplicity of critical points, we will adopt the index theory defined by the

Krasnoselski genus.
Proof of Theorem 2.2. Denote the set of all symmetric (in the sense that −A = A) and closed subsets
of A by

∑
. For any A ∈

∑
let gen (A) be the Krasnoselski genus and

i(A) = min
k∈Υ

gen(k(A)
⋂

∂Bρ),
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where Υ is the set of all odd homeomorphisms k ∈ C(W,W) and ρ is the number from Lemma 4.1.
Then i is a version of Benci’s pseudoindex [3]. (F4) implies that Φλ is even. Set

cλ j := inf
i(A)≥ j

sup
(u,v)∈A

Φλ(u, v), 1 ≤ j ≤ m.

If cλ j is finite and Φλ satisfies (PS )cλ j
condition, then we know that all cλ j are critical values for Φλ.

Step 1. We show that Φλ satisfies (PS )cλ j
condition at all levels cλ j < τλ

1− N
ps .

To complete the claim, we need to estimate the level cλ j in special finite-dimensional subspaces.
Similar to proof in Lemma 4.1, for any m ∈ N, ε > 0 and j = 1, 2, · · ·,m, one can choose m functions

ϕ
j
ε ∈ C∞0 (RN) with supp ϕi

ε

⋂
supp ϕ j

ε = ∅ if i , j, |ϕ j
ε|d = 1 and [ϕ j

ε]
p
p,s < ε.

Let rm
ε > 0 be such that supp ϕ j

ε ⊂ Brm
ε
(0). Set

ω
j
λ(x) := (ω j

λ(x), ω j
λ(x)) = (ϕ j

ε(λ
1
ps x), ϕ j

ε(λ
1
ps x))

and define

Fm
λ := S pan {ω1

λ, ω
2
λ, · · ·, ω

m
λ }.

Then i(Fm
λ ) = dim Fm

λ = m. Observe that for each ω̃ =
∑m

j=1 t jω
j
λ ∈ Fm

λ ,

Φλ(ω̃) =

m∑
j=1

Φλ(t jω
j
λ)

and for t j > 0

Φλ(t jω
j
λ) ≤

2tp
j

p

∫ ∫
R2N

|ω
j
λ(x) − ω j

λ(y)|p

|x − y|N+ps dxdy +
2tp

j

p

∫
RN
λV(x)|ω j

λ|
pdx − λ

∫
RN

F(x, t jω
j
λ, t jω

j
λ)dx

≤ λ1− N
ps
{2tp

j

p

∫ ∫
R2N

|ϕ
j
ε(x) − ϕ j

ε(y)|p

|x − y|N+ps dxdy +
2tp

j

p

∫
RN

V(λ−
1
ps x)|ϕ j

ε|
pdx − 2l0td

j

∫
RN
|ϕ j
ε|

ddx
}
.

Set

ηε := max{|ϕ j
ε|

p
p : j = 1, 2, · · ·,m}.

Since V(0) = 0 and supp ϕ j
ε ⊂ Brm

ε
(0), there exists Λmε > 0 such that

V(λ−
1
ps x) <

ε

ηε
, ∀|x| ≤ rm

ε , λ > Λmε.

Consequently, there holds

sup
w̃∈Fm

λ

Φλ(w̃) ≤ ml0(2ε)
d

d−pλ1− N
ps ,∀λ > Λmε.

Choose ε > 0 small that ml0(2ε)
d

d−p < τ. Thus for any m ∈ N and τ ∈ (0, α), there exists Λmτ = Λmε

such that λ > Λmτ, we can choose a m-dimensional subspace Fm
λ with max Φλ(Fm

λ ) ≤ τλ1− N
ps and

cλ1 ≤ cλ2 ≤ · · · ≤ sup
w̃∈Fm

λ

Φλ(w̃) ≤ τλ1− N
ps .
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From Corollary 3.1, we know that Φλ satisfies the (PS ) condition at all levels cλ j . Then all cλ j are
critical values.
Step 2. We prove that (2.1) has at least m pairs of solutions by the mountain-pass theorem.

By Lemma 4.1, we know that Φλ satisfies the mountain pass geometry structure. From step 1, we
note that Φλ also satisfies (PS )cλ j

condition at all levels cλ j < τλ
1− N

ps . By the usual critical point theory,
all cλ j are critical levels and Φλ has at least m pairs of nontrivial critical points satisfying

a ≤ Φλ(u, v) ≤ τλ1− N
ps .

Thus, (2.1) has at least m pairs of solutions. Finally, as in the proof of Theorem 2.1, we know that these
solutions satisfy the estimates (2.2) and (2.3). �

5. Conclusions

In this paper, we have obtained the existence and multiplicity of standing wave solutions for a class
of perturbed fractional p-Laplacian systems involving critical exponents by variational methods. In
the next work, we will extend the study to the case of perturbed fractional p-Laplacian systems with
electromagnetic fields.
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