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Abstract: Let A =

(
a b
c d

)
∈ M2 (Z) be a given matrix such that bc , 0 and let C(A) = {B ∈ M2(Z) :

AB = BA}. In this paper, we give a necessary and sufficient condition for the solvability of the matrix
equation uXi + vY j = wZk, i, j, k ∈ N, X, Y, Z ∈ C(A), where u, v, w are given nonzero integers such
that gcd (u, v, w) = 1. From this, we get a necessary and sufficient condition for the solvability of
the Fermat’s matrix equation in C(A). Moreover, we show that the solvability of the Catalan’s matrix
equation in M2 (Z) can be reduced to the solvability of the Catalan’s matrix equation in C(A), and
finally to the solvability of the Catalan’s equation in quadratic fields.
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1. Introduction

It is well-known that the Fermat’s equation

xn + yn = zn, n ∈ N, n ≥ 3

has no solutions in positive integers x, y and z (see Wiles [16]). In contrast to the classical Fermat’s last
theorem in integers, many scholars have studied the Fermat’s equation in matrices ( [5, 7, 8, 11, 12, 14,
15]). For example, the Fermat’s equation has been investigated in rational matrices [8], some classes
of 2 × 2 matrices [5], general linear group GL2(Z) of integral 2 × 2 matrices with det = ±1 [15] and
special linear group S L2(Z) of integral 2 × 2 matrices with det = 1 [11].

Another classical diophantine equation in number theory is the Catalan’s equation

xm − yn = 1, m, n ∈ N, m, n ≥ 2.

In 1844, Catalan [4] conjectured that this equation has no solutions in positive integers x and y, other
than the trivial solution 32 − 23 = 1. In 2004, Mihăilescu [13] confirmed Catalan’s conjecture. In
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analogy with the Fermat’s matrix equation, it is natural to ask whether the Catalan’s equation is solvable
in the ring Mr (Z) of all integral r×r matrices. In this paper, we will study the solvability of the Catalan’s
equation in M2(Z), i.e., r = 2.

Let A =

(
a b
c d

)
∈ M2 (Z) be a given matrix such that bc , 0 and let

C(A) = {B ∈ M2(Z) : AB = BA} .

In this paper, we will study the solvability of the matrix equation

uXi + vY j = wZk, i, j, k ∈ N (1.1)

in C(A), where u, v, w are given nonzero integers such that gcd(u, v, w) = 1. Let u = v = w = 1 and
i = j = k = n, n ≥ 3. Then Eq (1.1) becomes the Fermat’s matrix equation

Xn + Yn = Zn, n ∈ N, n ≥ 3.

Let u = w = 1, v = −1, i = m, j = n, m, n ≥ 2 and Z = I. Then Eq (1.1) becomes the Catalan’s matrix
equation

Xm − Yn = I, m, n ∈ N, m, n ≥ 2.

The rest of this paper is organized as follows. In Section 2, we present some properties of C(A). In
Section 3, we obtain a necessary and sufficient condition for the solvability of the matrix Eq (1.1) in
C(A), and we also get a necessary and sufficient condition for the solvability of the Fermat’s matrix
equation in C(A). In Section 4, we study the solvability of the Catalan’s matrix equation in M2 (Z). We
show that the solvability of the Catalan’s matrix equation in M2 (Z) can be reduced to the solvability
of the Catalan’s matrix equation in C(A), and finally to the solvability of the Catalan’s equation in
quadratic fields.

2. The properties of C(A)

Lemma 2.1. Let A =

(
a b
c d

)
∈ M2 (Z) be a given matrix such that bc , 0. Then there exists a matrix

B =

(
a1 b1

c1 0

)
∈ M2 (Z), where b1c1 , 0 and gcd(a1, b1, c1) = 1 such that C(A) = C(B).

Proof. Let g = gcd(a − d, b, c) and B = 1
g (A − dI). Then B =

(
(a − d)/g b/g

c/g 0

)
is a matrix in M2(Z)

such that
(b/g) · (c/g) , 0 and gcd ((a − d) /g, b/g, c/g) = 1.

Note that for a matrix C ∈ M2 (Z), AC = CA if and only if BC = CB. So C(A) = C(B). �

By Lemma 2.1, in order to study the matrix class C(A), we can assume that A =

(
a b
c 0

)
∈ M2(Z) is

a given matrix such that bc , 0 and gcd(a, b, c) = 1.
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Lemma 2.2. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Then

C(A) = {xI + tA : x, t ∈ Z} .

Proof. Let B =

(
a1 b1

c1 d1

)
∈ C(A). Then B ∈ M2 (Z) and AB = BA. From AB = BA, we obtain


bc1 = b1c,

b(a1 − d1) = ab1,

c(a1 − d1) = ac1,

which imply that c1/c = b1/b and a1 = d1 + b1
b a. Let c1/c = b1/b = p/q, where p ∈ Z, q ∈ N and

gcd(p, q) = 1. Then 
a1 = d1 +

p
q a,

b1 = b1
b b =

p
q b,

c1 = c1
c c =

p
q c.

(2.1)

From B ∈ M2 (Z) and (2.1), it follows that q | gcd(a, b, c), which implies that q = 1. Therefore,

B =

(
d1 + pa pb

pc d1

)
= d1I + pA.

This means that B ∈ {xI + tA : x, t ∈ Z} .
Conversely, let B ∈ {xI + tA : x, t ∈ Z}. Then B = xI + tA for some x, t ∈ Z. Evidently, we have

B ∈ M2 (Z) and AB = BA, so B ∈ C(A). �

Proposition 2.1. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) =

1. Then C(A) forms a commutative ring with identity under the operations of matrix addition and
multiplication.

Proof. It is evident that C(A) is a subring of M2(Z), and I is the identity of C(A). So, it is sufficient to
show that multiplication is commutative. Let B1, B2 ∈ C(A). Then B1 = x1I + t1A and B2 = x2I + t2A
for some x1, x2, t1, t2 ∈ Z. Since

B1B2 = (x1I + t1A) (x2I + t2A) = x1x2I + (x1t2 + t1x2) A + t1t2A2

= x2x1I + (x2t1 + t2x1) A + t2t1A2 = (x2I + t2A) (x1I + t1A) = B2B1,

it follows that multiplication is commutative. �

Proposition 2.2. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1.

Then C(A) has no zero divisors if and only if a2 + 4bc is not a square.
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Proof. Let A1 ∈ C(A). Then A1 = xI + tA for some x, t ∈ Z. Note that A1 = O if and only if x = t = 0.
We will now prove necessity. Suppose that a2 + 4bc is a square, i.e.,

a2 + 4bc = k2 (2.2)

for some integer k. Let x1 = (−a + k) /2 and x2 = (−a − k) /2. From (2.2), it follows that a and k have
the same parity, which implies that x1 and x2 are integers. Let B1 = x1I + A, B2 = x2I + A. Then
B1, B2 ∈ C(A) and B1 , O, B2 , O. Since

B1B2 = (x1I + A) (x2I + A) = x1x2I + (x1 + x2) A + A2

= (x1x2 + bc) I + (x1 + x2 + a) A = O,

it follows that C(A) has zero divisors B1 and B2, a contradiction.
We will now prove sufficiency. Let B be a nonzero element of C(A). Then B = xI + tA for some

x, t ∈ Z, and x, t are not all equal to zero. Let λ1 and λ2 be the eigenvalues of B. Then

λ1,2 =
2x + ta ± t

√
a2 + 4bc

2
.

Since a2 + 4bc is not a square, we have λ1 , 0 and λ2 , 0. So det (B) = λ1 · λ2 , 0. Let B1, B2 ∈ C(A)
and B1 , O, B2 , O. Then det(B1) , 0 and det(B2) , 0. Therefore, det (B1B2) = det(B1) · det(B2) , 0,
which implies that B1B2 , O. Hence, C(A) has no zero divisors. �

Corollary 2.1. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Then

C(A) forms an integral domain under the operations of matrix addition and multiplication if and only
if a2 + 4bc is not a square.

Proof. Directly from Propositions 2.1 and 2.2. �

Proposition 2.3. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1.

Then the eigenvalues of any matrix in C(A) are algebraic integers in Q
(√

a2 + 4bc
)
.

Proof. For any matrix B ∈ C(A), by Lemma 2.2, we have B =

(
x0 + t0a t0b

t0c x0

)
for some x0, t0 ∈ Z.

Then the characteristic polynomial of B is

f (x) = x2 − (2x0 + t0a) x + x2
0 + x0t0a − t2

0bc, (2.3)

which is a monic polynomial with integer coefficients. From (2.3), it follows that the eigenvalues of B
are

2x0 + t0a ± t0

√
a2 + 4bc

2
∈ Q

(√
a2 + 4bc

)
. (2.4)

From (2.3) and (2.4), it follows that the eigenvalues of B are algebraic integers in Q
(√

a2 + 4bc
)
. �
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3. Matrix equation uXi + vY j = wZk over C(A)

Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1, and let u, v, w be

given nonzero integers such that gcd(u, v, w) = 1. In this section, we establish a connection between
the solvability of the matrix equation

uXi + vY j = wZk, i, j, k ∈ N (3.1)

in C(A) and the solvability of the equation

uxi + vy j = wzk, i, j, k ∈ N (3.2)

in quadratic fields.
In this paper, we mainly consider the non-trivial solutions of Eqs (3.1) and (3.2), i.e., det (XYZ) , 0

and xyz , 0, respectively. Indeed, for t = 1, 2, 3, let Xt ∈ M2 (Z) such that det (Xt) = tr (Xt) = 0. Then
X2

t = O for t = 1, 2, 3. Evidently, (X1, X2, X3) is a solution of Eq (3.1) for i, j, k ≥ 2. However, these
solutions are trivial.

Lemma 3.1. ( [17]) For a positive integer n, let X =

(
a b
c d

)
∈ M2 (C) and Xn =

(
an bn

cn dn

)
. Assume that

x1 and x2 are the eigenvalues of X. Then the following statements hold.

1) If x1 = x2 , 0, then


an =

(
1 +

n(a−x1)
x1

)
xn

1,

bn = bnxn−1
1 ,

cn = cnxn−1
1 ,

dn =
(
1 +

n(d−x1)
x1

)
xn

1;

2) If x1 , x2, then



an = a−x2
x1−x2

xn
1 −

a−x1
x1−x2

xn
2,

bn = b
x1−x2

(xn
1 − xn

2),

cn = c
x1−x2

(xn
1 − xn

2),

dn = d−x2
x1−x2

xn
1 −

d−x1
x1−x2

xn
2.

Lemma 3.2. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Let

K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. If Eq (3.1) has a non-trivial solution in C(A),
then Eq (3.2) has a non-trivial solution in OK .

Proof. Suppose that (X, Y, Z) is a non-trivial solution of Eq (3.1) in C(A). By Proposition 2.1, we
obtain that X, Y and Z are pairwise commuting. Then there exists an invertible matrix P ∈ M2(C)
which simultaneously upper triangularizes the matrices X, Y and Z. The assumption uXi + vY j = wZk

implies that u
(
PXP−1

)i
+ v

(
PYP−1

) j
= w

(
PZP−1

)k
. We obtain

u
(
x1 ∗

0 x2

)i

+ v
(
y1 ∗

0 y2

) j

= w
(
z1 ∗

0 z2

)k

.
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Then

u
(
xi

1 ∗

0 xi
2

)
+ v

(
y j

1 ∗

0 y j
2

)
= w

(
zk

1 ∗

0 zk
2

)
,

where xs, ys, zs, s = 1, 2 are the eigenvalues of X, Y and Z, respectively. Comparing both sides, we
have

uxi
s + vy j

s = wzk
s, s = 1, 2.

Therefore, (xs, ys, zs), s = 1, 2 are non-trivial solutions of Eq (3.2) in OK . �

Theorem 3.1. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Let

K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. Then the following statements hold.

1) If a2 + 4bc is a square, then Eq (3.1) has a non-trivial solution in C(A) if and only if Eq (3.2) has
a non-trivial solution in Z;

2) If a2 + 4bc is not a square and D is the unique square-free integer such that a2 + 4bc = m2D
for some m ∈ N, then Eq (3.1) has a non-trivial solution in C(A) if and only if Eq (3.2) has a
non-trivial solution (x, y, z) in OK such that x, y, z can be written in the form

s + t
√

D
2

, s, t ∈ Z, m | t.

Proof. 1) In this case, we have K = Q
(√

a2 + 4bc
)

= Q and OK = Z. Necessity follows from
Lemma 3.2. We will next prove sufficiency. Assume that (x, y, z) is a non-trivial solution of Eq (3.2)
in Z. Let X = xI, Y = yI and Z = zI. Then (X, Y, Z) is a non-trivial solution of Eq (3.1) in C(A).

2) In this case, we have K = Q
(√

a2 + 4bc
)

= Q
(√

D
)
. Now, we will prove necessity. Assume that

(X, Y, Z) is a non-trivial solution of Eq (3.1) in C(A). Then

X = f1I + g1A, Y = f2I + g2A, Z = f3I + g3A

for some f1, f2, f3, g1, g2, g3 ∈ Z. Let x, y and z be the eigenvalues of X, Y and Z, respectively. Then

x =
tr (X) ± g1m

√
D

2
, y =

tr (Y) ± g2m
√

D
2

, z =
tr (Z) ± g3m

√
D

2
.

From Lemma 3.2, it follows that (x, y, z) is a non-trivial solution of Eq (3.2) in OK .
Next, we will prove sufficiency. Assume that (x1, x2, x3) is a non-trivial solution of Eq (3.2) in OK

such that x1, x2, x3 can be written in the form
(
s + t

√
D
) /

2, s, t ∈ Z, m | t. Let

xr =
sr + tr

√
D

2
, sr, tr ∈ Z, m | tr, r = 1, 2, 3.

For r = 1, 2, 3, let αr = tr/m and βr = (sr − αra) /2. Since m | tr, we have αr ∈ Z for r = 1, 2, 3. From
a2 + 4bc = m2D, we obtain

(αra)2 + 4α2
r bc = t2

r D, r = 1, 2, 3. (3.3)
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If D ≡ 2, 3 (mod 4), then 2 | sr and 2 | tr. By (3.3), we have 2 | αra. Then 2 | (sr − αra), i.e., βr ∈ Z.
If D ≡ 1 (mod 4), then 2 | (sr + tr). From (3.3), it follows that αra and tr have the same parity. Then
2 | (sr − αra), i.e., βr ∈ Z. Hence, in any case, we have βr ∈ Z for r = 1, 2, 3. Let

Xr = βrI + αrA, r = 1, 2, 3.

By Lemma 2.2, we have Xr ∈ C(A) for r = 1, 2, 3. We next show that (X1, X2, X3) is a non-trivial
solution of Eq (3.1). For r = 1, 2, 3, notice that the eigenvalues of Xr are xr and xr, where xr denotes
the conjugate of xr. For a positive integer n, let

Xn
r =

(
ar,n br,n

cr,n dr,n

)
, r = 1, 2, 3.

By Lemma 3.1, we have 

ar,n =
(a+m

√
D)xn

r−(a−m
√

D)xr
n

2m
√

D
,

br,n =
b(xn

r−xr
n)

m
√

D
,

cr,n =
c(xn

r−xr
n)

m
√

D
,

dr,n =
(a+m

√
D)xr

n
−(a−m

√
D)xn

r

2m
√

D

(3.4)

for r = 1, 2, 3 and n ∈ N. Since (x1, x2, x3) is a non-trivial solution of Eq (3.2), we have

uxi
1 + vx j

2 = wxk
3. (3.5)

By (3.4) and (3.5), we get

uXi
1 + vX j

2 = u
(
a1,i b1,i

c1,i d1,i

)
+ v

(
a2, j b2, j

c2, j d2, j

)
=

(
ua1,i + va2, j ub1,i + vb2, j

uc1,i + vc2, j ud1,i + vd2, j

)
=

(
wa3,k wb3,k

wc3,k wd3,k

)
= wXk

3,

which implies that (X1, X2, X3) is a non-trivial solution of Eq (3.1). �

Let i = j = k = n. Then Eqs (3.1) and (3.2) become

uXn + vYn = wZn, n ∈ N (3.6)

and
uxn + vyn = wzn, n ∈ N, (3.7)

respectively.

Theorem 3.2. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Let

K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. Then Eq (3.6) has a non-trivial solution in C(A)
if and only if Eq (3.7) has a non-trivial solution in OK .
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Proof. If a2 + 4bc is a square, then the statement of theorem follows from Theorem 3.1 1). Let us
assume that a2 + 4bc is not a square. Let D be the unique square-free integer such that

a2 + 4bc = m2D (3.8)

for some m ∈ N. Necessity follows from Lemma 3.2. Next, we will prove sufficiency. Assume that
(x1, x2, x3) is a non-trivial solution of Eq (3.7) in OK . Then x1, x2, x3 can be written in the form(
s + t

√
D
) /

2, s, t ∈ Z. Let

xi =
si + ti

√
D

2
, si, ti ∈ Z, i = 1, 2, 3.

For i = 1, 2, 3, let αi = (msi − ati) /2. If D ≡ 2, 3 (mod 4), then 2 | si and 2 | ti. So 2 | (msi − ati), i.e.,
αi ∈ Z. If D ≡ 1 (mod 4), then 2 | (si + ti). From (3.8), it follows that a and m have the same parity.
Then 2 | (msi − ati), i.e., αi ∈ Z. Hence, in any case, we have αi ∈ Z for i = 1, 2, 3. Let

Xi = αiI + tiA, i = 1, 2, 3.

By Lemma 2.2, we have Xi ∈ C(A) for i = 1, 2, 3. We next show that (X1, X2, X3) is a non-trivial
solution of Eq (3.6). For i = 1, 2, 3, notice that the eigenvalues of Xi are mxi and mxi, where xi denotes
the conjugate of xi. For a positive integer n, let

Xn
i =

(
ai,n bi,n

ci,n di,n

)
, i = 1, 2, 3.

By Lemma 3.1, we have 

ai,n =
(a+m

√
D)(mxi)n−(a−m

√
D)(mxi)n

2m
√

D
,

bi,n =
b((mxi)n−(mxi)n)

m
√

D
,

ci,n =
c((mxi)n−(mxi)n)

m
√

D
,

di,n =
(a+m

√
D)(mxi)n

−(a−m
√

D)(mxi)n

2m
√

D

(3.9)

for i = 1, 2, 3 and n ∈ N. Since (x1, x2, x3) is a non-trivial solution of Eq (3.7), we have

uxn
1 + vxn

2 = wxn
3,

which implies that
u (mx1)n + v (mx2)n = w (mx3)n . (3.10)

By (3.9) and (3.10), we get

uXn
1 + vXn

2 = u
(
a1,n b1,n

c1,n d1,n

)
+ v

(
a2,n b2,n

c2,n d2,n

)
=

(
ua1,n + va2,n ub1,n + vb2,n

uc1,n + vc2,n ud1,n + vd2,n

)
=

(
wa3,n wb3,n

wc3,n wd3,n

)
= wXn

3 ,

which implies that (X1, X2, X3) is a non-trivial solution of Eq (3.6). �
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Let u = v = w = 1 and n ≥ 3. Then Eqs (3.6) and (3.7) become the Fermat’s matrix equation

Xn + Yn = Zn, n ∈ N, n ≥ 3 (3.11)

and the Fermat’s equation
xn + yn = zn, n ∈ N, n ≥ 3, (3.12)

respectively.

Corollary 3.1. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Let

K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. Then Eq (3.11) has a non-trivial solution in C(A)
if and only if Eq (3.12) has a non-trivial solution in OK .

Proof. Directly from Theorem 3.2. �

From Corollary 3.1, we conclude that the solvability of the Fermat’s matrix equation (3.11) in C(A)
can be reduced to the solvability of the Fermat’s equation (3.12) in quadratic fields. However, the
solvability of the Fermat’s equation in quadratic fields is unsolved. The following lemmas list some
known results about the solvability of the Fermat’s equation in quadratic fields.

Lemma 3.3. ( [9]) Equation (3.12) has no non-trivial solutions in Q
(√

2
)

for n ≥ 4.

Lemma 3.4. ( [6]) Let 3 ≤ D , 5, 17 ≤ 23 be a square-free integer. Then Eq (3.12) has no non-trivial
solutions in Q

(√
D
)

for n ≥ 4.

Lemma 3.5. ( [1]) Let D , 1 be a square-free integer. Then the equation x4 + y4 = z4 has non-trivial
solutions in Q

(√
D
)

if and only if D = −7, and all non-trivial solutions in Q
(√
−7

)
can be reduced to

the solution 1 +
√
−7

2

4

+

1 −
√
−7

2

4

= 1.

Lemma 3.6. ( [2]) Equation (3.12) has no non-trivial solutions in quadratic fields for n = 6, 9.

Combining the above results, we have the following corollaries.

Corollary 3.2. Let 2 ≤ D , 5, 17 ≤ 23 be a square-free integer. Let a, b, c, m be integers such that
a2 + 4bc = m2D, bc , 0 and gcd (a, b, c) = 1. Then Eq (3.11) has no non-trivial solutions in C(A) for

n ≥ 4, where A =

(
a b
c 0

)
.

Proof. Let K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. By Corollary 3.1, Eq (3.11) has a
non-trivial solution in C(A) if and only if Eq (3.12) has a non-trivial solution in OK . If m = 0, then
K = Q and OK = Z. By Fermat’s last theorem, Eq (3.12) has no non-trivial solutions in OK . Then
Eq (3.11) has no non-trivial solutions in C(A). If m , 0, then K = Q

(√
D
)
. By Lemmas 3.3 and 3.4,

Eq (3.12) has no non-trivial solutions in OK for 2 ≤ D , 5, 17 ≤ 23 when n ≥ 4. Then Eq (3.11) has
no non-trivial solutions in C(A) for n ≥ 4. �
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Example 3.1. Let 2 ≤ D , 5, 17 ≤ 23 be a square-free integer. Let a, m be integers such that
a2 + 4 = m2D. From Corollary 3.2, it follows that Eq (3.11) has no non-trivial solutions in C(A) for

n ≥ 4, where A =

(
a 1
1 0

)
. For example, let (D, a, m) = (2, ±2, 2) , (13, ±3, 1) , (10, ±6, 2). Then

Eq (3.11) has no non-trivial solutions in C(A) for n ≥ 4, where A =

(
a 1
1 0

)
and a = ±2, ±3, ±6.

Corollary 3.3. Let A =

(
a b
c 0

)
∈ M2(Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Then

the following statements hold.

1) If a2 + 4bc is a square, then Eq (3.11) has no non-trivial solutions in C(A);
2) The equation X4 + Y4 = Z4 has a non-trivial solution in C(A) if and only if Q

(√
a2 + 4bc

)
=

Q
(√
−7

)
;

3) Equation (3.11) has no non-trivial solutions in C(A) for n = 6, 9;
4) If Eq (3.11) has at least one non-trivial solution in C(A), then it has infinitely many non-trivial

solutions in C(A).

Proof. Let K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. By Corollary 3.1, Eq (3.11) has a
non-trivial solution in C(A) if and only if Eq (3.12) has a non-trivial solution in OK .

1) In this case, we have K = Q and OK = Z. By Fermat’s last theorem, Eq (3.12) has no non-trivial
solutions in OK . Then Eq (3.11) has no non-trivial solutions in C(A).

2) By Lemma 3.5, the equation x4 + y4 = z4 has a non-trivial solution in OK if and only if K =

Q
(√
−7

)
. Therefore, the equation X4 + Y4 = Z4 has a non-trivial solution in C(A) if and only if

K = Q
(√
−7

)
.

3) By Lemma 3.6, Eq (3.12) has no non-trivial solutions in OK for n = 6, 9. Then Eq (3.11) has no
non-trivial solutions in C(A) for n = 6, 9.

4) Suppose that (X, Y, Z) is a non-trivial solution of Eq (3.11) in C(A). From 1), it follows that
a2 + 4bc is not a square. By Corollary 2.1, we know that C(A) forms an integral domain under the
operations of matrix addition and multiplication. Let B ∈ C(A) be an arbitrary matrix such that B , O.
Then by the proof of Proposition 2.2, we obtain det(B) , 0. Since (X, Y, Z) is a non-trivial solution of
Eq (3.11) in C(A), we have

(BX)n + (BY)n = BnXn + BnYn = Bn (Xn + Yn) = BnZn = (BZ)n .

This means that (BX, BY, BZ) are non-trivial solutions of Eq (3.11) in C(A). Since C(A) has no zero
divisors, these non-trivial solutions are pairwise different. �

Example 3.2. Let q be an integer and let A =

(
q 1
1 0

)
. Notice that Q

( √
q2 + 4

)
, Q

(√
−7

)
. From

Corollary 3.3 2), it follows that Eq (3.11) has no non-trivial solutions in C(A) for n = 4. Moreover, by
Corollary 3.3 3), we know that Eq (3.11) has no non-trivial solutions in C(A) for n = 6, 9. Therefore,
Eq (3.11) has no non-trivial solutions in C(A) for n = 4, 6, 9.

Remark 3.1. Examples 3.1 and 3.2 are given in [5, Theorems 3 and 5].
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Let K be a quadratic field and OK its ring of integers. Let D be the unique square-free integer such
that K = Q

(√
D
)
. From a given non-trivial solution of Eq (3.12) in OK , we can construct infinitely

many classes of 2 × 2 matrices such that Eq (3.11) has non-trivial solutions in these classes. Assume
that  s1 + t1

√
D

2

n

+

 s2 + t2
√

D
2

n

=

 s3 + t3
√

D
2

n

is a given non-trivial solution of Eq (3.12) in OK , where si, ti ∈ Z, i = 1, 2, 3. Let a, b, c be integers
and m a positive integer such that a2 + 4bc = m2D, bc , 0 and gcd (a, b, c) = 1. Indeed, there are
infinitely many such a, b, c, m. Let t be an arbitrary positive integer. If D ≡ 1 (mod 4) and D = 1 + 4k
for some k ∈ Z, then (a, b, c, m) =

(
t, 1, kt2, t

)
satisfy the above conditions. If D ≡ 2 (mod 4) and

D = 2 + 4k for some k ∈ Z, then (a, b, c, m) =
(
2t, 1, t2(1 + 4k), 2t

)
satisfy the above conditions. If

D ≡ 3 (mod 4) and D = 3 + 4k for some k ∈ Z, then (a, b, c, m) =
(
2t, 1, 2t2(1 + 2k), 2t

)
satisfy the

above conditions. From the proof of Theorem 3.2, it follows that(ms1+at1
2 t1b

t1c ms1−at1
2

)n

+

(ms2+at2
2 t2b

t2c ms2−at2
2

)n

=

(ms3+at3
2 t3b

t3c ms3−at3
2

)n

are non-trivial solutions of Eq (3.11), and the corresponding matrix classes are C(A), where A =

(
a b
c 0

)
.

Next, we give some examples to illustrate how to construct non-trivial solutions of the Fermat’s matrix
equation in M2 (Z) from a given equality in this manner. Moreover, we have not found other similar
methods for constructing non-trivial solutions in the literature.

Example 3.3. In [5, Theorem 2], M. T. Chien and J. Meng gave a non-trivial solution of the equation
X3 + Y3 = Z3 in M2 (Z): (

7 3
3 4

)3

+

(
11 6
6 5

)3

=

(
12 6
6 6

)3

. (3.13)

Note that their eigenvalues satisfy the equality11 + 3
√

5
2

3

+
(
8 + 3

√
5
)3

=
(
9 + 3

√
5
)3
.

From this equality, we can construct infinitely many classes of 2 × 2 matrices such that the equation
X3 + Y3 = Z3 has non-trivial solutions in these classes. Let a, b, c be integers and m a positive integer
such that a2 + 4bc = 5m2, bc , 0 and gcd (a, b, c) = 1. Then(11m+3a

2 3b
3c 11m−3a

2

)3

+

(
8m + 3a 6b

6c 8m − 3a

)3

=

(
9m + 3a 6b

6c 9m − 3a

)3

(3.14)

are non-trivial solutions of the equation X3 + Y3 = Z3, and the corresponding matrix classes are C(A),

where A =

(
a b
c 0

)
. Let a = b = c = m = 1. Then we get the non-trivial solution (3.13), and the

corresponding matrix class is C(B), where B =

(
1 1
1 0

)
.
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Example 3.3 shows that the non-trivial solution (3.13) can be obtained from (3.14) and there are
infinitely many such non-trivial solutions.

Example 3.4. In [3], W. Burnside gave the equality(
−3 +

√
−3

(
1 + 4k3))3

+

(
−3 −

√
−3

(
1 + 4k3))3

= (6k)3 , (3.15)

where k , 0, −1 is an integer. We claim that −3
(
1 + 4k3

)
is not a square. Otherwise, −3

(
1 + 4k3

)
= q2

for some q ∈ N. From (3.15), it follows that

(−3 + q)3 + (−3 − q)3 = (6k)3 .

By Fermat’s last theorem, we have q = 3. This implies that −3
(
1 + 4k3

)
= 9, so we obtain k = −1, a

contradiction to k , 0, −1. Hence, −3
(
1 + 4k3

)
is not a square. Let D , 1 be the unique square-free

integer such that −3
(
1 + 4k3

)
= t2D for some t ∈ N. Then Eq (3.15) becomes(
−3 + t

√
D
)3

+
(
−3 − t

√
D
)3

= (6k)3 .

From this equality, we can construct infinitely many classes of 2 × 2 matrices such that the equation
X3 + Y3 = Z3 has non-trivial solutions in these classes. Let a, b, c be integers and m a positive integer
such that a2 + 4bc = m2D, bc , 0 and gcd (a, b, c) = 1. Then(

−3m + at 2tb
2tc −3m − at

)3

+

(
−3m − at −2tb
−2tc −3m + at

)3

=

(
6mk 0

0 6mk

)3

are non-trivial solutions of the equation X3 + Y3 = Z3, and the corresponding matrix classes are C(A),

where A =

(
a b
c 0

)
.

Example 3.5. In [1], A. Aigner gave the equality1 +
√
−7

2

4

+

1 −
√
−7

2

4

= 1. (3.16)

From this equality, we can construct infinitely many classes of 2 × 2 matrices such that the equation
X4 + Y4 = Z4 has non-trivial solutions in these classes. Let a, b, c be integers and m a positive integer
such that a2 + 4bc = −7m2, bc , 0 and gcd (a, b, c) = 1. Then(m+a

2 b
c m−a

2

)4

+

(m−a
2 −b
−c m+a

2

)4

=

(
m 0
0 m

)4

are non-trivial solutions of the equation X4 + Y4 = Z4, and the corresponding matrix classes are C(A),

where A =

(
a b
c 0

)
.

Examples 3.4 and 3.5 show that we can construct infinitely many non-trivial solutions of the
Fermat’s matrix equation with exponents 3 and 4 in M2 (Z) from the equalities (3.15) and (3.16),
respectively.
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Example 3.6. Let r and s be arbitrary integers such that they are not all equal to zero. Let k be an
arbitrary positive integer. In [10, Theorem 3], I. Kaddoura and B. Mourad proved that(

s −r
r s − r

)n

+

(
r − s s
−s r

)n

=

(
r s − r

r − s s

)n

(3.17)

are non-trivial solutions of the equations Xn + Yn = Zn in M2 (Z), where n = 6k + 1, 6k + 5. Next, we
show that the non-trivial solutions (3.17) can be obtained from two equalities. For polynomials with
integer coefficients, we have the following congruences [10, Lemma 2].

(x + y)6k+1
− x6k+1 − y6k+1 ≡ 0 mod

(
xy + x2 + y2

)
(3.18)

(x + y)6k+5
− x6k+5 − y6k+5 ≡ 0 mod

(
xy + x2 + y2

)2
(3.19)

Let f (x, y) = xy + x2 + y2. Then f
((

2s − r + r
√
−3

)
/2,

(
2r − s − s

√
−3

)
/2

)
= 0. From (3.18)

and (3.19), it follows that2s − r + r
√
−3

2

n

+

2r − s − s
√
−3

2

n

=

r + s + (r − s)
√
−3

2

n

,

where n = 6k + 1, 6k + 5. From these two equalities, we can construct infinitely many classes of 2 × 2
matrices such that the equations Xn + Yn = Zn, n = 6k + 1, 6k + 5 have infinitely many non-trivial
solutions in these classes. Let a, b, c be integers and m a positive integer such that a2 + 4bc = −3m2,
bc , 0 and gcd (a, b, c) = 1. Then(m(2s−r)+ar

2 rb
rc m(2s−r)−ar

2

)n

+

(m(2r−s)−as
2 −sb
−sc m(2r−s)+as

2

)n

=

(m(r+s)+a(r−s)
2 (r − s)b

(r − s)c m(r+s)−a(r−s)
2

)n

(3.20)

are non-trivial solutions of the equations Xn +Yn = Zn in C(A), where A =

(
a b
c 0

)
and n = 6k+1, 6k+5.

Let a = c = m = 1 and b = −1. Then we get the non-trivial solutions (3.17), and the corresponding

matrix class is C(B), where B =

(
1 −1
1 0

)
.

Example 3.6 shows that the non-trivial solutions (3.17) can be obtained from (3.20) and there are
infinitely many such non-trivial solutions.

4. Catalan’s equation over M2(Z)

In this section, we study the solvability of the Catalan’s matrix equation

Xm − Yn = I, m, n ∈ N, m, n ≥ 3 (4.1)

in M2 (Z). Here we require m, n ≥ 3. Indeed, if m = 2 or n = 2, without loss of generality, we can
assume that m = 2. For any integer t , 0, −1, let A be a matrix in M2 (Z) such that tr(A) = 0 and
det(A) = −tn − 1. Then A2 = (tn + 1) I, i.e.,

A2 − (tI)n = I.

Therefore, we can get the non-trivial solutions (X, Y, m, n) = (A, tI, 2, n) of the Catalan’s matrix
equation. However, these solutions are trivial. Thus, we assume that m, n ≥ 3.
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Definition 4.1. Let K be a quadratic field and OK its ring of integers. Let x ∈ OK . If there is a positive
integer t such that xt ∈ Z, then we say that x has finite exponent t0, where t0 is the smallest positive
integer with such property. Otherwise, we say that x has infinite exponent ∞. We denote the exponent
of x by E(x).

About exponent, we have the following statements.

Proposition 4.1. Let K be a quadratic field and OK its ring of integers. For x ∈ OK , we have

E(x) ∈ {1, 2, 3, 4, 6, ∞}.

Proof. Suppose that x has finite exponent. If x is an integer, then x has exponent 1. If x is not an
integer, then xE(x) ∈ Z and xi < Z for 1 ≤ i < E(x), which imply that x/x is a primitive E(x)th root of
unity, where x denotes the conjugate of x. We know that the degree of x/x over Q is ϕ (E(x)), where ϕ
is Euler’s totient function. Then ϕ (E(x)) ≤ 2, which implies that E(x) ∈ {2, 3, 4, 6}. �

Proposition 4.2. Let K be a quadratic field and OK its ring of integers. If x ∈ OK has finite exponent,
then for n ∈ N, xn ∈ Z if and only if E(x) | n.

Proof. The sufficiency is clear. We next prove necessity. The case x ∈ Z is evident, so we assume
that x < Z. Let n = E(x)q + r, where q, r ∈ Z and 0 ≤ r < E(x). Then we have xr = xn−E(x)q and
xr

= xn−E(x)q, where x denotes the conjugate of x. Since xn, xE(x) ∈ Z, we botain

xr

xr =
xn−E(x)q

xn−E(x)q =
xn

xn ·

(
xE(x)

xE(x)

)−q

= 1,

which implies that xr ∈ Z. If r , 0, then we obtain a contradiction to the minimality of E(x). So r = 0,
which means that E(x) | n. �

Proposition 4.3. Let K be a quadratic field and OK its ring of integers. Let D be the unique square-
free integer such that K = Q

(√
D
)
. Let E j = {x ∈ OK : E(x) = j}, j = 1, 2, 3, 4, 6 and let i =

√
−1,

ω =
(
−1 +

√
−3

)
/2. Then the following statements hold.

1) E1 = Z;
2) E2 =

{
k
√

D : k ∈ Z, k , 0
}
;

3) E3 , ∅ if and only if D = −3, and E3 = {kω, kω : k ∈ Z, k , 0};
4) E4 , ∅ if and only if D = −1, and E4 = {k(1 + i), k(1 − i) : k ∈ Z, k , 0};
5) E6 , ∅ if and only if D = −3, and E6 = {k(1 − ω), k(1 − ω) : k ∈ Z, k , 0}.

Proof. 1) Clearly.
2) If E(x) = 2, then x/x is a primitive 2th root of unity, i.e., x/x = −1. This implies that x = k

√
D,

where k is a nonzero integer.
3) If E(x) = 3, then x/x is a primitive 3th root of unity, i.e., x/x = ω or ω. This implies that x = kω

or kω, where k is a nonzero integer.
4) If E(x) = 4, then x/x is a primitive 4th root of unity, i.e., x/x = ±i. This implies that x = k(1 + i)

or k(1 − i), where k is a nonzero integer.
5) If E(x) = 6, then x/x is a primitive 6th root of unity, i.e., x/x = −ω or −ω. This implies that

x = k(1 − ω) or k (1 − ω), where k is a nonzero integer. �
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Lemma 4.1. If Eq (4.1) has a non-trivial solution in M2 (Z), then the equation

xm − yn = 1, m, n ∈ N, m, n ≥ 3 (4.2)

has a non-trivial solution in algebraic integers x and y of degree less than or equal to 2.

Proof. Suppose that (X, Y, m, n) is a non-trivial solution of Eq (4.1) in M2 (Z). There exists an
invertible matrix P ∈ M2(C) which upper triangularizes the matrix X. The assumption Xm − Yn = I
implies that

(
PXP−1

)m
−

(
PYP−1

)n
= I. We obtain(

x1 ∗

0 x2

)m

−
(
PYP−1

)n
= I.

Then (
PYP−1

)n
=

(
xm

1 − 1 ∗

0 xm
2 − 1

)
, (4.3)

where xs, s = 1, 2 are the eigenvalues of X. Let ys, s = 1, 2 be the eigenvalues of Y . Then the
eigenvalues of

(
PYP−1

)n
are yn

s , s = 1, 2. By (4.3), we have

yn
s = xm

s − 1, s = 1, 2.

Therefore, (xs, ys, m, n), s = 1, 2 are non-trivial solutions of Eq (4.2). �

Lemma 4.1 tells us that we should consider the solvability of Eq (4.2) in algebraic integers x and y
of degree less than or equal to 2.

Lemma 4.2. If x or y is an integer, then all non-trivial solutions of Eq (4.2) are
(
±
√
±3, 2, 4, 3

)
.

Proof. We consider the following two cases.
Case 1. If x is an integer, then yn ∈ Z. So y has finite exponent. By Proposition 4.2, we obtain E(y) | n.
By Proposition 4.3, Eq (4.2) becomes

xm − yn = 1, if E(y) = 1,

xm −
(
k2D

)n/2
= 1, if E(y) = 2,

xm − kn = 1, if E(y) = 3,

xm + (−1)n/4+1
(
2k2

)n/2
= 1, if E(y) = 4,

xm + (−1)n/6+1
(
3k2

)n/2
= 1, if E(y) = 6,

where D , 1 is a square-free integer and k is a nonzero integer. By Catalan’s conjecture, we know that
these equations have no non-trivial solutions.
Case 2. If y is an integer, then xm ∈ Z. So x has finite exponent. By Proposition 4.2, we obtain E(x) | m.
By Proposition 4.3, Eq (4.2) becomes

xm − yn = 1, if E(x) = 1,(
k2D

)m/2
− yn = 1, if E(x) = 2,

km − yn = 1, if E(x) = 3,

(−1)m/4
(
2k2

)m/2
− yn = 1, if E(x) = 4,

(−1)m/6
(
3k2

)m/2
− yn = 1, if E(x) = 6,
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where D , 1 is a square-free integer and k is a nonzero integer. By Catalan’s conjecture, we know
that only one of these equations has non-trivial solutions, and this equation is

(
k2D

)m/2
− yn = 1.

Then all non-trivial solutions of this equation are k2D = ±3, y = 2, m/2 = 2, n = 3. So we obtain
(x, y, m, n) =

(
±
√
±3, 2, 4, 3

)
. �

Theorem 4.1. If the eigenvalues of X or Y are integers, then all non-trivial solutions of Eq (4.1) in
M2(Z) are given by {(X, 2I, 4, 3) : X ∈ M2(Z), tr(X) = 0, det(X) = ±3}.

Proof. Assume that xs, ys, s = 1, 2 are the eigenvalues of X and Y , respectively. By Lemma 4.1, we
know that (xs, ys, m, n), s = 1, 2 are non-trivial solutions of Eq (4.2). In this case, by Lemma 4.2, we
have

(xs, ys, m, n) ∈
{(
±
√
±3, 2, 4, 3

)}
, s = 1, 2.

By Lemma 3.1 and a direct computation, we can get all non-trivial solutions of Eq (4.1) in M2(Z) in
this case, which are given in the theorem. �

Lemma 4.3. If x and y are quadratic algebraic integers such that xm is an integer, then all non-
trivial solutions of Eq (4.2) are

(
±
√
±3, ±

√
2, 4, 6

)
,
(
±
√
±3, 2ω, 4, 3

)
,
(
±
√
±3, 2ω, 4, 3

)
, where

ω = (−1 +
√
−3)/2.

Proof. Since xm is an integer, it follows that yn is also an integer. So x and y have finite exponent. By
Proposition 4.2, we have E(x) | m and E(y) | n. We next consider the following four cases.
Case 1. E(x) = 2. By Proposition 4.3, Eq (4.2) becomes

(
k2

1D1

)m/2
−

(
k2

2D2

)n/2
= 1, if E(y) = 2,(

k2
1D1

)m/2
− kn

2 = 1, if E(y) = 3,(
k2

1D1

)m/2
+ (−1)n/4+1

(
2k2

2

)n/2
= 1, if E(y) = 4,(

k2
1D1

)m/2
+ (−1)n/6+1

(
3k2

2

)n/2
= 1, if E(y) = 6,

where D1 , 1, D2 , 1 are square-free integers and k1, k2 are nonzero integers. By Catalan’s conjecture,
we know that only two of these equations have non-trivial solutions, and these two equations are(
k2

1D1

)m/2
−

(
k2

2D2

)n/2
= 1 and

(
k2

1D1

)m/2
− kn

2 = 1. Then all non-trivial solutions of these two equations
are k2

1D1 = ±3, k2
2D2 = 2, m/2 = 2, n/2 = 3 and k2

1D1 = ±3, k2 = 2, m/2 = 2, n = 3, respectively. So
we obtain (x, y, m, n) =

(
±
√
±3, ±

√
2, 4, 6

)
,
(
±
√
±3, 2ω, 4, 3

)
,
(
±
√
±3, 2ω, 4, 3

)
.

Case 2. E(x) = 3. By Proposition 4.3, Eq (4.2) becomes
km

1 −
(
k2

2D
)n/2

= 1, if E(y) = 2,

km
1 − kn

2 = 1, if E(y) = 3,

km
1 + (−1)n/4+1

(
2k2

2

)n/2
= 1, if E(y) = 4,

km
1 + (−1)n/6+1

(
3k2

2

)n/2
= 1, if E(y) = 6,

where D , 1 is a square-free integer and k1, k2 are nonzero integers. By Catalan’s conjecture, we know
that these equations have no non-trivial solutions.
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Case 3. E(x) = 4. By Proposition 4.3, Eq (4.2) becomes

(−1)m/4
(
2k2

1

)m/2
−

(
k2

2D
)n/2

= 1, if E(y) = 2,

(−1)m/4
(
2k2

1

)m/2
− kn

2 = 1, if E(y) = 3,

(−1)m/4
(
2k2

1

)m/2
+ (−1)n/4+1

(
2k2

2

)n/2
= 1, if E(y) = 4,

(−1)m/4
(
2k2

1

)m/2
+ (−1)n/6+1

(
3k2

2

)n/2
= 1, if E(y) = 6,

where D , 1 is a square-free integer and k1, k2 are nonzero integers. By Catalan’s conjecture, we know
that these equations have no non-trivial solutions.
Case 4. E(x) = 6. By Proposition 4.3, Eq (4.2) becomes

(−1)m/6
(
3k2

1

)m/2
−

(
k2

2D
)n/2

= 1, if E(y) = 2,

(−1)m/6
(
3k2

1

)m/2
− kn

2 = 1, if E(y) = 3,

(−1)m/6
(
3k2

1

)m/2
+ (−1)n/4+1

(
2k2

2

)n/2
= 1, if E(y) = 4,

(−1)m/6
(
3k2

1

)m/2
+ (−1)n/6+1

(
3k2

2

)n/2
= 1, if E(y) = 6,

where D , 1 is a square-free integer and k1, k2 are nonzero integers. By Catalan’s conjecture, we know
that these equations have no non-trivial solutions. �

Theorem 4.2. If the eigenvalues of X and Y are quadratic algebraic integers, then the following
statements hold.

1) If Xm is a scalar matrix, then all non-trivial solutions of Eq (4.1) in M2(Z) are given by

{(X, Y, 4, 6) : X, Y ∈ M2(Z), tr(X) = tr(Y) = 0, det(X) = ±3, det(Y) = −2}

and
{(X, Y, 4, 3) : X, Y ∈ M2(Z), tr(X) = 0, tr(Y) = −2, det(X) = ±3, det(Y) = 4} ;

2) If Xm is not a scalar matrix, then XY = YX.

Proof. Assume that xs, ys, s = 1, 2 are the eigenvalues of X and Y , respectively.
1) In this case, xm

1 = xm
2 is an integer. From Lemma 4.1, it follows that (xs, ys, m, n), s = 1, 2 are

non-trivial solutions of Eq (4.2). By Lemma 4.3, we have

(xs, ys, m, n) ∈
{(
±
√
±3, ±

√
2, 4, 6

)
,
(
±
√
±3, 2ω, 4, 3

)
,
(
±
√
±3, 2ω, 4, 3

)}
, s = 1, 2,

where ω =
(
−1 +

√
−3

)
/2. By Lemma 3.1 and a direct computation, we can get all non-trivial

solutions of Eq (4.1) in M2(Z) in this case, which are given in the theorem.
2) In this case, we have xm

1 , xm
2 . Since (xs, ys, m, n), s = 1, 2 are non-trivial solutions of Eq (4.2),

it follows that x1, x2, y1, y2 are quadratic algebraic integers in the same quadratic field. Let K denote

this quadratic field and let OK be its ring of integers. Let X =

(
a1 b1

c1 d1

)
and Y =

(
a2 b2

c2 d2

)
. Since
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x1, x2, y1, y2 ∈ OK\Z, we have b1c1 , 0 and b2c2 , 0. By Lemma 3.1 and the assumption Xm −Yn = I,
we get the following three identities.

(a1 − d1) ·
xm

1 − xm
2

x1 − x2
= (a2 − d2) ·

yn
1 − yn

2

y1 − y2
(4.4a)

yn
1 − yn

2

y1 − y2
=

b1

b2
·

xm
1 − xm

2

x1 − x2
(4.4b)

yn
1 − yn

2

y1 − y2
=

c1

c2
·

xm
1 − xm

2

x1 − x2
(4.4c)

By (4.4a) and (4.4b), we have
(a1 − d1) b2 = (a2 − d2) b1. (4.5)

By (4.4a) and (4.4c), we get
(a1 − d1) c2 = (a2 − d2) c1. (4.6)

By (4.4b) and (4.4c), we obtain
b1c2 = b2c1. (4.7)

From (4.5)–(4.7), we conclude that XY = YX. �

Theorem 4.2 tells us that it is sufficient to study the solvability of the Catalan’s matrix equation (4.1)

in C(A), where A =

(
a b
c 0

)
∈ M2 (Z) is a given matrix such that bc , 0 and gcd(a, b, c) = 1. By

Theorem 3.1, we have the following corollary.

Corollary 4.1. Let A =

(
a b
c 0

)
∈ M2 (Z) be a given matrix such that bc , 0 and gcd(a, b, c) = 1. Let

K = Q
(√

a2 + 4bc
)

and let OK be its ring of integers. Then the following statements hold.

1) If a2 + 4bc is a square, then Eq (4.1) has no non-trivial solutions in C(A);
2) If a2 + 4bc is not a square and D is the unique square-free integer such that a2 + 4bc = k2D

for some k ∈ N, then Eq (4.1) has a non-trivial solution in C(A) if and only if Eq (4.2) has a
non-trivial solution (x, y, m, n) in OK such that x, y can be written in the form

s + t
√

D
2

, s, t ∈ Z, k | t.

Hence, from Theorems 4.1, 4.2 and Corollary 4.1, we conclude that the solvability of the Catalan’s
matrix equation (4.1) in M2 (Z) can be reduced to the solvability of the Catalan’s matrix equation (4.1)
in C(A), and finally to the solvability of the Catalan’s equation (4.2) in quadratic fields. However, the
solvability of the Catalan’s equation in quadratic fields is unsolved. We leave this as an open question.

Let K be a quadratic field and OK its ring of integers. Let D be the unique square-free integer such
that K = Q

(√
D
)
. From a given non-trivial solution of Eq (4.2) in OK , we can construct some classes

of 2 × 2 matrices such that Eq(4.1) has non-trivial solutions in these classes. Assume that s1 + t1
√

D
2

m

−

 s2 + t2
√

D
2

n

= 1
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is a given non-trivial solution of Eq (4.2) in OK , where si, ti ∈ Z, i = 1, 2. Let a, b, c be integers and
k a positive integer such that a2 + 4bc = k2D, k | t1, k | t2, bc , 0 and gcd (a, b, c) = 1. Indeed,
such a, b, c, k exist. If D ≡ 1 (mod 4) and D = 1 + 4t for some t ∈ Z, then (a, b, c, k) = (1, t, 1, 1)
satisfies the above conditions. If D ≡ 2, 3 (mod 4), then (a, b, c, k) = (0, D, 1, 2) satisfies the above
conditions. From the proof of Theorem 3.1, it follows that s1+

t1
k a

2
t1
k b

t1
k c s1−

t1
k a

2


m

−

 s2+
t2
k a

2
t2
k b

t2
k c s2−

t2
k a

2


n

= I

are non-trivial solutions of Eq (4.1), and the corresponding matrix classes are C(A), where A =

(
a b
c 0

)
.

Next, we give an example to illustrate how to construct non-trivial solutions of the Catalan’s matrix
equation in M2 (Z) from a given equality in this manner.

Example 4.1. Let m, n ≥ 3 be integers such that m ≡ 1 (mod 6) and n ≡ −1 (mod 6). Then we have1 −
√
−3

2

m

−

−1 +
√
−3

2

n

= 1.

From this equality, we can construct some classes of 2 × 2 matrices such that Eq (4.1) has non-trivial
solutions in these classes. Let a, b, c be integers such that a2 + 4bc = −3, bc , 0 and gcd (a, b, c) = 1.
Then ( 1−a

2 −b
−c 1+a

2

)m

−

(
−1+a

2 b
c −1−a

2

)n

= I

are non-trivial solutions of Eq (4.1), and the corresponding matrix classes are C(A), where A =

(
a b
c 0

)
.

5. Conclusions

Let A =

(
a b
c d

)
∈ M2 (Z) be a given matrix such that bc , 0 and let C(A) = {B ∈ M2(Z) :

AB = BA}. In this work, we mainly consider the solvability of the Fermat’s matrix equation and the
Catalan’s matrix equation in C(A) and M2 (Z), respectively. We show that the solvability of the Fermat’s
matrix equation in C(A) can be reduced to the solvability of the Fermat’s equation in quadratic fields.
Moreover, we show that the solvability of the Catalan’s matrix equation in M2 (Z) can be reduced to
the solvability of the Catalan’s matrix equation in C(A), and finally to the solvability of the Catalan’s
equation in quadratic fields.
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13. P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math.,

572 (2004), 167–195. https://doi.org/10.1515/crll.2004.048
14. H. Qin, Fermat’s problem and Goldbach’s problem over MnZ, Linear Algebra Appl., 236 (1996),

131–135. https://doi.org/10.1016/0024-3795(94)00137-5
15. L. N. Vaserstein, Noncommutative number theory, Contemp. Math., 83 (1989), 445–449.

https://doi.org/10.1090/conm/083/991989
16. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math., 141 (1995), 443–551.

https://doi.org/10.2307/2118559
17. X. Zhong, The solution of 2×2 matrices equations An = kE with integer entries (in Chinese), Coll.

Math., 22 (2006), 71–74. Available from: https://kns.cnki.net/kcms/detail/detail.
aspx?FileName=GKSX200604016&DbName=CJFQ2006.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 1, 977–996.

http://eudml.org/doc/145998.
http://dx.doi.org/https://doi.org/10.1007/BF01641485
http://dx.doi.org/https://doi.org/10.1112/plms/s2_14.1.1
http://dx.doi.org/https://doi.org/10.1515/crll.1844.27.192
http://dx.doi.org/https://doi.org/10.4134/BKMS.b200403
http://dx.doi.org/https://doi.org/10.2140/ant.2015.9.875
http://dx.doi.org/https://doi.org/10.1007/BF01876927
https://nntdm.net/volume-17-2011/number-2/04-11/.
http://dx.doi.org/https://doi.org/10.1016/j.jnt.2004.06.006
http://dx.doi.org/https://doi.org/10.48550/arXiv.1808.09956
http://dx.doi.org/https://doi.org/10.1007/BF01882197
http://dx.doi.org/https://doi.org/10.1515/crll.2004.048
http://dx.doi.org/https://doi.org/10.1016/0024-3795(94)00137-5
http://dx.doi.org/https://doi.org/10.1090/conm/083/991989
http://dx.doi.org/https://doi.org/10.2307/2118559
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GKSX200604016&DbName=CJFQ2006
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GKSX200604016&DbName=CJFQ2006
http://creativecommons.org/licenses/by/4.0

	Introduction
	The properties of C(A)
	Matrix equation uXi+vYj=wZk over C(A)
	Catalan's equation over M2(Z)
	Conclusions

